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Applied Computational & Numerical Methods

Lecture V

� Monte Carlo Simulation

� Partial Differential Equations

� Examples

� Project 4 is on PDE, will be posted by 

Monday, July 4.



Project Schedule
Applied Computational & Numerical Methods

Week 1 Getting started with the ROOT program package

Introduction to the program, installation, setup, running, macros and document

Tutorial

Weak 2 Fits and the regression

Basic assignment: Fit of functions to data: parameter determination and 

the goodness of the fit

Advanced assignment: Measurement of the lifetimes of heavy flavored hadrons

Week 3 Monte Carlo random variates; Monte Carlo experiments

Basic assignment: Random number generation with root, statistical features, 

confidence intervals

Advanced assignment: A Monte Carlo based, statistical experiment to 

determine  the significance of an observation

June 27, 2011 Xinchou Lou 3



Project Schedule
Applied Computational & Numerical Methods

Week 4 Numerical methods

Partial differential equations

Week 5 Neural network method

Basic assignment: Backprop training on data, test of training results, 

optimization of the forecast capability

Advanced assignment: An optimization for new particle search

Week 6 Project presentations
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to be posted on July 4th



Applied Computational & Numerical Methods Web Site
http://www.utdallas.edu/~xinchou/xlousummer2011.htm

Lecture Notes & Readings: 

Lecture Notes, June 13, 2011 

Lecture Notes, June 17, 2011 

Lecture Notes, June 20, 2011 

Lecture Notes, June 27, 2011 

Weekly Projects: 

Project 1, June 17, 2011 

Project 2, June 20, 2011 

Project 2, Project2.C

Project 2 root data file, project2-1

Project 2 root data file, project2-2

Project 3, June 27, 2011 

Project 3, Project3.C

Project 3, CDFPaper

Useful Links: 

C++ Online Tutorial

ROOT Homepage

Online Numerical Recipes in C
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Monte Carlo Simulation
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ThenThenThenThen



Monte Carlo Simulation
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Monte Carlo Simulation
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Example



Monte Carlo Simulation
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The technique is applicable to



Monte Carlo Simulation
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Monte Carlo Simulation
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Monte Carlo Simulation
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Monte Carlo Simulation
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For an arbitrary Gaussian distribution with mean at <x> and standard deviation σ, 

the random variate xg is 

xg = σ× Ζ1,2+ <x>



Monte Carlo Simulation
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Monte Carlo Simulation
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Applications in HEP and Nuclear Physics –

Physics event generators,  detector simulation, background study

Selection optimization, efficiencies ….



Monte Carlo Simulation
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Applications in math and other physics –



Monte Carlo Simulation
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Applications in Engineering –



Monte Carlo Simulation
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Applications in Finance–



Computer Simulation with little MC
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Computer Simulation with little MC
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too much space junks:

defunct satellites, 

bits of boost rockets,

astronaut tools, all

orbiting Earth

accurate database &

simulation keep space 

safe



Computer Simulation with little MC
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Detailed model, supercomputers

Are used by HBCosmo to simulate

The blackholes and galaxies in 

space

Study to locate the earliest 

Cosmic events and untangle 

the history of the universe 



Computer Simulation with little MC

June 27, 2011 Xinchou Lou 42

Simulation to understand the 

collapse of the WTC twin 

towers in Sept. 11 attack.



Partial Differential Equations
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Partial Differential Equations PDE 
 

Selected from Numerical Methods for Physics, A. L. Garcia 

 

Driven by physics: Maxwell Equations, Schrodinger Equation 

 

This section deals with solutions to parabolic PDEs (diffusion eq.) 

 

(1)  
2

2
( , ) ( , )T x t T x t

t x
κ∂ ∂=

∂ ∂
  1D diffusion eq.,  

T temperature,  κκκκ thermal diffusion coefficient 

 

Remember SchrÖdinger equation? 

 
2 2

22
( , ) ( , ) ( ) ( , )

h
ih

m
x t x t V x x t

t x
ψ ψ ψ∂ ∂= − +

∂ ∂
 

 

 

(2)  

2 2
2

2 2

               c=speed of wave

A A
c

t x

∂ ∂=
∂ ∂

�

 acoustics:  1D wave equation 

 

 A wave amplitude, c speed of wave 

 

 

(3)  
2 2

2 2
1

( , )x y
x y

ρε
Φ Φ+ = −∂ ∂

∂ ∂
 EM: 2D Poisson eq. 

 ΦΦΦΦ electrostatic potential, εεεε permitivity, ρρρρ charge density 



Partial Differential Equations
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Type I. Diffusion PDE (thermal physics, time-dependent QM) 
 

2

2
( , ) ( , )T x t T x t

t x
κ∂ ∂=

∂ ∂
   (1-D)  

 

Temperature T at location x and time t.  

 

κκκκ is the thermal diffusion coefficient 

 

1) Initial Value Problems 

 

BC=boundary conditions  

 

 

a)  
1 1

( , ) , ( , )   (fixed T at ends)
2 2a b

T x t T T x t T= − = = =  

 

 

b)  

2 2

,  a b
L Lx x

dT dT
F F

dx dx
κ κ

=− =

− = − =  (fixed flux) 

 

  for insulated boundary, Fa=Fb=0 

 

 

c) 

2 2

1 1
( , )  ( , )      (periodical boundary condition)

2 2

L Lx x

T x t T x t

dT dT
dx dx

=− =

= − = =

=

 



Partial Differential Equations
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Discretion 
1 2 3

( 1) ,   {t 0,  ,  t 2 ,...}nt n tτ τ τ= − = = =  

 

  t time step, 1≤n 
 

                 -1

                    grid spacing 

( 1)      1 ,  
2i

L
N

Lx i h i N h= − − ≤ ≤ =

�

 

 

• Initial Condition 

• BC 

• Interior points 

 

 Numerical algorithm marches forward in time;  

 

Determine the unknown values in the interior grid points 

given Initial Condition and Boundary Condition. 

For small t, the numerical solution is good. 



Partial Differential Equations
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temporal

(step size=ττττ)

spatial

step size (h)

( , )n

i i n
a a x t=

(xi,tn)

Setting up the spatial-temporal points for the PDE



Partial Differential Equations
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Forward Time Centered Space Scheme (FTCS) 

 

( , )   i spatial location of a grid point, n temporal stepn
ni iT T x t=  

 

• Time Derivative 

 
1( , ) ( , )

( , )
n n

n ni i i iT x t T x t T T
T x t

t
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τ τ

++ − −∂ ≅ =
∂

 

 

• Space Derivative 
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Partial Differential Equations
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Using the above discretions the diffusion equation becomes 

 

2

2

2

1

1 1

( , ) ( , )

              

2
n n

n n ni i
ii i

T x t T x t
t x

T T
T T T

h

κ

κ
τ

+

+ − 
 

∂ ∂=
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⇓

−
≅ + −

 

 

The future temperature value at step (n+1) is determined 

forward the current value 

 

2
1

1 1

                            

fu

   

                       curt ru enr te

2n n n nn
i i ii i

T T T TT
h

κτ+
+ −

 
 

↓ ↓

≅ + + −
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Partial Differential Equations
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• FTCS scheme can be numerically unstable: solution looks like a standing 

wave growing rapidly in amplitude. The growth is related to time step size τ. 

Use a trial function 

 

   (i= -1,  =amplitude, k=wave number)wave solution   ( , ) ( ) ikxa x t A t e=  

 

discretized form 

 

j n    (x ,  t ( 1) )( , ) jik hn n
nj j jh na x t a A e τ= = −= = ⋅  

next step would be 

 

1

,   ( )1 1 =
n

n
j j

ik h ik h
n n n
j

A
A

a A e A e ζζ
+

=+ + ×= ⋅ ⋅  

 

 if |ξ|>1, the scheme is unstable. In the case of FTCS for Advection Eq. 

 

1
1 1

    (a=ampliude, c=speed)( )
2

n n n n
j j j j

c
a a a a

h
τ+

+ −= − −
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Inserting the trial solution 

 

1 1

2
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              = [1
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Generally |ξ|>1, so this is not a stable solution. 
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The Lax Scheme 

The scheme uses a different approach to avoid the divergence. The 

functional value at current location and time is approximately with  

 

1 1 1
( )/2n n n

i i i
a a a− + −→ +  

 

The new value is then 

 

( )1
1 1 1 1

1

2
( )

2
n n n n n
i i i i i

c
a a a a a

h
τ+

+ − + −= − − −  

 

which is stable if  cττττ/h≤≤≤≤1. Maximum usable value for τmax=h/c, 

effectively 

h
c

τ ≤  

which requires smaller time step with smaller grid step. 
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Partial Differential Equations
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• Stability of the Lax Scheme 

 

( )1
1 1 1 1

1

2
( )

2
n n n n n
i i i i i

c
a a a a a

h
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+ − + −+= − −  

 

Inserting , 1j
ik h

n n n n
j j j

a A e a aζ+= ⋅ = , we have 
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Lax-Wendrott Method 

 

Taylor expansion 

 

2 2
3

2
( , ) ( , ) ( )

2
a a

a x t a x t O
t t

ττ τ τ∂ ∂+ = + + +
∂ ∂

 

 

Let F=ca be the flux of the wave a, we have 

 

2

2

( ) ( )F a F aa a
t t t x x tt

    
= = − = −    

     

∂ ∂∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂∂

 

 

we rewrite  

 

' '
F F a a F

F F
t a t t x

 
= = = − 

 

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂
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Together the following is derived 

 

( )
2

'
2

a F
F

x xt

 
=  

 

∂ ∂ ∂
∂ ∂∂

 

 

Then the Taylor expansion becomes 
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x x x
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Numerically we have  

 

2
1 1 1 1 1

2
' '1 1 1 1

1 1
2 2

' '

22
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i i
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∂ ∂−
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Note that  

 

' ' 1
1i
2

( )                    (  for advection Eq.)

F ( )       (  for advection Eq.)
2

n n
i i i

n n
ii

F F a ca

a a
F c±

±

= =
+
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So finally 
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1 1 1 1
2

2 2
n n n n n n n
i i ii i i i
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h h
τ τ   
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Project IV
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Numerical Solution to Partial Differential Equations 

 

Introduction 

Partial differential equations (PDE) are widely used in physics. To solve a PDE 

numerically space and time are discretized, where initial values and boundary values 

define the exterior points of the space-time volume.  Values (field, density, velocity, etc.) 

are obtained at interior points, and a physical system can be visualized by the fine mesh 

graph of these values.  

 

The PDEs are typically solved numerically using the Forward Time Centered Space 

Scheme (FTSC) method, where a future value is represented by the values of this and 

neighboring points at present time, using the relationship given by the type of a PDE. For 

example for a diffusion equation 
2

2
( , ) ( , )T x t T x t

t x
κ

∂ ∂
=

∂ ∂
 

 

can be expressed as 

 

1

1 12
( 2 )n n n n n

i i i i i
T T T T T

h

κτ+

+ −= + + − , 

 

where the subscript is for the position and the superscription is for time, τ and h are the 

temporal and spatial step sizes, respectively. 

To be posted by 

Monday, July 4th
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To avoid instability issues with the FTCS method, several schemes have been developed. 

The Lax-Wendroff scheme applied to an advection PDE  

 

( , ) ( )    (F(a)=ca)
a

a x t F a
t x

∂ ∂
= −

∂ ∂
 

 

yields the discretized solution  

 
22

1

1 1 1 12
( ) ( 2 )

2 2

n n n n n n n

i i i i i i i

c c
a a a a a a a

h h

τ τ+

+ − + −= − − + + −  

 

Which is quite stable for τ<τmax=h/c. 
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Description of the Project 

 

This project is to solve neutron diffusion PDE numerically for a certain number of time 

steps and visualize the solution in a 2-D diagram. The diffusion equation for a 

hypothetical 1-dimensional system 

where N(x,t) is the neutron density, D the diffusion constant,  and C the creation rate for 

neutrons. 
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subcritical

critical



Summary of Lecture V

Organization

• Project Discussion

• Lecture Notes

What have been covered

• Monte Carlo Simulation 

• Partial Differential 

Equations

• Examples

• Project IV
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