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Applied Computational & Numerical Methods

Lecture I

� Course Syllabus & Requirement

� C++ tutorials

� Weekly Computing Projects

� Motivations for this course

� Probability: concepts, rules, distributions

� Limitations of the Gaussian approximation



SYLLABUS and REQUIREMENTS

Applied Computational & Numerical Methods
Professor Xinchou Lou

Objectives

To learn and apply computational techniques to analyze data and to solve 

scientific problems numerically in most computing environments by using the 

ROOT program, or other programming and visualization tools. 
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SYLLABUS and REQUIREMENTS

Applied Computational & Numerical Methods

Course Details

(1) Lecture will be in English. Students can use English or Chinese in the class.

(2) The programming language for weekly labs/projects is C++. Familiarity   

with C++ is very useful, but not required if you are willing to learn the 

basics of C++.

(3) Each of the weekly computing projects is expected to be completed in 

one week for best effect.
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SYLLABUS and REQUIREMENTS

Applied Computational & Numerical Methods

Reference Books & Material (Not required. Available in my office for browsing)

Numerical Methods for Physics

A. L. Garcia, ISBN 0-13-906744-2, Prentice Hall, Inc.   

Numerical Methods for Scientists and Engineers, R.W. Hamming 

Statistics for Nuclear and Particle Physicists

by Louis Lyons, Cambridge University Press, ISBN 0 521 37934 2 

A Course in Probability and Statistics, Charles J. Stone  

Numerical Recipes in C

William H. Press et al., Cambridge Univ. Press

(available online at  http://www.nrbook.com/a/bookcpdf.php )

Online C++ tutorial:   http://www.cplusplus.com/doc/tutorial/
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Experimental Errors

meaning of errors

combinations of errors

random & systematic errors

Probability and Statistics

Rules of Probability

P&S

Binomial, Poisson, Gaussian

Error Matrix

Correlations

Parameter fitting & Hypothesis testing

normalization

error estimate

interpretation of error

upper & lower limits

Maximum likelihood

Least squares

Minimization 

ISBN: 0521379342June 13, 2011 Xinchou Lou 6



Garcia, Alejandro,

Numerical Methods for Physics

Second Edition

Partial Differential Equations

Diffusion Equations

Advection Equations

Stability Analysis

Examples

ISBN-10: 0139067442 
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Random Number Generation

Chi-square Goodness-fit Test

Kolmogorov-Smirnov Test

Serial Test

Gap Test, Maximum Test

Random Variate Generation

Inverse Transform Method

Composition Method

Acceptance-Rejection Method

Examples of RV Generations

Monte Carlo Simulation

Applications and Examples

ISBN-10: 0470177942 June 13, 2011 Xinchou Lou 8



Real Zeros

Linear Equations and Matrix Inversion

Difference Equations

Chebyshev Approximation: Theory, Practice

ISBN-10: 0486652416 
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Random variables and distributions

PDF

Special discrete & normal models

Examples

ISBN-10: 9780534233280 
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SYLLABUS and REQUIREMENTS

Applied Computational & Numerical Methods

Course Content and Schedule

This is a short, intensive summer course to be completed in 5 weeks. 

The contents include 

probability and statistics, error analysis, numerical analysis of data, 

optimizations, solving systems of equations, algorithms, 

applications of numerical methods in physical sciences, 

and a final chapter on the neural network which will be 

followed by a set of NN examples. 
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PART I Stochastic Processes and the ROOT Program

Chapter 1 Probability and Statistics: Introduction or Review

• Probability: rules, distributions, error matrix, exercises

• Statistics: mean, variance, correlations, data, problem solving

Chapter 2 Introduction to ROOT and the C Programming Language (optional)

• ROOT: Introduction, installation, getting started

• C/C++: Introduction, examples, debugging, tutorials

Chapter 3 Monte Carlo Techniques

• Random number generations

• Distributions, quality of random variates, Monte Carlo simulations

Chapter 4 Experimental Errors

• Experiments and error estimates

• Statistical, systematic errors, averaging and combining errors, cases

Chapter 5 Data Analysis - Parameter Fitting and Hypothesis Testing

• Interpretation of estimates: meaning, limits and nonphysical estimates

• Maximum likelihood method

• Least Squares, hypothesis testing, minimization, and optimization 
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PART II Deterministic Processes

Chapter 6 Zeros and Extrema

• Introduction, methods, algorithms, and examples

Chapter 7 Integration of Functions

• Classical formulas and elementary algorithms

• Multidimensional integrals

Chapter 8 Solving Systems of Equations

• Fundamentals and algorithms

• Linear systems of equations, matrix inversion, and 

partial differential equations
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PART III Identification, Forecast and Optimization

Chapter 9 The Neural Network Method for Pattern Recognition

• Introduction, methods, algorithms, and examples

Chapter 10 The Genetic Method for System Optimization

• Introduction, methods, algorithms, and examples

PART IV Advanced Topics

Chapter 11 Advanced Topics

• Problem posing simulations

• Global climate changes

• Full body auto collision

PART V Class Presentations of Student Projects  

Chapter 12 Presentation of Your Favorite Projects 
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SYLLABUS and REQUIREMENTS

Applied Computational & Numerical Methods

Weekly Computing Projects

No homework assignments are made. 

Students will have opportunities to work out homework style problems in 

class and after classes (not graded). Together students and the instructor 

will eventually go over these problems as exercises/examples in class. 

4 to 5 projects will be assigned and are due in one week from the date of 

the assignment.  These projects can be run on your own computers. Full 

instruction on these projects will be detailed in the project assignment.
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Project Schedule

Applied Computational & Numerical Methods

The project includes the basic assignment for first year graduate 

students, and an advanced topic for more experienced students. 
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Project Schedule
Applied Computational & Numerical Methods

Week 1 Getting started with the ROOT program package

Introduction to the program, installation, setup, running, macros and document

Tutorial

Week 2 Statistical distributions 

Basic assignment: Determination of statistical features of data sets: mean, 

variance, standard error, error matrix and correlation between two variables

Advanced assignment: Statistical analysis of multivariable data sets and time 

series 

Week 3 Monte Carlo random variates; Monte Carlo experiments

Basic assignment: Random number generation with root, statistical features, 

confidence intervals

Advanced assignment: A Monte Carlo based, statistical experiment to 

determine  the significance of an observation
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Project Schedule
Applied Computational & Numerical Methods

Weak 4 Fits and the regression

Basic assignment: Fit of functions to data: parameter determination and 

the goodness of the fit

Advanced assignment: Measurement of the lifetimes of heavy flavored hadrons

Week 5 Numerical methods

Partial differential equations

Week 6 Neural network method

Basic assignment: Backprop training on data, test of training results, 

optimization of the forecast capability

Advanced assignment: An optimization for new particle search

Week 7 Project presentations
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SYLLABUS and REQUIREMENTS

Applied Computational & Numerical Methods

Class Hours (preliminary--subject to change)

Tuesday June 13, 17, 20, 27, July 1, 8, 15

2:00 – 3:30 pm Lecture

3:30 – 4:00 pm Computational projects: introduction & discussion

The meeting on July 15 is dedicated to student presentations on the 

projects. I will ask for volunteers soon.

Contact
Prof. Xinchou Lou     xinchoulou@yahoo.com  
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Why Do I need to learn

Applied Computational & Numerical Methods ?

Background radiation: A physics experiment searches for a new type of 

cosmic ray.  A total of 18 candidates are found in a 6-month period. The 

background is of purely statistical nature possessing Gaussian 

distribution and has been evaluated to be 8.5 ± 2.5 by the physicists.  

What is the probability that this background fluctuates to 18 or more 

candidates in the experiment? 

Is there a signal? 

What is the significance of the observation? 

Is a new type of cosmic ray discovered by this experiment? 

Please fully justify your answer.
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Why Do I need to learn

Applied Computational & Numerical Methods ?

Particle Detector: A detector array consists of three detection units 

(DU), arranged as shown below. Each of the DUs can detect and 

correctly identify both the proton and the electron, with 

efficiencies of 90% and 6%, respectively.  A 'signal' is defined as 

correct detection by at least two DUs after a particle has traversed 

through the detector array. Each of the Dus is sufficiently fast that 

simultaneously arriving particles can be individually recognized. 
 D e t e c t o r 

A r r a y 

i n c o m i n g   p a r t i c l e 

 
• What is the efficiency of detecting a pure proton beam 

particle? 

• What is the efficiency of detecting a pure electron beam 

particle? 

• If the proton and the electron are always arriving in 

simultaneously, what is the efficiency for the proton-

electron pair to be correctly detected and identified? June 13, 2011 Xinchou Lou 22



Why Do I need to learn

Applied Computational & Numerical Methods ?
Most of physics problem does not have analytical solutions, and 

then numerical solutions are needed: 

 

One-dimensional diffusion equation 
2

2
( , ) ( , )T x t T x t

t x
κ∂ ∂=

∂ ∂
  

 

T temperature,  κκκκ thermal diffusion coefficient 

If k is constant which is true in homogeneous media, we have 

analytical solution, otherwise no analytical solutions when k = k 

(x, t) except in special situations. 

 

SchrÖdinger equation: 
2 2

22
( , ) ( , ) ( ) ( , )

h
ih

m
x t x t V x x t

t x
ψ ψ ψ∂ ∂= − +

∂ ∂
 

 

here V(x) could be very complicated function. 

 

One-dimensional wave equation: 
2 2

2
2 2

A A
c

t x

∂ ∂=
∂ ∂

 

 

If c is constant which is true in homogeneous media, we have 

analytical solution, otherwise no analytical solutions when   

c = c(x) except in special situations. 
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Correct data and computing ⇒ very serious business

Why Do I need to learn

Applied Computational & Numerical Methods ?
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knowledge +

ability to compute

huge advantage

Why Do I need to learn

Applied Computational & Numerical Methods ?
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Hedge-fund manager Adam Senderin his NYC office
Info & speed matter

Why Do I need to learn

Applied Computational & Numerical Methods ?
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Definition of Probability

In situations where essential circumstances are kept constant, and repetitions of 

experiments produce, though different, statistically (following a well-defined 

distribution) consistent results. The probability of obtaining a certain specified result

on performing one of these experiments is then visualized as the ratio:

In the limit of infinitive number of experiments and measurements the error 

for the probability is reduced to negligible level, this experimental probability 

approaches the true underlying probability for the result.

• from theory to data

• use theory to predict/calculate possible outcomes of experiment

number of occasions on which that result occurs
 (0 p 1)

total number of measurements
p = ≤ ≤
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Definition of Probability

Quantum states: spin of an electron
1

2
± . For an un-polarized electron the 

probability of finding it in 
1

2
+  and 

1

2
−  are the same, i.e., 50%. There is no 

way to predict without absolute certainty which spin state an electron is in 

without directly measuring it. For a total polarized electron it is then 100% 

or 0%, depending on the polarization orientation. 

 

Transition among quantum states:  heavier cousin of the electron, the muon 

(m=105 MeV, about 210 time of the electron’s mass), is unstable and decays 

in the following fashion 

+ -

 ( 99%)

 ( 1%)

e e  ( 0.003%)

e

e

e

e

e

e

µ

µ

µ

µ ν ν

µ ν ν γ

µ ν ν

− −

− −

− −

→ ≈

→ ≈

→ ≈

 

 

for a decayed muon we know it most likely to be in the first mode, though 

we don’t know for sure if it is since about 1% of the time it also decays into 

something else. 
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Definition of Probability

Random electronics noise:  so called white noise, appear random in nature. 

 

Light emission:  photon emission, direction and polarization are all random  

    in nature and cannot be described by deterministic algebra. 

 

Radioactive decay:  radioactive material has life time 

 

These are all very different from Newtonian/Classical physics where from 

kinematics and dynamics the exact state of a motion can be determined 

without uncertainty. Therefore the math language and tools to describe 

modern physics are very much different as well. Physicists and engineers 

must use probability to quantify the physical reality 

 

Probability & Statistics are very powerful when combined when 

computing power and data storage. 
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Definition of Probability

Situation where a static probability can not be used literally:

http://www.forbes.com/2006/01/09/winners-ride-stovall in_ss_0106soapbox_inl.html?partner=yahootix

Data from past 36 years for S&P 500, capital appreciation only

CAGR  = Capital Appreciation Growth Rate

Std. Dev. = RMS Spread of Prices (a measure of risk)

Risk/Return     = CAGR/Std Dev.

F.O. = Frequency of Outperformance, relative to the S&P 500 Index

9/10=0.90 7/10=0.70

S&P 500 Index returned 3% in 2005June 13, 2011 Xinchou Lou 30



Definition of Probability
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Examples of Probability
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Examples of Probability

An excited state has a very long lifetime τ, the probability that it 

has de-excited at time t is given by 
 

/

0
( )

tt

t
ep de excited dt

τ

τ
−

− = ∫  

 

The probability that it will remain in the excited state is 

 

 
/

0
( ) 1

tt

t
ep excited dt

τ

τ
−

= − ∫  

 

After one lifetime t=τ,  

 

 

pt(de-excited) = 1-e
-1 

= 0.632 

 

and 

 

pt(de-excited) = e
-1 

= 0.3679 
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random process: coin toss in a fair way

James Blake vs. Roger Federer, 2008 Australian Open

    1.0

    

             

      0.50,  0.50

head tail

head tail

head tail

p p

p p

p p

• + =

• =

⇓

= =

a simple binomial problem

“an event with exactly two  possible outcomes”

larger data sample 

⇒⇒⇒⇒ better accuracy

no of measurements

N
h

e
a

d /N
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European Roulette

32

0

0 0

    1.0

       (0 , 32)

             

1
          

33

32 1
  p ,  p

33 33

n

n

i j

n

n

p

p p i j

p

=

≠

• =

• = ≤ ≤

⇓

=

= =

∑

also a binomial problem

random process: coin toss in a fair way (?)
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Rule 1: 0 ≤ p ≤ 1  

 

    •  p=0 means implies that a particular event never occurs 

    •  p=1 means implies that a particular event always occurs 

 

Rule 2: P(A+B) ≤  P(A) + P(B) 

 

  •  the probability P(A+B) that at least one of the events A   

     or B occurs is equal to or smaller than the sum of individual  

     probabilities P(A) and P(B)  

 

 •  the equality stands when A and B are exclusive, whereas  

    when A and B have common elements, the inequality applies 

 

 

Example: throwing a dice- 

 

        P(3 or even) = P(3) + P(2) + P(4) + P(6) 

                  = 4/6 

 

        P(smaller than 3.5 or even)  

                   =P(1) + P(2) + P(3) + P(4) + P(6) 

                   =5/6 

 

        [ instead of P(1)+P(2)+P(3)+P(2)+P(4)+P(6) ] 

Rules of Probability
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Rules of Probability

Rule 3: P(AB) = P(A/B)P(B) 

            = P(B/A)P(A) 

 

         the probability P(AB) of obtaining both A and B 

         and the conditional probability P(A/B) of A given B 

 

         conversely rule 3 defines P(A/B) = P(AB)/P(B) 

 

         If the occurance of B does not affect whether or not A  

        occurs, then P(A/B) = P(A), and A and B are said to be 

        independent.  In this case P(AB) = P(A)P(B). 
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Rules of Probability

Example:  

 

A = it is rainy day  

B = season of the year 

 

   In a desert environment raining should be the same for any days of 

the week (without previous knowledge of the forecast, of 

course), therefore A and B are independent.  

 

   However if the place is in Dallas instead, B=April, A and B tends 

to be correlated here at Dallas, as we get more rain in Spring.  

i.e., P(A/Spring) > P(A/Fall) for Dallas. 
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Rules of Probability

Detector efficiency for particles of two different species. The 

thickness and the detecting medium/electronics determine the 

probability if a particular kind of particle will be detected. 

 

• A detecting particle a, probability p(A)  

 B detecting particle b, probability p(B) 

 

  They are independent of each other 

 

• Detecting both   p(A and B)=p(A)•p(B) 

 Detecting a but not b   p(A and "not B")=p(A)•[1-p(B)] 

 Detecting b but not a   p("not A" and B)=[1-p(A)]•p(B) 

 Detecting neither      p("not A" and "not B")=[1-p(A)]•[1-p(B)]

Example
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Probability – Binomial Distribution

Understanding Combinations

• Ordered combinations: 

 

 a set of N different (numbers or objects) selected from a total 

sample of M (M=>N), the total number of possible 

combinations (taken into account their order) is  

 

M(M-1)(M-2)....(M-N+1)=M!/(M-N)! 
 

• Non-ordered combinations N from M 

 

  factor due to ordering = N! 

 

  total possible combination (with no regard to ordering) 

 

!
( )! !

M
M N N− ⋅  
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Probability – Binomial Distribution

Understanding Binomial Distribution

• Situation:  Conduct a fixed number(N) of independent trials, 

each of which can have only two possible outcomes:  

 

yes (probability=p) /no (probability=1-p) 
 

• For n yes, there must be (N-n) no. The probability 

for a single combination is then  

 

pn•(1-p)N-n    per combination 

 

• Consider there are N!/n!/(N-n)! combinations (non-order) the 

probability of finding n occurances(succeses)  is 

 

( )
! ( )(1 )

!( )!
p n

N N nnp p
n N n

=
−−

−  

 

if we conduct only a fixed number (N) independent trials. 
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Probability – Binomial Distribution

Understanding Binomial Distribution

To Understand the distribution:  

• pn is the probability of obtaining successes on n specific 

attempts; 

• (1-p)(N-n) failure on remaining N-n attempts; 

• the factorial term gives the number of permutations 

of n successes and N-n failures. 
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Probability – Binomial Distribution

Understanding Binomial Distribution

For example: N=3 (p=1/2) 

 

3!
0,   1  ,  

0!3!

1
                                   only 1 possible combination, p=

8

3!
1,   3  , , ,  

1!2!

3
                                         3 possible combinations, p=

8

3!
2,   

1!2!

n FFF

n SFF FSF FFS

n

= =

= =

= 3  , , ,  

3
                                         3 possible combinations, p=

8

3!
3,   1  ,  

3!0!

1
                                         1 possible combination, p=

8

SSF FSF FSS

n SSS

=

= =
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Probability – Binomial Distribution

mean value (expectation) 
 

( )
mean

n

n n p n Np= × =∑  

 

variance of the distribution  
 

2 (1 ) ( )(1 )mean mean
n n

Np p N
N N

σ = − ≅ − , when p is small 
2 ( )mean

mean

n
N n

N
σ ≅ →  

 

The Standard Error (deviation) 
mean

nσ ≅  

 

The relative measurement error 
1

/
mean

mean

n
n

σ ≅  

 

Which gets smaller relative to nmean when nmean increases. 
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Probability – Poisson Distribution

 when p = n/N < < 1, Np=constant,  and N >> 1--

sufficiently large number of trials: 

 
!

( 1)( 2)....( 1)
( )!

nN
N N N N n N

N n
= − − − + ≈

−
 

 
( )( )( )(1 )     

n N nN n nNn e e
N

< >− −− −< >< >− ≈ ≅  

Then Binomial distribution 

( )
! ( )(1 )

!( )!
p n

N N nnp p
n N n

=
−−

−  

 

would be approximated to  

( )
( )    

! !

        = 
!

n n
n n n

n
n

N Np
p n p e e

n n

n
e

n

−< > −< >

−< >

≈ =

< >
 

which gives the Poisson distribution 

 

 ( )
!

nn np n e
n

< > −< >=  
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Probability – Poisson Distribution

(1) mean = <n> 

 
Mean of n can be determined by weighting n with p(n) 

 

0 0

2 3

2

mean n ( )
!

<n> <n>
             = 1 <n> 2 3 ...

2! 3!

<n>
             = <n> 1 ...

2!

             = <n>

             = <n>

n
n

n n

n n n

n

n n

n
n p n n e

n

e e e

e n

e e

∞ ∞
−< >

= =

−< > −< > −< >

−< >

−< > < >

 
 
  

< >
= × = ×

× + × + × +

+ < > + +

×

∑ ∑
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Probability – Poisson Distribution

[ ]
2

2

1

2 2

1

2 2

1 1

2 2 2

( )

     = ( ) 2

     = ( ) 2 ( )

     = <n> 2

     = <n>

n

n

n

n n

p n n n

p n n n n n

p n n n p n n n

n n n

σ
∞

=

∞

=

∞ ∞

= =

= × −< >

 × − < > +< > 

× − < > × +< >

+< >− < > +< >

∑

∑

∑ ∑  

(2) variance = <n>, and standard deviation/error σ = < n >  

1

2

0

2

2

( ( 1)) ( 1)
!

                   = <n>
!

                   = <n>

                   = <n>

n
n

n

n
n

n

n n

n
E n n n n e

n

n
e

n

e e

∞
−< >

=

∞
−< >

=

−< > < >

 < >
− = −  

 

< >

∑

∑  

also 

2 2( ( ( 1)) ( ) ( ) ( )E n n E n E n E n n− = − = − < >  

therefore 

2 2( )E n n n=< > + < >  

The variance is 
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Probability – Gaussian Distribution

• when <n> is large  (σ2=<n> therefore n is always very close to <n>) 

• p=constant, N->∞ 

 

Using the (2) variance = <n>, and standard deviation/error σ = < n >

1

2

0

2

2

( ( 1)) ( 1)
!

                   = <n>
!

                   = <n>

                   = <n>

n
n

n

n
n

n

n n

n
E n n n n e

n

n
e

n

e e

∞
−< >

=

∞
−< >

=

−< > < >

 < >
− = −  

 

< >

∑

∑  

also 

2 2( ( ( 1)) ( ) ( ) ( )E n n E n E n E n n− = − = − < >  

therefore 

2 2( )E n n n=< > + < >  
 

 

! 2 N NN N N eπ −≅  

a Poisson distribution can be approximated to  
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Probability – Gaussian Distribution

       

( )  
!

[ ( )]         
2

[ ]        = 
2

[1 ]
        = 

2

n
n

n
n

n n

n
n n n

n

nP n e
n

n n n e
nn e

n n e
n

n e
n

π

π

π

−< >

−< >
−

− −< >

−∆

< >=

+ < > −≅

+∆

∆+

 

where ∆∆∆∆ = <n>-n is the deviation from the mean <n>.  

 

Remember that a Taylor expansion 

 

2 3

2

1 1
ln(1 ) { ( ) ( ) ....}

2 3

                  - 
2

n n
n n n n

n

∆ ∆ ∆ ∆+ = − + +

∆≅ ∆
 

and thus 
2

2(1 )  e e  n n

n

∆−∆∆+ ≅  
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Probability – Gaussian Distribution

The above approximated Poisson distribution can 

be expressed as 
 

2

2

2

2

2

2

            

2

2

[1 ]
( )  e

2

           

1        = 
2

1= 
2

n

n

n

n

nP n e
n

e e

e
n

e

π

σ

σ

π

π

π

∆∆−

−∆

−∆

∆∆−∆−

∆−

∆+
≅

≅
 

 

where σσσσ2222 = <n> ≅≅≅≅ n, so long as n is close to <n> 
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Probability – Gaussian Distribution

• Gaussian with one variable 
 

2

2

( )
1 2( )

2

x x

f x e
σ

σ
π

− −
⋅=  

 

and 

 

( ) ( )n x N f x= ⋅  

 

• Means = x  (=<n>) and variance = σ2 
 

• Confidence levels 

 

Understanding Gaussian distribution: 

 

(1) function f(x) is a probability density, not a probability, 

(2) f (x)dxx
l

x
h∫  represents the probability for x to be between xl and xh, 

      value of the integral can be looked up in the Gaussian Int. Table 

(3) function n(x) is also a probability density (event/population density) 

(4) the shape is symmetric around x  

(5) ( x -σ, x+σ) represents 68% of the area, or possibility, is 

refered to as root of mean squared (rms) 

(6) confidence levels:      1.64σ <=> 90%,  

                       1.96σ <=> 95%,  

                       2.58σ<=>99%. 
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Probability – Gaussian Distribution
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Probability Distributions

binomial Poisson Gaussian

P=0.05

P=0.10

P=0.15

P=0.20

P=0.25

N=11

n
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Probability Distributions

N=11, p=0.05

Binomial vs. Poisson

Binomial vs. Gaussian
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Probability Distributions

N=11, p=0.20, mean=2.2

Binomial vs. Gaussian

Binomial vs. Poisson
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Probability Distributions

N=11, p=0.25,  mean=2.75

Binomial vs. Poisson

Binomial vs. Gaussian
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Probability Distributions

N=16, p=0.20, mean=3.2

Binomial vs. Poisson

Binomial vs. Gaussian
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Probability Distributions

N=16, p=0.30, mean=4.8

Binomial vs. Poisson

Binomial vs. Gaussian

Good approximation by Gaussian distribution when mean=Np≅≅≅≅7
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Summary of Lecture I

Organization

• Syllabus, TOC

• Ref. Books and Sites

• Projects

What have been covered

• Probability

• Binomial Distribution

• Poisson Distribution

• Gaussian Distribution & 

Gaussian approximation

• Mean, variances

• Examples
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