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Project Schedule
Applied Computational & Numerical Methods

Week 1 Getting started with the ROOT program package
Introduction to the program, installation, setup, running, macros and document
Tutorial

Weak 2 Fits and the regression
Basic assignment: Fit of functions to data: parameter determination and
the goodness of the fit
Advanced assignment: Measurement of the lifetimes of heavy flavored hadrons

Week 3 Monte Carlo random variates; Monte Carlo experiments
Basic assignment: Random number generation with root, statistical features,
confidence intervals
Advanced assignment: A Monte Carlo based, statistical experiment to
determine the significance of an observation
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Project Schedule
Applied Computational & Numerical Methods

Week 4 Numerical methods to be posted on July 4th

Partial differential equations

Week 5 Neural network method
Basic assignment: Backprop training on data, test of training results,
optimization of the forecast capability
Advanced assignment: An optimization for new particle search

Week 6 Project presentations
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Applied Computational & Numerical Methods Web Site

http://www.utdallas.edu/~xinchou/xlousummer2011.htm

Lecture Notes & Readings:

Lecture Notes, June 13, 2011
Lecture Notes, June 17, 2011
Lecture Notes, June 20, 2011
Lecture Notes, June 27, 2011

Weekly Projects:
Project 1, June 17, 2011

Project 2, June 20, 2011

Project 2, Project2.C

Project 2 root data file, project2-1
Project 2 root data file, project2-2

Project 3, June 27, 2011
Project 3, Project3.C
Project 3, CDFPaper

Useful Links:
C++ Online Tutorial
ROOT Homepage
Online Numerical Recipes in C
June 27, 2011 Xinchou Lou




Monte Carlo Simulation

Why Do We Want to Generate Random Variates ?

Mathematically play nature — random processes 1n nature or other
activities.

The methods and algorithms are the building blocks in
the Monte Carlo Simulation of a more complicated
physical system.
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Monte Carlo Simulation

Inverse Transform Method

* The method

(1) Let X be a random variable with cdf Fx(x),

(2) Since y=Fy(x) is a non-decreasing function, the inverse function F.'(»)
may be defined from any value of y between 0 and 1,

(3) such that F;'(y) is the smallest satistying Fx(x) ==y
If U is the uniformly distributed over (0,1), then

X=F
has cdf Fx(x)

* Proof: P(X=x)=P[F/()=x]"P[U=-Fx(x) ] = Fx(x)

* To understand the method:
Prob(ui=u = ujr)=Prob{ Fx(xi) =x=Fx(Xi1) }

* The algorithm:
.:F e _\ k
a. Generate U (0,1) y=rx(x) |

b. X <-- F/(1) 10 |
¢. Deliver X

g

Ui+1
u

Xi Xi+] x=Fy ! )
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Monte Carlo Simulation
Example 1: Generate a r.v. with pdf

[2x O<x<l
Jx() _{ 0 otherwise

The cdf 1s then

0 x<0
Fo(x)=1x* 0<x<lI
| x>1

The variate 1s given by X = F)_(I(U):(U)W
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Monte Carlo Simulation

Example 2: Generate a r.v. for an exponential distribution

fX(x): er (x20)

The cdf 1s
FX(x) — Ig e_x'dX' = _e—X' %: | —eX

Solving for mnverse function

F(U) > U=l-e* = x=In(1-U)
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Monte Carlo Simulation

Example 3: Generate r.v. for sin(x) [X between 0 and 7/2]

First obtain cdf from integration of pdf is
Cox . N
F(x)= jo sim(x')dx'=1-cos(x)

Find inverse function to obtain randon variate x

F;(U) = U=l-cos(x) = x=cos*(1-U)
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Monte Carlo Simulation

Example 4: Generate r.v. for pdf

B

fX(X)=<b-a a<x<b
- 0 otherwise
The cdf 1s
0 xX<da
Fﬂx):% a<x<b
| x>b

The random variate

x=a+(b—a)xU
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Monte Carlo Simulation

Example 5: Generate a random variable from the piece-wise constant
probability density function pdf

X =16 Xi=x=% l.n
0, otherwise

where C;>=>0, a=x0<x;< ... <Xp=b.

: I
Denote PI = J.A’ fX()C')d)C', F; - ZPJ, FO =0, then the
A | 7=

cdf can be expressed as
i—1 x ' ,
F(x)= Z}Pj +J‘x. lCidx =F_+Cx(x—x_,)
J: i—

Using the ITM method, the random variate 1s

U-F.
L +—1L
i—1 (’
14
Xinchou Lou
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Monte Carlo Simulation

The algorithm:
(1) Generate U hom U(0,1),

(2) Find I from ZP <U. <ZP

U-r,
C

l

(3) X< Xx,_ +

(4) Deliver x, go to (1) 1f more r.v. 1s required.

June 27, 2011 Xinchou Lou
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Monte Carlo Simulation

Composition Method

Discrete functions:
Developed by J.W. Butler in 1956.
Symposium on Monte Carlo Methods, edited by M. A. Meyer, Wiley. NY

A pdf can be expressed in linear combination of several simpler pdfs:

fX<x)=g’lc“,.xf;(<x>; (each /,(x) is a pdf)

S°C =1
i=l

The r.v.s for the pdf fy(x) can be drawn from the simpler pdfs.
with chance C; for each simpler pdf [ Z&,(x) .

June 27, 2011 Xinchou Lou
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Monte Carlo Simulation

Example 1: Generate random variate from the distribution

f\(\)— [1+(Y '] osx<2

This can not be easily obtained from the ITM method. Rewrite
the pdf as

fy@)=13

_l+(x—l)4}
- 3430
T

le(X) ﬁx(x)

fl(x)=1/2 2 (x)=(5/2)(x-1)*

F(x) = jo ‘zi(x— 1)*dx

E(.\"):I:%d\‘ . : ' . x,=1+32U, -1
. x1=2U, = S (-1 +1)

1
—x
2

Algorithm: Draw two (0.1) random numbers U; and U,,

Xinchou Lou
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Monte Carlo Simulation

Generalization—

Let g(x|y) be a family of one-parameter density functions, where y is the

parameter identifying a unique function g(x).

IF a value of y is drawn from a cumulative Fy(y) and then if X is sampled from

the g(x) for that chosen y, the pdf density function for X will be

7= g(x|y)dF, (v)

Or if y 1s an integer parameter, the pdf is a sum of individual pdfs g(x|y=1):

fx(0=3 Pg(e|y=1
> Pl
i=1

P>0i=12,.mP=P(y |_v =17)

!

» This technique can be used to generate complicated distributions from simpler

distributions which can be generated using the Inverse Transform method or

Acceptance-rejection method

+ one can also give more weight/high probability to pdf that is inexpensive/fast to

generate, while giving less weight/low probability to an expensive sampling.

16
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Monte Carlo Simulation

With continuous functions:

The sum becomes an integral
[(0) = g(x|v)dF,(»)
Example 1: Generate random variate from n_[ vy " %dy, where n=1, 1<y<8

The pdf can be expressed as

£ (0= g(x[)dF, ()

where dF,(y)= ndy . g(x|y)=ye™

1,,.n+1 >

Separately

% . )
= ["yveXVdx'=—e WV =]1—e9 = = lpa-u2
FX_J.OJ.Q dx'=—e |‘0—I e ={/2 =X Th](] U2)

Fy=[ Mdy'=—y"f=1-y"=Ul = y=(1-UD" =([U1)

1,'n+1 . -

algorithm:
(1) Generate U;. U, from U(0.1).
(2) Generate U, U, from U(0.1).
(3) X? (-1/'VIn(U,),
(4) Delivery X. Go to (1) if more number is required.

Xinchou Lou
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Monte Carlo Simulation

Acceptance-Rejection Method

+ Developed by von Neumman 1951
sampling a random variate from a given distribution and subject it to a test
to determine whether or not it will be acceptable for use.

Single Variate Case

» The method:

(1) Let X be the variate from f;(x).x £(0,1). Representing f,(x) as

fx(x) =Ch(x)g(x)
where Cz1, h(x) 1is a pdf, 0<g(x)<1

(2) Generate random variates U €(0,1),Y €h(y), respectively

(3) test the mequality U<g(1):

(4) if the inequality holds, accept Y as the variate generated from
fy(x). go to (2) to generate next randon variate pair U, Y.
if the inequality is violated. reject U,Y and go to step (2) to

to generate another randon variate pair U, Y, and try again.

Some Points:
+ it should be easy to generate r.v. from h(x) using simpler method.
+ the efficiency of the procedure is 1/C. C should not be very large
to be inefficient,
+ in the case where a < x £b, instead of £(0.1), a simple transformation can
X 18

—a

bemadeas x> x =



W

Examples:

(1) Generate a random variate from
fr(x)=3x", 0=x<l

Which can be rewrttten as f(x)=3x1x x*.0<x<1, here C=3, h(x)=1,
1

and g(x) = x°. Note that h(x) is a p.d.f. and that Ih(x)dx = :qt,l =1.
0

The algorithm:
a. Generate two uniform random variates Uy, U from (0.1)
b. test to see if Uy <= Up2

c. if yes, accept U2 as the variate generated from £x(x), deliver x, and go to a.

if no, go to a.

June 27, 2011 Xinchou Lou
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Monte Carlo Simulation

Generate a random variate from
fr(x)= ; R’ —x° —-R<x<R.
The function can be rewritten as
fx(\)——-JR (\ +R)/(2R)] ,where — A—[(\ + R)/ (2R)]

Now 0.25* C=—,h(x) = ,Q(A) YR’ -
JrR 2R

The algorithm: )
a. Ul, U2 from (0,1) ()
b. compoute Y=(2U,-1)R

c. test UL <= g(Y)

d. if yes, accept Y from £X(x), deliver X, go to a.

if no, go to a.

efficiency = m/4

June 27, 2011 Xinchou Lou 20



Monte Carlo Simulation

The Acceptance-rejection method for single variate can be straight-
forwardly extended to multivariate case:

The Method:

Let X=(X1,X2,...,X5) be a random vector following p.d.f.
fx=1(x1.,x2,....xn),

where a, <x, <p, tx<=M, and UL,U2,...,Un are from random (0,1)
distribution. Variables Y, = a, + (b, —a,)U,.

P(K = A’i,f= 1’2""’ ’7|Lrn+l S f_\}):

<

Thel’l S| X ' '
I J fydx..dx, = F,
(11 (I” ’ )

June 27, 2011 Xinchou Lou 21



Monte Carlo Simulation

The general algorithm:

Generate a vector unirofmly distributed in region S

a. Generate a randon variable vector Y uniformly distributed in a
space
So which 1s convinently shaped and easy to generate (cubic
shape, for example).

b.Test the condition Y €5 , 1f yes, accepts Y as r.v from G, go to a.

if not, go to a to generate another Y

June 27, 2011 Xinchou Lou 22



Monte Carlo Simulation

Example
Generate a random vector uniformly distributed inside a

sphere of a radius of 10 cm.

Step 1: generate (0,1) random numbers Ul,U2 and U3.

Step 2: convert Ui -> u;=10U;.
Step 3: calculate Y=U12+u22+u32

Step 4: test if Y<100 cm?2, if yes, accept Y, go to Step 1.
if no, go to Step 1.

Efficiency = volume of the sphere/volume of the cube

= (n/4)103/103
=(3.14/4)=78.5%

June 27, 2011 Xinchou Lou
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Monte Carlo Simulation

R.V. from Some Useful Distributions

(0) recall generation of random variable from the piece-wise
p.d.f.
Now the steps are intergers:

fy(m)=P,---n=0,.,N

K
cd.f.=>P
=0

Probability(n=k) =P({c.d. f k) y<U<{cd f.k+)}=P,
where U 1s from (0.1)

(1) Binomial distribution

!

P——7" A-p) T, =0,...,
* (n—x)!x!P( ?) g "

(2) Geometric distribution
The technique is applicable to Pe=p(l-p), x=0,..m,0<p<l
(3) Poisson distribution

- ;
X e -
P=—, x=0,..mx>0
' x!

June 27, 2011 Xinchou Lou



Monte Carlo Simulation

Multivariate Transformation Method

* p.d.f fy y (x,x,)>0 1s given, where X|, X, belong to

e joint functions y, =g, (x,,x,),y, = g&,(x,,x,), belong to Y
define a one-to-one transformation X — Y which mag
(X1, X2) to (y1,y2)

* suppose (X1, X2) canb be expressed in terms of (y1,y:

w ] ( _\,] s .\'?2 )’ w'2 (-vl ’ ‘\‘2 )

the determinant

dx, X,
|
|k, o,

» »,

1s referred to as the Jacobian of the transformation

June 27, 2011 Xinchou Lou



Monte Carlo Simulation

Theorem:

Let X1 and X2 be jointly continuous random variables with
density function fy, x, (x;,x,)> 0, assume the following
conditions are met:

(1) y, =g,(x,.x,),y, = g,(x,,x,) define a one-to-one
transformation of X — Y.

(2) the first derivatives of (X1,X2)=w,(y, y,).w,(y.y,) are
continuous over Y.

(3) The Jacobian of the transformation i1s nonzero for
(Y1,y2)e Y.

June 27, 2011 Xinchou Lou 26



Monte Carlo Simulation

then the joint density of Y, and Y5 1s given by
fyl-yz (-\’l ’ -\,2 ) = I‘]I fX[.Xz ( W] ( _\"]9 .\'.2 )9 H"’g_ (_\’l 9_\’2 ) ’ [Y ( _\’1 a_\"p_ )
Where

{],---t_‘)"(_\‘l,_\‘z)e Y

0,------ otherwise

Proof can be found in
Probability by M. Neuts, Allyn and Bacon, 1972.
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Monte Carlo Simulation

Example:
Rewrite Z, and Z, as

Pr that the variates
rove that the variates =2V cos(zU), Z,=~2V sin(2zU)

Z, =(y—2InU, -cos(2xU,) 5 5 Z,
; It follows that Z, +7; =2V, —==tan(2xU)
Z, =(J-2InU, -sin(27U,) Z,

are from two independent standard normal distributions,
where U; and U» and (0,1) random numbers.

The Jacobian of the transformation is

oU oU p 20l 221l
0z, 9z, |~ (27r ) cos (2zU)
= - 27[21 27Z'ZI
oV oV 7 7 lezz(zlazz):fU,V(U’V)‘J‘
0Z, 0JZ, ! ? 2.2
1 -@tz)
4;rV(ZZ+Z )___ =5, ° 2
27T

June 27, 2011 Xinchou Lou 28



Monte Carlo Simulation

Example:

Prove that the variates

Z, :(.‘/—2111 U, -cos(2xU,)
Z, = (.‘/—2]11 U, -sm(27U,)

are from two independent standard normal distributions,
where U; and U, and (0,1) random numbers.

For an arbitrary Gaussian distribution with mean at <x> and standard deviation G,
the random variate x, is

Xg = OX Ly y+ <x>

June 27, 2011 Xinchou Lou
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Monte Carlo Simulation

Multi-Normal transformation

The following p.d.f.

. | ‘{—%(»\'—/I)T-M"' { ,r—,u)l‘,"
fx(--\‘)z_le‘ - ’
2" -|M[2

1S a multi-normal distribution, where

X =X yens X, )

M=, . .p1)

are the vectors of the variable and the means of the Normal
distributions, and

is the error matrix, and |M| is the determinant of the error
matrix.

Xinchou Lou
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Monte Carlo Simulation

The error matrix M 1s always definite and symmetric, for which
there exists a unique lower trangular matrix

e, 0 o 0
(‘21 (122 Tt O
(=
_Cnl (’112 o Cmr-

for which M=C-C".

June 27, 2011 Xinchou Lou 31



Monte Carlo Simulation

Define a new vector 2= (Z;----2,) which is a transformation of x

::C_I(_\—‘[[)—)\:C:+ﬂ

it is apparent that z is a normal vector that are centered at 0 and
an identity error matrix. In other words, each z; follows N(0,1).
This can be demonstrated by the following equation

(x=w)" M (x—p)=(z"-C")-M™-(C-2)

_:T'[CT-(C-CT)“'C]-:

T

= 7 . « 7
nxn ™

June 27, 2011 Xinchou Lou 32
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Monte Carlo Simulation

We use the square-root-method to set up a recursive formula for
deriving the elements of C. It is clear that the transformation

x — z leads to
Xy =Cy Lt =6, =0,
2 2
[o-ll =var(x, )= ¢ -var(z, )= c‘“”]

Similarly,

In general, the elements of the transformation matrix C can be
calculated recursively with the following formula:

Jj—1
Ty = DG ~Ci
_ k=1

(.U =

33
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Monte Carlo Simulation

The Algorithm:

(1) generate <= (Z----3,) from N(O,1)

J—1
O, — 2 Gk " C i
k=1

(2) Cij < —

.v (c; — Zczﬂ\.
(3) x«~ C-z+u
(4) delvier X

Xinchou Lou
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Monte Carlo Simulation

Applications in HEP and Nuclear Physics —

Physics event generators, detector simulation, background study
Selection optimization, efficiencies ....

The ATLAS Detector Simulation

June 27, 2011 Xinchou Lou
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Monte Carlo Simulation

Applications in math and other physics —

Monte Carlo simulation is used to numerically solve com-
plex multi-dimensional partial differentiation and integration
problems. Is is also used to solve optimization problems in
Operations Research (these optimization methods are called
simulation optimization). In the context of solving integra-
tion problems, MC method is used for simulating quantum
systems, which allows a direct representation of many-body
effects in the quantum domain, at the cost of statistical un-
certainty that can be reduced with more simulation time.
One of the most famous early uses of MC simulation was
by Enrico Fermi in 1930, when he used a random method

to calculate the properties of the newly-discovered neutron
(Wikipedia 2008c¢).

Samik Raychaudhuri
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Monte Carlo Simulation

Applications in Engineering —

Monte Carlo simulation is used in various engineering dis-

June 27, 2011

ciplines for multitude of reasons. One of the most common
use is to estimate reliability of mechanical components in
mechanical engineering. Effective life of pressure vessels
in reactors are often analyzed using MC simulatio, which
falls under chemical engineering. Inelectronics engineering
and circuit design, circuits in computer chips are simulated
using MC methods for estimating the probability of fetching
instructions in memory buffers. In computer science and
software engineering, various algorithms use MC methods,
for example, to detect the reachable states of a software
model and so on.

Samik Raychaudhuri

Xinchou Lou
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Monte Carlo Simulation

Applications in Finance—

Portfolio Analysis

Monte Carlo Methods are used for portfolio evaluation
(Wikipedia 2008d). Here, for each simulation, the (cor-
related) behavior of the factors impacting the component
instruments is simulated over time, the value of the instru-
ments is calculated, and the portfolio value is then observed.
The various portfolio values are then combined in a his-
togram (i.e. the portfolio’s probability distribution), and the
statistical characteristics of the portfolio are then observed.
A similar approach is used in calculating value at risk.

Personal Financial Planning

MC methods are used for personal financial planning
(Wikipedia 2008d), for example, simulating the overall mar-
ket to find the probability of attaining a particular target
balance for the retirement savings account (known as 401(k)

in United States).
Samik Raychaudhuri

June 27, 2011 Xinchou Lou
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Computer Simulation with little MC

PREVENTING

CLOSE ENCOUNTERS '@
or T ORBITING KIND

Livermore researchers are
designing simulations and
other tools to help prevent
collisions in space.

On February 10, 2009, the defunct Russian Cosmos 2251 satellite (foreground) and the privately owned American Iridium 33
satellite (background) collided in Earth’s orbit. (Rendering by Sabrina Fletcher/TID.)

https://str.lInl.gov/JulAug09/olivier.html
June 27, 2011 Xinchou Lou 39




Computer Simulation with little MC

too much space junks:
defunct satellites,

bits of boost rockets,
astronaut tools, all
orbiting Earth

the orbits of the two satellites
prior to the collision among the
hundreds of other orbiting
satellites. The collision occurred
where the two orbital paths

cross—over Siberia near
the North Pole.

By 4

accurate database &
simulation keep space
safe

https://str.llnl.gov/JulAug09/olivier.html
June 27, 2011 Xinchou Lou 40




Computer Simulation with little MC

Detailed model, supercomputers
Are used by HBCosmo to simulate
The blackholes and galaxies in
space

Study to locate the earliest
Cosmic events and untangle
the history of the universe

http/lanl.arxiv.org/abs/0705.2269

June 27, 2011 Xinchou Lou
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Computer Simulation with little MC

Simulation to understand the
collapse of the WTC twin
towers in Sept. 11 attack.

)
f"r “’ 'w,m ""“""Y”m
o W ﬂ y ia. '“ I Illllluull i
,.1' | || il

oy

“l

“I"
Hlu |r/
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Partial Differential Equations

Partial Differential Equations PDE

Selected from Numerical Methods for Physics, A. L. Garcia
Driven by physics: Maxwell Equations, Schrodinger Equation
This section deals with solutions to parabolic PDEs (diffusion eq.)

0?

(1) T(x 1= K' T(x t) 1D diffusion eq.,

T temperature, Kk thermal diffusion coefficient

Remember SchrOdinger equation?

zha—w(x H=-- a zw(x D+V()y(x,1)

2) o ox2 acoustics: 1D wave equation

"\ c=speed of wave

A wave amplitude, ¢ speed of wave
0’d , d%® _ 1 . -
3) axz W —gp(x, y) EM: 2D Poisson eq.

@ electrostatic potential, € permitivity, p charge density

June 27, 2011 Xinchou Lou
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Partial Differential Equations

Type L Diffusion PDE (thermal physics, time-dependent QM)

J T(x,t)= K'iT(x t) (1-D)
or oxz 7

Temperature 7" at location x and time 7.
Kk is the thermal diffusion coefficient
1) Initial Value Problems

BC=boundary conditions

a) T(xz—%,t)zTa, T(xzé,t)sz (fixed T at ends)

by —xdL

_ . _.dT
dx _Fa, K

L dx

X=—5

. = F,, (fixed flux)

x==

2

for insulated boundary, F,=F,=0

c)
T(x= —%,t) =T(x= %,t) (periodical boundary condition)
ar|  _dr
dx x——L dx L
= xfz

Xinchou Lou
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Partial Differential Equations

Discretion 7, =(n—-1z, {t,=0,1,=1, t;=27,...}

t time step, 1<n

x=(-Dh-% 1<isN, h=-;

"/ grid spacing

J Initial Condition
J BC
J Interior points

Numerical algorithm marches forward in time;

Determine the unknown values in the interior grid points
given Initial Condition and Boundary Condition.

For small t, the numerical solution is good.

June 27, 2011 Xinchou Lou

Solution to be'
determined in
the interior

x=0

Figure 6.3: Schematic representation for a

Boundary condition

. X = Ly
given here

boundary value problem.

45



Partial Differential Equations
Setting up the spatial-temporal points for the PDE

b || TimestepN

| ' | | I | cxme

a'=a(x,t) | | o e
O T S W Y =y

A L 9 i ® § * ® ® L u :
.\\ Time step 5

[~ (x;t,)
——o—9—4—0—— 99— 9—9—9 Time step 4
temporal

(step size=1) D G D A D O O O G e S R K
L & @ 9 2 9 & 8] 9 @ ¢ Tune step2

* ¢ ® * ® 4 * 4 ¢ ¢ s Time step 1
10 11

._.
o
(e
B
N
-~
oo
O

o |

spatial

step size (h)
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Partial Differential Equations

Forward Time Centered Space Scheme (FTCS)

T""=T(x,t,) 1spatial location of a grid point, n temporal step

e Time Derivative

T(xuta+ 0= T(xat) _ TP T
T B T

%T(x, =

® Space Derivative

0 ~T(Xi+h,tn)—T(Xi,tn) T;:l_l T;
ox (1= h 7
T 0
5 ST+ hty) = T (1)
ox> h
Tz’il Iy _Tin_Ti’zl
—__h h
h
_T 4T, 2Ty
h?
Xinchou Lou 47
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Partial Differential Equations

Using the above discretions the diffusion equation becomes

9T (x1)= Kaa2T(xt)

U
T;-nﬂ TnNK' . , ,
Ul U Y S ST

The future temperature value at step (n+1) 1s determined
forward the current value

n ~ n KT n n n
1; +1:Ti +F[Ti+l+Ti—1_2Ti }
l l

future current

Xinchou Lou
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¢ Select numerical parameters (7, h, etc.).
¢ Set initial and boundary conditions.

e Initialize plotting variables.

e Loop over desired number of steps.

— Compute new values of wave amplitude using FTCS (7.17), Lax
(7.18), or Lax-Wendroff (7.28) method.

— Periodically record a(x,t) for plotting.

e Plot the initial and final amplitude profiles.

e Plot the wave amplitude a(x,t) versus z and .

Figure 7.3: Initial and final shapes of the wave pulse as obtained by the advect
-program using the FTCS method. Notice that the wave does not correctly retain
‘-'its shape. The number of grid points is N = 50, and the time step is 7 = 0.002
< i, =0.02).

June 27, 2011 Xinchou Lou 49



Amplitude

0 .
. Time
05 0

Position

Figure 7.4: Output from the advect program using the FTCS method. Notice
how the wave pulse moves in the positive direction but incorrectly distorts with

time. The parameters are as in Figure 7.3.
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Partial Differential Equations

¢ FTCS scheme can be numerically unstable: solution looks like a standing

wave growing rapidly in amplitude. The growth is related to time step size 7.

Use a trial function
wave solution a(x,t)=A(t )eikx (i=\/3, =amplitude, k=wave number)

discretized form

ik h
a(xt)=a;=A"e "’ (x;=jh t,=(n-Dr)

next step would be

ik .h ik .h n+l

J

)

if IEI>1, the scheme is unstable. In the case of FTCS for Advection Eq.

n+l — n_C_T n o _n _ ; —
aj —aj o) (aj +1 aj_l) (a=ampliude, c=speed)

Xinchou Lou
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Partial Differential Equations

Inserting the trial solution

k kin_cT

2h
=Aneikjh[1_%(eikh _e—ikh)]

ik. .h
)

L Ane "= are' (A”elkf“h —Ale !

_1_CT (ikh _ ,—ikny—=1_;€CT
= (=1 2h(e e k=] lh sin(kh)

or 1£ J1+(%T-sin(kh))2 >1 (k:277[, A =4h)

Generally IE|>1, so this is not a stable solution.
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Partial Differential Equations

The Lax Scheme

The scheme uses a different approach to avoid the divergence. The
functional value at current location and time is approximately with

a',—(at, +a',)/2

The new value is then

which is stable if ¢7h<I. Maximum usable value for t,,,=h/c,
effectively

r<h

c

which requires smaller time step with smaller grid step.

Xinchou Lou
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Position -os ©
Figure 7.5: Mesh plot obtained by the advect program using the Lax method.
Parameters used are N = 50 grid points and time step 7 = tw = 0.02. The wave

pulse correctly retains its shape.

-0.5 o

Position

sing the Lax method.

Figure 7.6: Mesh plot obtained by the advect program 1
= 0.015. Notice how

Parameters used are N = 50 grid points and time step 7
the pulse amplitude dies out since T < ty = 0.02.
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Partial Differential Equations

e Stability of the Lax Scheme

ntl _ 1/ n n _CT n _ 4N
a;" =-(ap, +aly) ﬂ(“m ai—l)
| kh
Inserting a’]? =Al.e J ,a? = é’a;l , we have

an=¢ Ar o %[ An . ik (ADR _ pn .ez’ku—l)h}

= ¢ =cos(kh)—i sin(kh)

= 1 E JCOSz(kh)-I-(%Tsin(kh))z <1for 11

Xinchou Lou
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Partial Differential Equations

Lax-Wendrott Method
Taylor expansion

94,79 4 0(z)

a(x,t+7)=a(x, z‘)+Z'a T

Let F=ca be the flux of the wave a, we have

we rewrite

oF
ox

oF aF[aaj F.aa

o ~oal o) Far=F

Xinchou Lou
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Partial Differential Equations

Together the following is derived

0’2a 9 ;,\(OF
) %)

Then the Taylor expansion becomes

a(x,t+7)=a(x,t) —T%%+§(%(F)[%§D +0(7%)

June 27, 2011 Xinchou Lou
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Partial Differential Equations

Numerically we have

F.aF oF
oo Fo—F_ ox |, ax
a’—7— i1 47

P 2h 2 h
F_.-F, 72|.. (F,-F) . (FF—F._)
= — i+1 i—1 i+1 i’ I i—1
R T
Note that
F.=F(a!") (=ca for advection Eq.)
F+ =F (a’Jrl ta; ) (=c for advection Eq.)
1—2
So finally

272
a”+1—a”+CT{a” —al } €t {a”l +an

o 2 z—1_2aﬂ

Xlnchou Lou
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Figure 7.7: Initial (solid) and final (dashed) amplitudes obtained by the advect
program using the Lax-Wendroff method. Parameters used are N = 50 grid

points and time step 7 = 0.015. Note how the amplitude decreases since 7 <
b = 0,02,
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Project IV

Numerical Solution to Partial Differential Equations

Introduction

Partial differential equations (PDE) are widely used in physics. To solve a PDE
numerically space and time are discretized, where initial values and boundary values
define the exterior points of the space-time volume. Values (field, density, velocity, etc.)
are obtained at interior points, and a physical system can be visualized by the fine mesh
graph of these values.

The PDEs are typically solved numerically using the Forward Time Centered Space
Scheme (FTSC) method, where a future value is represented by the values of this and
neighboring points at present time, using the relationship given by the type of a PDE. For
example for a diffusion equation

0 d’

—T(x,t)=Kk—;

ot ox

T(x,t)

can be expressed as

To be posted by

217), Monday, July 4th

i i+ i—1

=1+ X2 1
i h2 1

where the subscript is for the position and the superscription is for time, 7and / are the

temporal and spatial step sizes, respectively.
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Project IV

To avoid instability issues with the FTCS method, several schemes have been developed.
The Lax-Wendroff scheme applied to an advection PDE

0 d
ga(x,t)——g (a)  (F(a)=ca)

yields the discretized solution

cT 2’
a'=a"-—(@a', —a" )+
i i 2h i+1 i—1

2 (ai’jrl + ain—l o 2ain)

Which is quite stable for T<Tyx=h/c.



Project IV

Description of the Project

This project is to solve neutron diffusion PDE numerically for a certain number of time
steps and visualize the solution in a 2-D diagram. The diffusion equation for a
hypothetical 1-dimensional system

0*N(x.1)

oN(x,t )
) -+CN(x.1)

-]

ct o’

where N(x,t) is the neutron density, D the diffusion constant, and C the creation rate for
neutrons.

June 27, 2011 Xinchou Lou

62



Project IV

with the initial condition and boundary condition. The time derivative

oN(x.f) N(x,.t, +7)—-N(x,,t,) N™ —N”

-

ct T 7
Space derivative

éN(x,t) N(x,+h,t,)—N(x,.t,) N_, —N;

-

cx h h
Solving for future values
¥ n TD n ¥ y ¥ “x TN
N =N+ = (N, +N", —2N")+1CN’
1" = e - i

Where 1 is the time step size, and 4 the spatial step size.
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Neutron diffusion

L=2 L _=x)

subcritical

t) and plot () from neutrn. System length is

Figure 6.9: Mesh plot of n(w.
1. = 2 (subecritical), number of grid points is N = 61. the number of steps is

12,000, and time step 7 = 5.0 x 4.

Neutron diffusion

critical >

and plot 71(¢) from neutrn. Syst.é:n length is

Figure 6.10: Mesh plot of s E)
= 61, the number of steps 1%

1), number of grid poinis is N
time step 7 = 5.0 < 1071,

12, 000, an
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