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SYLLABUS and REQUIREMENTS

Applied Computational & Numerical Methods

Professor Xinchou Lou

Objectives

To learn and apply computational techniques to analyze data and to solve
scientific problems numerically in most computing environments by using the
ROOT program, or other programming and visualization tools.
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SYLLABUS and REQUIREMENTS

Applied Computational & Numerical Methods

Course Details

(1) Lecture will be in English. Students can use English or Chinese in the class.
(2) The programming language for weekly labs/projects is C++. Familiarity
with C++ is very useful, but not required if you are willing to learn the

basics of C++.

(3) Each of the weekly computing projects is expected to be completed in
one week for best effect.
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SYLLABUS and REQUIREMENTS
Applied Computational & Numerical Methods

Reference Books & Material (Not required. Available in my office for browsing)

Numerical Methods for Physics

A. L. Garcia, ISBN 0-13-906744-2, Prentice Hall, Inc.
Numerical Methods for Scientists and Engineers, RW. Hamming
Statistics for Nuclear and Particle Physicists

by Louis Lyons, Cambridge University Press, ISBN 0 521 37934 2

A Course in Probability and Statistics, Charles J. Stone
Numerical Recipes in C

William H. Press et al., Cambridge Univ. Press

(available online at http://www.nrbook.com/a/bookcpdf.php )
Online C++ tutorial: http://www.cplusplus.com/doc/tutorial/

June 13, 2011 Xinchou Lou 5



June 13, 2011

Statistics for
nuclear and particle
physicists

ISBN: 0521379342

Xinchou Lou

Experimental Errors

meaning of errors
combinations of errors
random & systematic errors

Probability and Statistics

Rules of Probability

P&S

Binomial, Poisson, Gaussian
Error Matrix

Correlations

Parameter fitting & Hypothesis testing

normalization

error estimate
interpretation of error
upper & lower limits
Maximum likelihood
Least squares
Minimization



June 13, 2011

Garcia, Alejandro,
Numerical Methods for Physics

N“M[R [:AI_ Second Edition
METHODS
FOR PRYSICS

SECOND COITION

Partial Differential Equations
Diffusion Equations
Advection Equations
Stability Analysis
Examples

OOOOOlII

RN

ALEJANORD L. GARCIA

ISBN-10: 0139067442
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WWILEY

Simulation
and the
Monte Carlo
Method

SECOND EDITION

Random Number Generation
Chi-square Goodness-fit Test
Kolmogorov-Smirnov Test
Serial Test
Gap Test, Maximum Test

Random Variate Generation
Inverse Transform Method
Composition Method
Acceptance-Rejection Method
Examples of RV Generations

Monte Carlo Simulation

Reuven Y. Rubinstein ) .
Dirk P. Kroese Applications and Examples

June 13, 2011 ISBN-10: 0470177942 Xinchou Lou



Real Zeros
Linear Equations and Matrix Inversion
Difference Equations

Chebyshev Approximation: Theory, Practice

ISBN-10: 0486652416
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A Course in Probability
and Statistics

Charles J. Stone

EETETTERRTTIRN =

ISBN-10: 9780534233280

Random variables and distributions
PDF
Special discrete & normal models

Examples

June 13, 2011 Xinchou Lou
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Online C++ tutorial: http://www.cplusplus.com/doc/tutorial/

Documentation c+ + La nguage Tutoria]

C++ L Tutorial . o . . . - .
s C::egsuage ona These tutorials explain the C++ language from its basics up to the newest features of ANSI-C++, including basic

concepts such as arrays or classes and advanced concepts such as polymorphism or templates. The tutorial is oriented

Boolean Operations 3 h = < A o 5
in a practical way, with working example programs in all sections to start practicing each lesson right away.

Numerical Bases

C++ Language Tutorial

Introduction:

Instructions for use
Basics of C++:

Structure of a program

Variables. Data Types.

Constants

Operators

Basic Input/Output
Control Structures:

Control Structures

Functions (I)

Functions (II)
Compound Data Types:

Arrays

Character Sequences

Pointers

Dynamic Memory

Data Structures

Other Data Types
Object Oriented
Programming:

Classes (I)

Classes (II)

Friendship and inheritance

Polymorphism
Advanced Concepts:
Templates

Namespaces

Exceptions

Type Casting

Preprocessor directives
C++ Standard Library:

Input/Output with files

Chinese language
learning

Happy & Efficient
chinese learning,
One demo lesson

free,010-65005755.
www.pentagram-chi

AdChoices [>

June 13, 2011

[ Download the entire tutorial as a PDF file ]
Introduction

e Instructions for use

Basics of C++

e Structure of a program
e Variables. Data types.
e Constants

e Operators

e Basic Input/Output

Control Structures

e Control Structures
e Functions (I)
e Functions (II)

Compound Data Types

e Arrays

e Character Sequences
® Pointers

e Dynamic Memory

e Data Structures

e Other Data Types

Object Oriented Programming

Classes (I)
Classes (II)
Friendship and inheritance

.
.
-
e Polymorphism

Advanced Concepts

e Templates

* Namespaces

e Exceptions

e Type Casting

e Preprocessor directives

C++ Standard Library

o Input/Output with files .
Xinchou Lou
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SYLLABUS and REQUIREMENTS

Applied Computational & Numerical Methods

Course Content and Schedule

This is a short, intensive summer course to be completed in 5 weeks.

The contents include
probability and statistics, error analysis, numerical analysis of data,

optimizations, solving systems of equations, algorithms,
applications of numerical methods in physical sciences,
and a final chapter on the neural network which will be
followed by a set of NN examples.

June 13, 2011 Xinchou Lou 12



PART | Stochastic Processes and the ROOT Program

Chapter 1 Probability and Statistics: Introduction or Review
o Probability: rules, distributions, error matrix, exercises
. Statistics: mean, variance, correlations, data, problem solving

Chapter 2 Introduction to ROOT and the C Programming Language (optional)
. ROOQOT: Introduction, installation, getting started
. C/C++: Introduction, examples, debugging, tutorials

Chapter 3 Monte Carlo Techniques
. Random number generations
. Distributions, quality of random variates, Monte Carlo simulations

Chapter 4 Experimental Errors
. Experiments and error estimates
J Statistical, systematic errors, averaging and combining errors, cases

Chapter 5 Data Analysis - Parameter Fitting and Hypothesis Testing

. Interpretation of estimates: meaning, limits and nonphysical estimates
. Maximum likelihood method

. Least Squares, hypothesis testing, minimization, and optimization



PART Il Deterministic Processes

Chapter 6 Zeros and Extrema
. Introduction, methods, algorithms, and examples

Chapter 7 Integration of Functions
. Classical formulas and elementary algorithms
° Multidimensional integrals

Chapter 8 Solving Systems of Equations

. Fundamentals and algorithms

o Linear systems of equations, matrix inversion, and
partial differential equations

June 13, 2011 Xinchou Lou
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PART Il Identification, Forecast and Optimization
Chapter 9 The Neural Network Method for Pattern Recognition
o Introduction, methods, algorithms, and examples

Chapter 10 The Genetic Method for System Optimization
J Introduction, methods, algorithms, and examples

PART IV Advanced Topics
Chapter 11 Advanced Topics

. Problem posing simulations
. Global climate changes
. Full body auto collision

PART V Class Presentations of Student Projects
Chapter 12 Presentation of Your Favorite Projects

June 13, 2011 Xinchou Lou
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SYLLABUS and REQUIREMENTS

Applied Computational & Numerical Methods

Weekly Computing Projects

No homework assignments are made.

Students will have opportunities to work out homework style problems in
class and after classes (not graded). Together students and the instructor
will eventually go over these problems as exercises/examples in class.

4 to 5 projects will be assigned and are due in one week from the date of

the assignment. These projects can be run on your own computers. Full
instruction on these projects will be detailed in the project assignment.

June 13, 2011 Xinchou Lou 16



June 13, 2011

Project Schedule

Applied Computational & Numerical Methods

The project includes the basic assignment for first year graduate
students, and an advanced topic for more experienced students.

Xinchou Lou
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Week 1

Week 2

Week 3

Project Schedule
Applied Computational & Numerical Methods

Getting started with the ROOT program package
Introduction to the program, installation, setup, running, macros and document
Tutorial

Statistical distributions

Basic assignment: Determination of statistical features of data sets: mean,

variance, standard error, error matrix and correlation between two variables

Advanced assignment: Statistical analysis of multivariable data sets and time
series

Monte Carlo random variates; Monte Carlo experiments
Basic assignment: Random number generation with root, statistical features,
confidence intervals
Advanced assignment: A Monte Carlo based, statistical experiment to
determine the significance of an observation

June 13, 2011 Xinchou Lou 18



Weak 4

Week 5

Week 6

Week 7

Project Schedule
Applied Computational & Numerical Methods

Fits and the regression
Basic assignment: Fit of functions to data: parameter determination and
the goodness of the fit
Advanced assignment: Measurement of the lifetimes of heavy flavored hadrons

Numerical methods
Partial differential equations

Neural network method

Basic assignment: Backprop training on data, test of training results,
optimization of the forecast capability

Advanced assignment: An optimization for new particle search

Project presentations

June 13, 2011 Xinchou Lou 19



SYLLABUS and REQUIREMENTS
Applied Computational & Numerical Methods

Class Hours (preliminary--subject to change)

Tuesday June 13, 17, 20, 27, July 1, 8, 15

2:00-3:30 pm Lecture

3:30-4:00 pm Computational projects: introduction & discussion

The meeting on July 15 is dedicated to student presentations on the
projects. | will ask for volunteers soon.

Contact
Prof. Xinchou Lou xinchoulou@yahoo.com

June 13, 2011 Xinchou Lou 20



Why Do | need to learn
Applied Computational & Numerical Methods ?

Background radiation: A physics experiment searches for a new type of
cosmic ray. A total of 18 candidates are found in a 6-month period. The
background is of purely statistical nature possessing Gaussian
distribution and has been evaluated to be 8.5 + 2.5 by the physicists.

What is the probability that this background fluctuates to 18 or more
candidates in the experiment?

Is there a signal?
What is the significance of the observation?
Is a new type of cosmic ray discovered by this experiment?

Please fully justify your answer.

June 13, 2011 Xinchou Lou 21



Why Do | need to learn
Applied Computational & Numerical Methods ?

Particle Detector: A detector array consists of three detection units
(DU), arranged as shown below. Each of the DUs can detect and
correctly identify both the proton and the electron, with
efficiencies of 90% and 6%, respectively. A 'signal' is defined as
correct detection by at least two DUs after a particle has traversed
through the detector array. Each of the Dus is sufficiently fast that

simultaneously arriving particles can be individually recognized.
Detector
Array

incoming particle

e What is the efficiency of detecting a pure proton beam
particle?
e What is the efficiency of detecting a pure electron beam
particle?
o [f the proton and the electron are always arriving in
simultaneously, what is the efficiency for the proton-
e 13,2011 electron pair to be correctly, defected and identified?



Why Do | need to learn
Applied Computational & Numerical Methods ?

Most of physics problem does not have analytical solutions, and
then numerical solutions are needed:

One- dimensional diffusion equation

a2
T(x N=K<T ()

T temperature, « thermal diffusion coefficient

If k is constant which is true in homogeneous media, we have
analytical solution, otherwise no analytical solutions when k =k
(X, t) except in special situations.

Schrédinger equation

8

i Sy ==2 Oy () +V (o ()

here V(x) could be very complicated function.

One-dimensional wave equation:
924 _ ,9°A
ar? ox?

If ¢ 1s constant which is true in homogeneous media, we have
analytical solution, otherwise no analytical solutions when

¢ = c¢(x) except in special 81tuat)1(o S.

June 13, 2011 ou Lou



Why Do | need to learn
Applied Computational & Numerical Methods ?

Correct data and computing = very serious business

June 13, 2011 Xinchou Lou
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Why Do | need to learn
Applied Computational & Numerical Methods ?

knowledge +
ability to compute

June 13, 2011 Xinchou Lou 25



Why Do | need to learn
Applied Computational & Numerical Methods ?

Speed, Distance, and Electronic Trading: New Evidence on Why Location Matters

Latency Cost and Distance to NYC

a Sample firm is headquartered in the New York City area and

has 36 branch office locations in 17 states.

¢ Gainesville is 1,014 miles from NYC!

o
o
¥

o
o
P ' o

o
(=]
w

0.025

(=]
(=]

o
(=]
o

0.01

0.005 -

A erage cost ()I'Ialvn(')' (S)

o
'

100 - 2000 miles
r distance to New York City

Hedge-fund manager Adam Senderin his NYC office

Info & speed matter
June 13, 2011 Xinchou Lou 26



Definition of Probability

In situations where essential circumstances are kept constant, and repetitions of
experiments produce, though different, statistically (following a well-defined
distribution) consistent results. The probability of obtaining a certain specified result
on performing one of these experiments is then visualized as the ratio:

_ number of occasions on which that result occurs 0<p<l)
total number of measurements N

p

In the limit of infinitive number of experiments and measurements the error
for the probability is reduced to negligible level, this experimental probability
approaches the true underlying probability for the result.

. from theory to data

. use theory to predict/calculate possible outcomes of experiment

June 13, 2011 Xinchou Lou
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Definition of Probability

Quantum states: spin of an electronir%. For an un-polarized electron the

probability of finding it in +% and —% are the same, 1.e., 50%. There 1s no

way to predict without absolute certainty which spin state an electron is in
without directly measuring it. For a total polarized electron it is then 100%
or 0%, depending on the polarization orientation.

Transition among quantum states: heavier cousin of the electron, the muon
( ), 1s unstable and decays
in the following fashion

L = e vy, (=99%)
W —evyy (=1%)

W —evyee (=0.003%)

for a decayed muon we know it most likely to be in the first mode, though
we don’t know for sure if it is since about 1% of the time it also decays into
something else.

June 13, 2011 Xinchou Lou 28



Definition of Probability

Random electronics noise: so called white noise, appear random in nature.

Light emission: photon emission, direction and polarization are all random
in nature and cannot be described by deterministic algebra.

Radioactive decay: radioactive material has life time

These are all very different from Newtonian/Classical physics where from
kinematics and dynamics the exact state of a motion can be determined
without uncertainty. Therefore the math language and tools to describe
modern physics are very much different as well. Physicists and engineers
must use probability to quantify the physical reality

Probability & Statistics are very powerful when combined when
computing power and data storage.

June 13, 2011 Xinchou Lou
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Definition of Probability

Situation where a static probability can not be used literally:

http://www.forbes.com/2006/01/09/winners-ride-stovall in ss 0106soapbox inl.html?partner=yahootix
Data from past 36 years for S&P 500, capital appreciation only

CAGR |Std. Dev. [Risk/Return |F.O.
S&P 500 | 7.5% 16.3 0.46 N.A.
Worst 10| 7.6% 25.7 0.29 64%
Best 10 |13.9%| 23.6 0.59 72%
CAGR = Capital Appreciation Growth Rate
Std. Dev. = RMS Spread of Prices (a measure of risk)
Risk/Return = CAGR/Std Deyv.
EO. = Frequency of Outperformance, relative to the S&P 500 Index
Performance For 2004’s Best And Worst Ten Industries
% Chg % Chg
Best Ten Industries In 2Zu4 2004 2005 |[Worst Ten Industries In 2004 2004 2005
gricultural Products 466 105 |Auminum (17.3) (5.9)
otels, Resor* % Cruise Lines 441 0.3 |Automobile Manufacturers (16.9) (492)
nterne! Schtware & Services 668 40 |PBroadcasting & Cable TV (9.1) (16.9)
anaged Hea'th Care 527 427 |Electronic Manufacturing Services (17.0) (11.9)
il & Gas Drilling 45.1 53.1 |Heallh Care Facilities (10.9) 104
il & Gas Refining & Markeling 61.5 77.3 |jnsurance Brokers (24.2) 129
erlilizers & Agricullural Chemicals 93.0 39.6 |IT Consulting & Other Services (31.4) (42.7)
ntemet Retail 80.0 (25 .3;|Pharmaceuticals (25) (5.9
teel 58.1 20.7 |[Semiconductor Equipment (25.0) 2.0
reless Telecommunication Services 57.3 1.6 |BSemiconductors (21.3) 11.2
bverage 60.5 224 ||Average (18.3) (9.6)
9/10=0.90 7/10=0.70

June 13, 2011 S&P 500 Index returned 3ficho2006



W

So, which S&P 500 industries were the winners and losers in 20057 Take a look at the

table below.
S&P 500’s Best And Worst Ten Industries
Best Ten Industries In 2005 % Chg Worst Ten Industries In 2005 % Chg
Oil & Gas Refining & Marketing 77.3 Automobile Manufacturers (49.2)
il & Gas Exploration & Production 65.2 IT Consuiting & Other Services (42.7)
Oil & Gas Drilling 53.1 Pholographic Products (27 .4)
Diversified Metals & Mining 488 Inlernet Retail {25.3)
Oil & Gas Equipment & Services 47.3 Aulo Parts & Equipment (23.8)
Managed Health Care 42.7 Home Furnishings (19.2)
Construction & Engineering 41.7 Food Distributors (18.7)
Fertilizers & Agricultural Chemicals 396 Compuler Storage & Peripherals (17.1)
Health Care Services 322 Broadcasting & Cable TV (16.9)
Railroads 30.9 Brewers (15.3)

“.... There is no guarantee that what worked in the past will work in the future. Plus, no technique

works all the time. We'll just have to wait and see.”

June 13, 2011 Xinchou Lou 31



Examples of Probability

A radioactive source radiates gamma rays isotropically into
space. For a detector (€=100%) covering a solid angle of d€2,

the probability of detecting the gamma ray will be{ dQ/4xlin
any given decay, independent of the position of the counter.




June 13, 2011

Examples of Probability

An excited state has a very long lifetime 7, the probability that it
has de-excited at time t is given by

t o~ t/r

p,(de—excited)= J

The probability that it will remain in the excited state is

p,(excited)=1— J

After one lifetime =7,

p(de-excited) = 1-¢”’ = 0.632
and

p:(de-excited) = ¢! =0.3679

Xinchou Lou
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random process: coin toss in a fair way

a simple binomial problem
“an event with exactly two possible outcomes”

¢ phead +ptail :10

¢ phead — ptail
U
DPioaa =0.50, p_.. =0.50

Toss fair coin 500 times and keep track
of proportion of heads

=2

>

3

< :

=05 -W—
04 - I

-----

T T T T T
100 200 300 400 500
no of measurements

L=

larger data sample
—> better accu racy

June 13 inchou L
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random process: coin toss in a fair way (?)

European Roulette
June 13, 2011 Xinchou Lou 35




June 13, 2011

Rules of Probability

Rule 1: 0<p<1

¢ p=0 means implies that a particular event never occurs
e p=1 means implies that a particular event always occurs

Rule 2: P(A+B) < P(A) + P(B)

¢ the probability P(A+B) that at least one of the events A
or B occurs is equal to or smaller than the sum of individual
probabilities P(A) and P(B)

¢ the equality stands when A and B are exclusive, whereas
when A and B have common elements, the inequality applies

Example: throwing a dice-

P(3 or even) = P(3) + P(2) + P(4) + P(6)
=4/6

P(smaller than 3.5 or even)
=P(1) + P(2) + P(3) + P(4) + P(6)
=5/6

[ instead of P(1)+P(2)+P(3)+P(2)+P(4)+P(6) ]

Xinchou Lou
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Rules of Probability

Rule 3: P(AB) = P(A/B)P(B)
— P(B/A)P(A)

the probability P(AB) of obtaining both A and B
and the conditional probability P(A/B) of A given B

conversely rule 3 defines P(A/B) = P(AB)/P(B)
If the occurance of B does not affect whether or not A

occurs, then P(A/B) = P(A), and A and B are said to be
independent. In this case P(AB) = P(A)P(B).

June 13, 2011 Xinchou Lou 37



June 13, 2011

Rules of Probability

Example:

A =itis rainy day

B = season of the year

In a desert environment raining should be the same for any days ¢
the week (without previous knowledge of the forecast, of
course), therefore A and B are independent.

However if the place is in Dallas instead, B=April, A and B tends

to be correlated here at Dallas, as we get more rain in Spring.
i.e., P(A/Spring) > P(A/Fall) for Dallas.

Xinchou Lou
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June 13, 2011

Rules of Probability

Example

Detector efficiency for particles of two different species. The
thickness and the detecting medium/electronics determine the
probability if a particular kind of particle will be detected.

* A detecting particle a, probability p(A)
B detecting particle b, probability p(B)

They are independent of each other

e Detecting both p(A and B)=p(A)*p(B)
Detecting a but notb p(A and "not B")=p(A)[1-p(B)]
Detecting b but nota p("not A" and B)=[1-p(A)]*p(B)
Detecting neither p("not A" and "not B")=[1-p(A)]*[1-p(B)]

Xinchou Lou
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Probability — Binomial Distribution

Understanding Combinations

* Ordered combinations:
a set of N different (numbers or objects) selected from a total

sample of M (M=>N), the total number of possible
combinations (taken into account their order) is

M(M-1)(M-2)....(M-N+1)=M!/(M-N)!
* Non-ordered combinations N from M
factor due to ordering = N!

total possible combination (with no regard to ordering)

M
(M—N)!N!

June 13, 2011 Xinchou Lou 40




Probability — Binomial Distribution

Understanding Binomial Distribution

e Situation: Conduct a fixed number(N) of independent trials,
each of which can have only two possible outcomes:

yes (probability=p) /no (probability=1-p)

* For n yes, there must be (N-n) no. The probability
for a single combination is then

ple(1-p)N-n  per combination

e Consider there are N!/n!/(N-n)! combinations (non-order) the
probability of finding n occurances(succeses) 1s

| N-—
p(n)=n!(N_n)!p”(l—p)( )

if we conduct only a fixed number (N) independent trials.

June 13, 2011 Xinchou Lou
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Probability — Binomial Distribution

Understanding Binomial Distribution

To Understand the distribution:

e pis the probability of obtaining successes on n specific
attempts;

e (1-p)(N-1) failure on remaining N-n attempts;

 the factorial term gives the number of permutations

of n successes and N-n failures.

June 13, 2011 Xinchou Lou
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Probability — Binomial Distribution

Understanding Binomial Distribution

: N=3 (p=1/2)
!
0!3!
only 1 possible combination, p=é
3!

n=1, —=3 (SFF,FSF,FFS),
112!

3 possible combinations, p=§

2, =3 (SSF,FSF,FSS),
112!

3 possible combinations, p=§

3!
n=3 5=l (8SS),

: o 1
1 possible combination, p=—
June 13, 2011 Xinchou Lou 8
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Probability — Binomial Distribution

mean value (expectation)

variance of the distribution

o° = Np(1-p)= N(—”K;" ) ——”;1\@;" ), when pis small 0 = N(—”K;" )—n

mean

The Standard Error (deviation) o = \/n

mean

: 1
The relative measurement error o/n__ =

an
n
mean

Which gets smaller relative to nye,, when nye,, Increases.

June 13, 2011 Xinchou Lou
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Probability — Poisson Distribution

when p =n/N < < 1, Np=constant, and N >> 1--
sufficiently large number of trials:

N!

== N =DV =2).. (N =n+ ) = N

(1—<]r\lf_>)(N_”)¢= e_(%?)w_n) = <>

Then Binomial distribution

N! N—-
p(n) :mpn (1- P)( )

would be approximated to

_ N" o s _ (Np)" _<n>
p(n)= WP e =~ T e

_<n >" <>
n!

which gives the Poisson distribution

<n>" —<n>
n!

Xinchou Lou

p(n)=
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Probability — Poisson Distribution

(1) |mean = <n>

Mean of n can be determined by weighting n with p(n)

<n> _
mean n = EnXp(n) Enx <>
3
_ <Il> _ <n> _
= IX<n>e ™" +2X o e " +3X Al R

<n>>

=<n>e | l+<n>+ X

+...

=<n>e " Xe™"”
= <n>

Xinchou Lou
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Probability — Poisson Distribution

(2)|variance = <n>} and standard deviation/error|c =+v<n >
E(n(n—1)) = Zn(n 1){< n> }
_ 2 —<n> <n >
= <n>’e nzol .
— <1'1>2€ <n>e<n>
= <n>
also :
The variance is
E(n(n(-1)) = E(n*)—E(n)=E(n*)—<n> ,
therefore o = Zp(”) s{n—<n>]
n=l
Em)=<n>+<n> oo
= Zp(n)x[n2 —2<n>n+<n>2]
n=l
= Zp(n)Xn 2<n>Zp(n)><n+<n>
n=l n=l
=< +<n>-2<n> +<n>
June 13, 2011 Xinchou Lou 47
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Probability — Gaussian Distribution

« when <n>is large (6’=<n> therefore n is always very close to <n>)

e p=constant, N->
Using the (2) variance = <n>, and standard deviation/error ¢ =+v<n:

E(n(n—1))= n(n—1) {# e}
n=1 n:

=)

_ <n>"
— <n>2e <n>z

also

E(n(n(-1))=En*)—E(n)=En’)-<n>
therefore

E(n*)=<n>>+<n>

N!=z2ZNNNe™N

a Poisson distribution can be approximated to
Xinchou Lou
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Probability — Gaussian Distribution

n
P(n)= <Z,> <>

= [n+&n>-n))" <>
 Rannte™

N27Tn

A
_[+9]
27Tn

e_A

where A = <n>-n is the deviation from the mean <n>.

Remember that a Taylor expansion

A_ A 1A
aln(l+) =S -3

- A?
=A- 5

1,A
R ICE

and thus
(1+8y = ere ™

June 13, 2011 Xmchoutou
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Probability — Gaussian Distribution

The above approximated Poisson distribution can
be expressed as

P(n)

I
¢}
QN

I

where

o =<n> = 4, so long as n is close to <n>

June 13, 2011

Xinchou Lou
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Probability — Gaussian Distribution

e Gaussian with one variable

_(x=x)2
f=g—e 20
and
n(x)=N-f(x)

» Means = x (=<n>) and variance = 6~
» Confidence levels

Understanding Gaussian distribution:

(1) function f(x) is a probability density, not a probability,
(2) Lfl h f(x)dx represents the probability for x to be between x] and xp,

(3) function n(x) is also a probability density ( )
(4) the shape is symmetric around x
(5) (x-0, x+0) represents 68% of the area, or possibility, is
refered to as root of mean squared (rms)
(6) confidence levels:  1.640 <=> 90%,
1.966 <=> 95%,

June 13, 2011 2 586<=>99% Xinchou Lou



Probability — Gaussian Distribution

Upper Limit

CL= j‘::‘ f.(x)dx., f5(x) 1s a standard Gaussian
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Probability Distributions

N=11 binomial Poisson Gaussian




N=11, p=0.05

Binomial vs. Poisson

June 13, 2011 Xinchou Lou 54



N=11, p=0.20, mean=2.2

Binomial vs. Poisson

Binomial vs. Gaussian




N=11, p=0.25, mean=2.75

Binomial vs. Poisson

Binomial vs. Gaussian

S
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N=16, p=0.20, mean=3.2

Binomial vs. Poisson

Binomial vs. Gaussian

Y
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 Probability Distributions

N=16, p=0.30, mean=4.8

Binomial vs. Poisson

Binomial vs. Gaussian

Good approximation by Gaussian distribution when mean=Np=7
June 13, 2011 Xinchou Lou 58



Summary of Lecture |

Organization What have been covered
* Probability
e Syllabus, TOC * Binomial Distribution
e Ref. Books and Sites * Poisson Distribution
* Projects e Gaussian Distribution &

Gaussian approximation
* Mean, variances

 Examples



