Applied Computational \& Numerical Methods

Xinchou Lou

Chinese Academy of Sciences School of Graduate Studies
\&
the Institute of High Energy Physics
Summer, 2011

Applied Computational \& Numerical Methods

	Lecture I
Course Syllabus \& Requirement	
C++ tutorials	
Weekly Computing Projects	
Motivations for this course	
Probability: concepts, rules, distributions	
Limitations of the Gaussian approximation	

SYLLABUS and REQUIREMENTS

Applied Computational \& Numerical Methods

Professor Xinchou Lou

Objectives

To learn and apply computational techniques to analyze data and to solve scientific problems numerically in most computing environments by using the ROOT program, or other programming and visualization tools.

SYLLABUS and REQUIREMENTS

Applied Computational \& Numerical Methods

Course Details

(1) Lecture will be in English. Students can use English or Chinese in the class.
(2) The programming language for weekly labs/projects is C++. Familiarity with $\mathrm{C}++$ is very useful, but not required if you are willing to learn the basics of $\mathrm{C}++$.
(3) Each of the weekly computing projects is expected to be completed in one week for best effect.

SYLLABUS and REQUIREMENTS

Applied Computational \& Numerical Methods

Reference Books \& Material (Not required. Available in my office for browsing)

Numerical Methods for Physics
A. L. Garcia, ISBN 0-13-906744-2, Prentice Hall, Inc.

Numerical Methods for Scientists and Engineers, R.W. Hamming Statistics for Nuclear and Particle Physicists
by Louis Lyons, Cambridge University Press, ISBN 0521379342
A Course in Probability and Statistics, Charles J. Stone Numerical Recipes in C

William H. Press et al., Cambridge Univ. Press
(available online at http://www.nrbook.com/a/bookcpdf.php)
Online C++ tutorial: http://www.cplusplus.com/doc/tutorial/

Experimental Errors

meaning of errors
combinations of errors random \& systematic errors

Probability and Statistics Rules of Probability P\&S
Binomial, Poisson, Gaussian Error Matrix Correlations

Parameter fitting \& Hypothesis testing normalization error estimate interpretation of error upper \& lower limits Maximum likelihood Least squares Minimization

> Garcia, Alejandro, Numerical Methods for Physics Second Edition

Partial Differential Equations

 Diffusion Equations Advection Equations Stability Analysis ExamplesISBN-10: 0139067442

Random Number Generation

Chi-square Goodness-fit Test Kolmogorov-Smirnov Test Serial Test
Gap Test, Maximum Test

Random Variate Generation Inverse Transform Method Composition Method Acceptance-Rejection Method Examples of RV Generations

Monte Carlo Simulation
Applications and Examples

Real Zeros

Linear Equations and Matrix Inversion
Difference Equations

Chebyshev Approximation: Theory, Practice

Random variables and distributions PDF

A Course in Probability
and Statistics

Special discrete \& normal models

Examples

Charles J. Stone

ISBN-10: 9780534233280

Online C++ tutorial: http://www.cplusplus.com/doc/tutorial/

Documentation
C++ Language Tutorial
Ascii Codes
Boolean Operations
Numerical Bases
C++ Language Tutorial
Introduction:
Instructions for use
Basics of C++:
Structure of a program
Variables. Data Types.
Constants
Operators
Basic Input/Output
Control Structures:
Control Structures
Functions (I)
Functions (II)
Compound Data Types:
Arrays
Character Sequences
Pointers
Dynamic Memory
Data Structures
other Data Types
Object Oriented
Programming:
Classes (I)
Classes (II)
Friendship and inheritance
Polymorphism
Advanced Concepts:
Templates
Namespaces
Exceptions
Type Casting
Preprocessor directives
C++ Standard Library:
Input//output with files

C++ Language Tutorial

These tutorials explain the C++ language from its basics up to the newest features of ANSI-C++, including basic
concepts such as arrays or classes and advanced concepts such as polymorphism or templates. The tutorial is oriented in a practical way, with working example programs in all sections to start practicing each lesson right away.
[Download the entire tutorial as a PDF file]

Introduction

- Instructions for use

Basics of C++

- Structure of a program
- Variables. Data types.
- Constants
- Operators
- Basic Input/Output

Control Structures

- Control Structures
- Functions (I)
- Functions (II

Compound Data Types

- Arrays
- Character Sequences
- Pointers
- Dynamic Memory
- Other Data Types
chinese anawace learning Happy \& Efficient
chinese learning, Oninese learning, free,010-65005755 www.pentagram-chi.. AdChoices \downarrow

Object Oriented Programming

- Classes (I)
- Friensship and inheritance
- Polymorphism

Advanced Concepts

- Templates
- Namespaces
- Exceptions
- Preprocessor directives

C++ Standard Library

SYLLABUS and REQUIREMENTS

Applied Computational \& Numerical Methods

Course Content and Schedule

This is a short, intensive summer course to be completed in 5 weeks.

The contents include
probability and statistics, error analysis, numerical analysis of data, optimizations, solving systems of equations, algorithms, applications of numerical methods in physical sciences, and a final chapter on the neural network which will be followed by a set of NN examples.

PART I Stochastic Processes and the ROOT Program

Chapter 1 Probability and Statistics: Introduction or Review

- Probability: rules, distributions, error matrix, exercises
- Statistics: mean, variance, correlations, data, problem solving

Chapter 2 Introduction to ROOT and the C Programming Language (optional)

- ROOT: Introduction, installation, getting started
- C/C++: Introduction, examples, debugging, tutorials

Chapter 3 Monte Carlo Techniques

- Random number generations
- Distributions, quality of random variates, Monte Carlo simulations

Chapter 4 Experimental Errors

- Experiments and error estimates
- Statistical, systematic errors, averaging and combining errors, cases

Chapter 5 Data Analysis - Parameter Fitting and Hypothesis Testing

- Interpretation of estimates: meaning, limits and nonphysical estimates
- Maximum likelihood method
- Least Squares, hypothesis testing, minimization, and optimization

PART II Deterministic Processes

Chapter 6 Zeros and Extrema

- Introduction, methods, algorithms, and examples

Chapter 7 Integration of Functions

- Classical formulas and elementary algorithms
- Multidimensional integrals

Chapter 8 Solving Systems of Equations

- Fundamentals and algorithms
- Linear systems of equations, matrix inversion, and partial differential equations

PART III Identification, Forecast and Optimization

Chapter 9 The Neural Network Method for Pattern Recognition

- Introduction, methods, algorithms, and examples

Chapter 10 The Genetic Method for System Optimization

- Introduction, methods, algorithms, and examples

PART IV Advanced Topics

Chapter 11 Advanced Topics

- Problem posing simulations
- Global climate changes
- Full body auto collision

PART V Class Presentations of Student Projects

Chapter 12 Presentation of Your Favorite Projects

SYLLABUS and REQUIREMENTS

Applied Computational \& Numerical Methods

Weekly Computing Projects

No homework assignments are made.
Students will have opportunities to work out homework style problems in class and after classes (not graded). Together students and the instructor will eventually go over these problems as exercises/examples in class.

4 to 5 projects will be assigned and are due in one week from the date of the assignment. These projects can be run on your own computers. Full instruction on these projects will be detailed in the project assignment.

Project Schedule

Applied Computational \& Numerical Methods

The project includes the basic assignment for first year graduate students, and an advanced topic for more experienced students.

Project Schedule Applied Computational \& Numerical Methods

> Week 1 Getting started with the ROOT program package Introduction to the program, installation, setup, running, macros and document Tutorial

> Week 2 Statistical distributions
> Basic assignment: Determination of statistical features of data sets: mean, variance, standard error, error matrix and correlation between two variables Advanced assignment: Statistical analysis of multivariable data sets and time series

> Week 3 Monte Carlo random variates; Monte Carlo experiments
> Basic assignment: Random number generation with root, statistical features, confidence intervals
> Advanced assignment: A Monte Carlo based, statistical experiment to determine the significance of an observation

Project Schedule

Applied Computational \& Numerical Methods

Weak 4 Fits and the regression
Basic assignment: Fit of functions to data: parameter determination and the goodness of the fit
Advanced assignment: Measurement of the lifetimes of heavy flavored hadrons
Week 5 Numerical methods
Partial differential equations
Week 6 Neural network method
Basic assignment: Backprop training on data, test of training results, optimization of the forecast capability
Advanced assignment: An optimization for new particle search
Week 7 Project presentations

SYLLABUS and REQUIREMENTS Applied Computational \& Numerical Methods

Class Hours (preliminary-subject to change)
Tuesday June 13, 17, 20, 27, July 1, 8, 15
2:00-3:30 pm Lecture
3:30-4:00 pm Computational projects: introduction \& discussion
The meeting on July 15 is dedicated to student presentations on the projects. I will ask for volunteers soon.

Contact

Prof. Xinchou Lou xinchoulou@yahoo.com

Why Do I need to learn
 Applied Computational \& Numerical Methods ?

Background radiation: A physics experiment searches for a new type of cosmic ray. A total of 18 candidates are found in a 6-month period. The background is of purely statistical nature possessing Gaussian distribution and has been evaluated to be 8.5 ± 2.5 by the physicists.
What is the probability that this background fluctuates to 18 or more candidates in the experiment?

Is there a signal?
What is the significance of the observation?
Is a new type of cosmic ray discovered by this experiment?
Please fully justify your answer.

Why Do I need to learn

Applied Computational \& Numerical Methods ?

Particle Detector: A detector array consists of three detection units (DU), arranged as shown below. Each of the DUs can detect and correctly identify both the proton and the electron, with efficiencies of 90% and 6%, respectively. A 'signal' is defined as correct detection by at least two DUs after a particle has traversed through the detector array. Each of the Dus is sufficiently fast that simultaneously arriving particles can be individually recognized.

$$
\begin{aligned}
& \text { Detector } \\
& \text { Array }
\end{aligned}
$$

- What is the efficiency of detecting a pure proton beam particle?
- What is the efficiency of detecting a pure electron beam particle?
- If the proton and the electron are always arriving in simultaneously, what is the efficiency for the protonelectron pair to be correctly detected and identified?

Why Do I need to learn

Applied Computational \& Numerical Methods?

Most of physics problem does not have analytical solutions, and then numerical solutions are needed:

One-dimensional diffusion equation

$$
\frac{\partial}{\partial t} T(x, t)=\kappa \frac{\partial^{2}}{\partial x^{2}} T(x, t)
$$

T temperature, κ thermal diffusion coefficient If \boldsymbol{k} is constant which is true in homogeneous media, we have analytical solution, otherwise no analytical solutions when $\boldsymbol{k}=\boldsymbol{k}$ (x, t) except in special situations.

Schrödinger equation:

$$
\text { ih } \frac{\partial}{\partial t} \psi(x, t)=-\frac{h^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+V(x) \psi(x, t)
$$

here $V(x)$ could be very complicated function.
One-dimensional wave equation:

$$
\frac{\partial^{2} A}{\partial t^{2}}=c^{2} \frac{\partial^{2} A}{\partial x^{2}}
$$

If c is constant which is true in homogeneous media, we have analytical solution, otherwise no analytical solutions when $c=c(x)$ except in special situations.

Why Do I need to learn

Applied Computational \& Numerical Methods ?

Correct data and computing \Rightarrow very serious business

Why Do I need to learn Applied Computational \& Numerical Methods?
knowledge + ability to compute

huge advantage

Why Do I need to learn

Applied Computational \& Numerical Methods ?

Speed, Distance, and Electronic Trading: New Evidence on Why Location Matters

Latency Cost and Distance to NYC

- Sample firm is headquartered in the New York City area and has 36 branch office locations in 17 states.
- Gainesville is 1,014 miles from NYC!

Definition of Probability

In situations where essential circumstances are kept constant, and repetitions of experiments produce, though different, statistically (following a well-defined distribution) consistent results. The probability of obtaining a certain specified result on performing one of these experiments is then visualized as the ratio:

$$
p=\frac{\text { number of occasions on which that result occurs }}{\text { total number of measurements }}(0 \leq \mathrm{p} \leq 1)
$$

In the limit of infinitive number of experiments and measurements the error for the probability is reduced to negligible level, this experimental probability approaches the true underlying probability for the result.

- from theory to data
- use theory to predict/calculate possible outcomes of experiment

Definition of Probability

Quantum states: spin of an electron $\pm \frac{1}{2}$. For an un-polarized electron the probability of finding it in $+\frac{1}{2}$ and $-\frac{1}{2}$ are the same, i.e., 50%. There is no way to predict without absolute certainty which spin state an electron is in without directly measuring it. For a total polarized electron it is then 100% or 0%, depending on the polarization orientation.

Transition among quantum states: heavier cousin of the electron, the muon ($\mathrm{m}=105 \mathrm{MeV}$, about 210 time of the electron's mass), is unstable and decays in the following fashion

$$
\begin{aligned}
& \mu^{-} \rightarrow e^{-} \overline{\bar{v}}_{e} v_{\mu}(\approx 99 \%) \\
& \mu^{-} \rightarrow e^{-} \bar{v}_{e} v_{\mu} \gamma(\approx 1 \%) \\
& \mu^{-} \rightarrow e^{-} \bar{v}_{e} v_{\mu} \mathrm{e}^{+} \mathrm{e}^{-}(\approx 0.003 \%)
\end{aligned}
$$

for a decayed muon we know it most likely to be in the first mode, though we don't know for sure if it is since about 1% of the time it also decays into something else.

Definition of Probability

Random electronics noise: so called white noise, appear random in nature.

Light emission: photon emission, direction and polarization are all random in nature and cannot be described by deterministic algebra.

Radioactive decay: radioactive material has life time
These are all very different from Newtonian/Classical physics where from kinematics and dynamics the exact state of a motion can be determined without uncertainty. Therefore the math language and tools to describe modern physics are very much different as well. Physicists and engineers must use probability to quantify the physical reality

Probability \& Statistics are very powerful when combined when computing power and data storage.

Definition of Probability

Situation where a static probability can not be used literally:

http://www.forbes.com/2006/01/09/winners-ride-stovall in ss 0106soapbox inl.html?partner=yahootix Data from past 36 years for S\&P 500, capital appreciation only

	CAGR	Std. Dev.	Risk/Return	F.O.
S\&P 500	7.5%	16.3	0.46	N.A.
Worst 10	7.6%	25.7	0.29	64%
Best 10	13.9%	23.6	0.59	72%

CAGR = Capital Appreciation Growth Rate
Std. Dev. = RMS Spread of Prices (a measure of risk)
Risk/Return = CAGR/Std Dev.
F.O. = Frequency of Outperformance, relative to the S\&P 500 Index

	\% Chg		\% Chg
Best Ten Industries In 2 204	20042005	Worst Ten Industries In 2004	20042005
Agricultural Products	46.610 .5	Aluminum	(17.3) (5.9)
Hotels, Resort: \% Cruise Lines	$\begin{array}{ll}44.1 & 0.3\end{array}$	Automobile Manufacturers	(16.9) (49.2)
Internet Software \& Services	66.84 .0	Broadcasting \& Cable TV	(9.1) (16.9)
Managed Health Care	$\begin{array}{lll}52.7 & 42.7\end{array}$	Electronic Manufacturing Services	(17.0) (11.9)
Dil \& Gas Drilling	$45.1 \quad 53.1$	Health Care Facilities	(10.9) 10.4
Dil \& Gas Refining \& Marketing	61.577 .3	Insurance Brokers	(24.2) 12.9
Fertilizers \& Agricultural Chemicals	$93.0 \quad 39.6$	IT Consulting \& Other Services	(31.4) (42.7)
Intemet Retail	80.0 (25.3)	Pharmaceuticals	(9.5) (5.9)
Steel	58.120 .7	Semiconductor Equipment	(25.0) 2.0
Wireless Telecommunication Services	57.31 .6	Semiconductors	(21.3) 11.2
Average	$60.5 \quad 22.4$	Average	(18.3) (9.6)
	$9 / 10=0.90$		$7 / 10=0.70$

Definition of Probability

So, which S\&P 500 industries were the winners and losers in 2005 ? Take a look at the table below.

S\&P 500's Best And Worst Ten Industries

Best Ten Industries In 2005	\% Chg	Worst Ten Industries In 2005	\% Chg
Oil \& Gas Refining \& Marketing	77.3	Automobile Manufacturers	(49.2)
Oil \& Gas Exploration \& Production	65.2	IT Consulting \& Other Services	(42.7)
Oil \& Gas Drilling	53.1	Photographic Products	(27.4)
Diversified Metals \& Mining	48.8	Internet Retail	(25.3)
Oil \& Gas Equipment \& Services	47.3	Auto Parts \& Equipment	(23.8)
Managed Health Care	42.7	Home Furnishings	(19.2)
Construction \& Engineering	41.7	Food Distributors	(18.7)
Fertilizers \& Agricultural Chemicals	39.6	Computer Storage \& Peripherals	(17.1)
Health Care Services	32.2	Broadcasting \& Cable TV	(16.9)
Railroads	30.9	Brewers	(15.3)

".... There is no guarantee that what worked in the past will work in the future. Plus, no technique works all the time. We'll just have to wait and see."

Informal assignment to class:
What happened past several years (2005-2010)?

Examples of Probability

A radioactive source radiates gamma rays isotropically into space. For a detector ($\varepsilon=100 \%$) covering a solid angle of $\mathrm{d} \Omega$, the probability of detecting the gamma ray will be $\mathrm{d} \Omega / 4 \pi$ in any given decay, independent of the position of the counter.

Examples of Probability

An excited state has a very long lifetime τ, the probability that it has de-excited at time t is given by

$$
p_{t}(d e-e x c i t e d)=\int_{0}^{t} \frac{e^{-t / \tau}}{\tau} d t
$$

The probability that it will remain in the excited state is

$$
p_{t}(\text { excited })=1-\int_{0}^{t} \frac{e^{-t / \tau}}{\tau} d t
$$

After one lifetime $t=\tau$,

$$
\mathbf{p}_{\mathrm{t}}(\text { de-excited })=1-e^{-1}=0.632
$$

and

$$
p_{\mathrm{t}}(\text { de-excited })=e^{-1}=0.3679
$$

random process: coin toss in a fair way

- $p_{\text {head }}+p_{\text {tail }}=1.0$
- $p_{\text {head }}=p_{\text {tail }}$
\Downarrow

$$
p_{\text {head }}=0.50, p_{\text {tail }}=0.50
$$

larger data sample
\Rightarrow better accuracy

random process: coin toss in a fair way (?)

European Roulette

- $\sum_{n=0}^{32} p_{n}=1.0$

2 $p_{i}=p_{j} \quad(0 \leq i, j \leq 32)$
\Downarrow

$$
p_{n}=\frac{1}{33}
$$

$$
\mathrm{p}_{n \neq 0}=\frac{32}{33}, \mathrm{p}_{0}=\frac{1}{33}
$$

Rules of Probability

Rule 1: $0 \leq \mathrm{p} \leq 1$

- $p=0$ means implies that a particular event never occurs
- $\mathrm{p}=1$ means implies that a particular event always occurs

Rule 2: $\mathrm{P}(\mathrm{A}+\mathrm{B}) \leq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$

- the probability $\mathbf{P}(\mathbf{A}+\mathbf{B})$ that at least one of the events A or B occurs is equal to or smaller than the sum of individual probabilities $\mathrm{P}(\mathrm{A})$ and $\mathrm{P}(\mathrm{B})$
- the equality stands when A and B are exclusive, whereas when A and B have common elements, the inequality applies

Example: throwing a dice-

$$
\begin{aligned}
& \mathrm{P}(3 \text { or even })=\mathrm{P}(3)+\mathrm{P}(2)+\mathrm{P}(4)+\mathrm{P}(6) \\
& \quad=4 / 6 \\
& \mathrm{P}(\text { smaller than } 3.5 \text { or even }) \\
& \quad=\mathrm{P}(1)+\mathrm{P}(2)+\mathrm{P}(3)+\mathrm{P}(4)+\mathrm{P}(6) \\
& =5 / 6
\end{aligned} \begin{aligned}
& {[\text { instead of } \mathrm{P}(1)+\mathrm{P}(2)+\mathrm{P}(3)+\mathrm{P}(2)+\mathrm{P}(4)+\mathrm{P}(6)]} \\
& \text { Xinchou Lou }
\end{aligned}
$$

Rules of Probability

Rule 3: $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A} / \mathrm{B}) \mathrm{P}(\mathrm{B})$ $=P(B / A) P(A)$
the probability $\mathrm{P}(\mathrm{AB})$ of obtaining both A and B and the conditional probability $\mathrm{P}(\mathrm{A} / \mathrm{B})$ of A given B
conversely rule 3 defines $\mathrm{P}(\mathrm{A} / \mathrm{B})=\mathrm{P}(\mathrm{AB}) / \mathrm{P}(\mathrm{B})$
If the occurance of B does not affect whether or not A occurs, then $P(A / B)=P(A)$, and A and B are said to be independent. In this case $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$.

Rules of Probability

Example:
$\mathrm{A}=\mathrm{it}$ is rainy day
$B=$ season of the year

In a desert environment raining should be the same for any days c the week (without previous knowledge of the forecast, of course), therefore A and B are independent.

However if the place is in Dallas instead, $\mathrm{B}=\mathrm{April}, \mathrm{A}$ and B tends to be correlated here at Dallas, as we get more rain in Spring. i.e., $\mathbf{P}(\mathbf{A} /$ Spring $)>\mathbf{P}(\mathbf{A} /$ Fall $)$ for Dallas.

Rules of Probability

Example

Detector efficiency for particles of two different species. The thickness and the detecting medium/electronics determine the probability if a particular kind of particle will be detected.

- A detecting particle a, probability $\mathbf{p}(\mathbf{A})$ B detecting particle b, probability $\mathbf{p}(\mathbf{B})$

They are independent of each other

- Detecting both $\quad p(A$ and $B)=p(A) \cdot p(B)$

Detecting a but not $b \quad p(A$ and not $B ")=p(A) \cdot[1-p(B)]$
Detecting b but not a $p($ "not A " and $B)=[1-p(A)] \bullet p(B)$
Detecting neither $\quad \mathrm{p}($ "not $\mathrm{A} "$ and "not $\mathrm{B} ")=[1-\mathrm{p}(\mathrm{A})] \bullet[1-\mathrm{p}(\mathrm{B})]$

Probability - Binomial Distribution

Understanding Combinations

- Ordered combinations:
a set of N different (numbers or objects) selected from a total sample of $M(M=>N)$, the total number of possible combinations (taken into account their order) is

$$
M(M-1)(M-2) \ldots(M-N+1)=M!/(M-N)!
$$

- Non-ordered combinations N from M
factor due to ordering $=\mathrm{N}$!
total possible combination (with no regard to ordering)

$$
\frac{M!}{(M-N)!\cdot N!}
$$

Probability - Binomial Distribution

Understanding Binomial Distribution

- Situation: Conduct a fixed number(N) of independent trials, each of which can have only two possible outcomes:

$$
\text { yes }(\text { probability=p) /no (probability=1-p) }
$$

- For \mathbf{n} yes, there must be ($\mathbf{N}-\mathbf{n}$) no. The probability for a single combination is then

$$
\mathrm{p}^{\mathrm{n} \bullet(1-\mathrm{p})^{\mathrm{N}}-\mathrm{n}} \quad \text { per combination }
$$

- Consider there are $\mathrm{N}!/ \mathrm{n}!/(\mathrm{N}-\mathrm{n})$! combinations (non-order) the probability of finding n occurances(succeses) is

$$
p(n)=\frac{N!}{n!(N-n)!} p^{n}(1-p)^{(N-n)}
$$

if we conduct only a fixed number (N) independent trials.

Probability - Binomial Distribution

Understanding Binomial Distribution

To Understand the distribution:

- $\mathrm{p}^{\mathbf{n}}$ is the probability of obtaining successes on n specific attempts;
- (1-p)(N-n) failure on remaining $N-n$ attempts;
- the factorial term gives the number of permutations of n successes and $\mathrm{N}-\mathrm{n}$ failures.

Probability - Binomial Distribution

Understanding Binomial Distribution

$$
\begin{aligned}
& \text { For example: } \mathrm{N}=3(\mathrm{p}=1 / 2) \\
& n=0, \frac{3!}{0!3!}=1\langle F F F\rangle, \\
& \text { only 1 possible combination, } \mathrm{p}=\frac{1}{8} \\
& n=1, \frac{3!}{1!2!}=3\langle S F F, F S F, F F S\rangle, \\
& n=2, \frac{3!}{1!2!}=3\langle S S F, F S F, F S S\rangle, \\
& 3 \text { possible combinations, } \mathrm{p}=\frac{3}{8} \\
& n=3, \frac{3!}{3!0!}=1\langle S S S\rangle, \quad 3 \text { possible combinations, } \mathrm{p}=\frac{3}{8} \\
& \begin{array}{r}
3
\end{array} \\
& \begin{array}{c}
1 \text { possible combination, } \mathrm{p}=\frac{1}{8} \\
\text { Xinchou Lou }
\end{array}
\end{aligned}
$$

Probability - Binomial Distribution

mean value (expectation)

$$
n_{\text {mean }}=\sum_{n} n \times p(n)=N p
$$

variance of the distribution
$\sigma^{2}=N p(1-p) \cong N\left(\frac{n_{\text {mean }}}{N}\right)\left(1-\frac{n_{\text {mean }}}{N}\right)$, when p is small $\sigma^{2} \cong N\left(\frac{n_{\text {mean }}}{N}\right) \rightarrow n_{\text {mean }}$
The Standard Error (deviation) $\sigma \cong \sqrt{n_{\text {mean }}}$
The relative measurement error $\sigma / n_{\text {mean }} \cong \frac{1}{\sqrt{n_{\text {mean }}}}$
Which gets smaller relative to $\mathrm{n}_{\text {mean }}$ when $\mathrm{n}_{\text {mean }}$ increases.

Probability - Poisson Distribution

when $\mathrm{p}=\mathrm{n} / \mathrm{N} \ll 1, \mathrm{~N}=$ constant, and $\mathrm{N} \gg 1$-sufficiently large number of trials:

$$
\begin{aligned}
& \frac{N!}{(N-n)!}=N(N-1)(N-2) \ldots .(N-n+1) \approx N^{n} \\
& \left(1-\frac{\langle n>}{N}\right)^{(N-n)} \approx e^{-\left(\frac{\langle n>}{N}\right)(N-n)} \cong e^{-<n>}
\end{aligned}
$$

Then Binomial distribution

$$
p(n)=\frac{N!}{n!(N-n)!} p^{n}(1-p)^{(N-n)}
$$

would be approximated to

$$
\begin{aligned}
p(n) & \approx \frac{N^{n}}{n!} p^{n} e^{-<n>}=\frac{(N p)^{n}}{n!} e^{-<n>} \\
& =\frac{\left\langle n>^{n}\right.}{n!} e^{-<n>}
\end{aligned}
$$

which gives the Poisson distribution

$$
p(n)=\frac{<n>^{n}}{n!} e^{-<n>}
$$

Probability - Poisson Distribution

(1) mean $=\langle n\rangle$

Mean of n can be determined by weighting n with $p(n)$

$$
\text { mean } \begin{aligned}
\overline{\mathrm{n}} & =\sum_{n=0}^{\infty} n \times p(n)=\sum_{n=0}^{\infty} n \times \frac{\left\langle n>^{n}\right.}{n!} e^{-\langle n>} \\
& =1 \times\left\langle\mathrm{n}>e^{-<n>}+2 \times \frac{\left\langle\mathrm{n}>^{2}\right.}{2!} e^{-\langle n>}+3 \times \frac{\left\langle\mathrm{n}>^{3}\right.}{3!} e^{-<n>}+\ldots\right. \\
& =<\mathrm{n}>e^{-\langle n>}\left[1+\left\langle n>+\frac{\left\langle\mathrm{n}>^{2}\right.}{2!}+\ldots\right]\right. \\
& =<\mathrm{n}>e^{-\langle n>} \times e^{<n>} \\
& =<\mathrm{n}>
\end{aligned}
$$

Probability - Poisson Distribution

(2) variance $=\langle n>$, and standard deviation/error $\sigma=\sqrt{\langle n\rangle}$

$$
\begin{aligned}
E(n(n-1)) & =\sum_{n=1}^{\infty} n(n-1)\left[\frac{\left\langle n>^{n}\right.}{n!} e^{-<n>}\right] \\
& =\left\langle\mathrm{n}>^{2} e^{-<n>} \sum_{n=0}^{\infty} \frac{\left\langle n>^{n}\right.}{n!}\right. \\
& =\left\langle\mathrm{n}>^{2} e^{-<n\rangle} e^{\langle n\rangle}\right. \\
& =<\mathrm{n}\rangle^{2}
\end{aligned}
$$

also
The variance is

$$
E\left(n(n(-1))=E\left(n^{2}\right)-E(n)=E\left(n^{2}\right)-<n>\right.
$$

therefore

$$
E\left(n^{2}\right)=\langle n\rangle^{2}+\langle n\rangle
$$

$$
\text { Xinchou Lou } \quad=<\mathbf{n}>
$$

$$
\begin{aligned}
\sigma_{n}^{2} & \left.=\sum_{n=1}^{\infty} p(n) \times[n-<n\rangle\right]^{2} \\
& =\sum_{n=1}^{\infty} p(n) \times\left[n^{2}-2\left\langle n>n+\langle n\rangle^{2}\right]\right. \\
& =\sum_{n=1}^{\infty} p(n) \times n^{2}-2\langle n\rangle \sum_{n=1}^{\infty} p(n) \times n+\langle n\rangle^{2} \\
& =\langle n\rangle^{2}+\langle n\rangle-2\langle n\rangle^{2}+\langle n\rangle^{2} \\
& =\langle n\rangle
\end{aligned}
$$

Probability - Gaussian Distribution

- when $<\mathrm{n}>$ is large ($\sigma^{2}=<\mathrm{n}>$ therefore n is always very close to $<\mathrm{n}>$)
- $\mathrm{p}=$ constant, $\mathrm{N}->\infty$

Using the (2) variance $=\langle n\rangle$, and standard deviation/error $\sigma=\sqrt{\langle n\rangle}$

$$
\begin{aligned}
E(n(n-1)) & =\sum_{n=1}^{\infty} n(n-1)\left[\frac{\langle n\rangle^{n}}{n!} e^{-\langle n\rangle}\right] \\
& =\langle n\rangle^{2} e^{-\langle n\rangle} \sum_{n=0}^{\infty} \frac{\langle n\rangle^{n}}{n!} \\
& =\langle n\rangle^{2} e^{-\langle n\rangle} e^{\langle n\rangle} \\
& =\langle n\rangle^{2}
\end{aligned}
$$

also

$$
E\left(n(n(-1))=E\left(n^{2}\right)-E(n)=E\left(n^{2}\right)-\langle n\rangle\right.
$$

therefore

$$
\begin{aligned}
& E\left(n^{2}\right)=\langle n\rangle^{2}+\langle n\rangle \\
& N!\cong \sqrt{2 \pi N} N^{N} e^{-N}
\end{aligned}
$$

a Poisson distribution can be approximated to

Probability - Gaussian Distribution

$$
\begin{aligned}
P(n) & =\frac{<n>^{n}}{n!} e^{-<n>} \\
& \cong \frac{[n+(<n>-n)]^{n}}{\sqrt{2 \pi n} n^{n}} e^{-n} e^{-<n>} \\
& =\frac{[n+\Delta]^{n}}{\sqrt{2 \pi n}} n^{-n} e^{n-<n>} \\
& =\frac{\left[1+\frac{\Delta}{n}\right]^{n}}{\sqrt{2 \pi n}} e^{-\Delta}
\end{aligned}
$$

where $\Delta=<n>-n$ is the deviation from the mean $<n>$.
Remember that a Taylor expansion

$$
\begin{aligned}
n \ln \left(1+\frac{\Delta}{n}\right) & =n\left\{\frac{\Delta}{n}-\frac{1}{2}\left(\frac{\Delta}{n}\right)^{2}+\frac{1}{3}\left(\frac{\Delta}{n}\right)^{3}+\ldots\right\} \\
& \cong \Delta-\frac{\Delta^{2}}{2 n}
\end{aligned}
$$

and thus

$$
\left(1+\frac{\Delta}{n}\right)^{n} \cong \mathrm{e}^{\Delta} \mathrm{e}^{-\frac{\Delta^{2}}{2 n}}
$$

Probability - Gaussian Distribution

The above approximated Poisson distribution can be expressed as

$$
\begin{aligned}
P(n) & \cong \mathrm{e} \frac{\left[1+\frac{\Delta}{n}\right]^{n}}{\sqrt{2 \pi n}} e^{-\Delta} \\
& \cong \frac{e^{\Delta-\frac{\Delta^{2}}{2 n}}}{\sqrt{2 \pi n}} e^{-\Delta} \\
& =\frac{1}{\sqrt{2 \pi n}} e^{\Delta-\Delta-\frac{\Delta^{2}}{2 n}} \\
& =\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\Delta^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

where $\sigma^{2}=<\mathbf{n}>\cong \mathbf{n}$, so long as n is close to $<n>$

Probability - Gaussian Distribution

- Gaussian with one variable

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\bar{x})^{2}}{2 \cdot \sigma^{2}}}
$$

and

$$
n(x)=N \cdot f(x)
$$

- Means $=\bar{x}(=<\mathrm{n}>)$ and variance $=\sigma^{2}$
- Confidence levels

Understanding Gaussian distribution:
(1) function $\mathrm{f}(\mathrm{x})$ is a probability density, not a probability,
(2) $\int_{x_{l}^{x} h}^{x} f(x) d x$ represents the probability for x to be between x 1 and xh , value of the integral can be looked up in the Gaussian Int. Table
(3) function $\mathrm{n}(\mathrm{x})$ is also a probability density (event/population density)
(4) the shape is symmetric around \bar{x}
(5) ($\bar{x}-\sigma, \bar{x}+\sigma)$ represents 68% of the area, or possibility, is refered to as root of mean squared (rms)
(6) confidence levels: $1.64 \sigma<=>90 \%$,

$$
1.96 \sigma \text { <>> 95\%, }
$$

Probability - Gaussian Distribution

Upper Limit

$C L=\int_{-\infty}^{X_{c}} f_{G}(x) d x, \mathrm{f}_{\mathrm{G}}(\mathrm{x})$ is a standard Gaussian

0.0	5000	5040	5080	5120	5160	. 5199	5239	5279	5319	. 5359
0.1	5398	5438	5478	5517	5557	5596	5636	. 5675	5714	. 5753
0.2	. 5793	. 5832	5871	5910	5948	5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6413	. 6480	. 6517
0.4	6554,	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	¢6008	. 6844	. 6879
0.5	.6915"	. 650	6985	,7019	. 7054	. 7088	. 712	. 7157	.7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	7389	. 7422	. 7454	. 7486	. 7517	. 754
0.7	. 7580	. 7611	. 7642	. 7673	.703	. 734	. 764	. 794	. 782	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	8264	. 8289	8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	8508	. 831	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	9032	9049	9066	9082	9099	9115	. 9131	9147	9162	. 917
1.4	9192	9207	9222	9236	9251	9265	9279	9292	9306	. 9319
1.5	9332	9345	9357	9370	9382	9394	9406	9418	9429	941
1.6	9452	9463	9474	9484	9495	9505	9515	9525	9535	. 9345
1.7	9554	9564	9573	9582	9591	9599	9608	9616	9625	. 9633
1.8	. 9641	9649	9656	9664	9671	9678	9686	9693	9699	. 9706
1.9	9713	9719	9726	9732	9738	9744	9750	9756	9761	. 9767
2.0	9772	9778	9783	9788	9793	9798	9803	9808	9812	9817
2.1	. 9821	9826	9830	9834	9838	9842	9846	9850	. 9854	. 985
2.2	. 9861	9864	9868	. 9871	9875	9878	9881	9884	9887	9890
2.3	9893	9896	9898	. 9901	9904	9906	9999	. 9911	9913	. 9916
2.4	9918	. 9920	992	. 9925	9927	9929	. 9931	9932	9934	9936
2.5	9938	9940	. 9941	9943	9945	9946	9948	9949	. 9951	. 9952
2.6	9953	9955	9956	9057	9959	9960	. 9961	9962	. 9963	9964
2.7	9965	9966	9967	9968	9969	9970	9971	9972	9973	. 9974
2.8	9974	9975	9976	9977	9977	9978	9979	9979	9980	. 9881
2.9	. 9981	9982	9982	9983	9984	9984	9985	9985	9986	9986
3.0	9987	9987	9987	9988	9988	9989	9989	9989	9990	. 9990
3.1	9990	. 9991	. 9991	. 9991	9992	9992	9992	9992	9993	. 9993
3.2	9993	9993	9994	9994	9994	9994	9994	9995	9095	9995
3.3	9995	9995	9995	9996	9996	9996	9996	9996	9996	. 9997
3.4	9997	9997	9997	9997	9997	9997	9997	9997	9997	. 9998
3.5	9998	9998	9998	9998X	908 1	9998	9998	9998	9998	9998
3.6	9998	9998	9999	9999	9999	9999	9999	9099	9999	. 9999

Probability Distributions

Probability Distributions

$$
N=11, p=0.05
$$

Graph

Binomial vs. Gaussian

Probability Distributions

$$
\mathrm{N}=11, \mathrm{p}=0.20, \text { mean }=2.2
$$

Graph

Graph

Probability Distributions

$\mathrm{N}=11, \mathrm{p}=0.25$, mean $=2.75$

Graph

Graph

Probability Distributions

$\mathrm{N}=16, \mathrm{p}=0.20$, mean=3.2

Graph

Graph

Probability Distributions
 $\mathrm{N}=16, \mathrm{p}=0.30$, mean=4.8

Good approximation by Gaussian distribution when mean=Npœ7

Summary of Lecture I

Organization

- Syllabus, TOC
- Ref. Books and Sites
- Projects

What have been covered

- Probability
- Binomial Distribution
- Poisson Distribution
- Gaussian Distribution \& Gaussian approximation
- Mean, variances
- Examples

