

High granularity readout TPC for CEPC TDR

Huirong Qi, Zhi Deng

Yue Chang, Xin She, Jian Zhang, Guang Zhao, Lingwu Wu, Gang Li, Liwen Yu 2024.03.19 • High granularity readout TPC for CEPC TDR

Track detector system in CEPC Phy.&Det. TDR

- The track detector system's geometry was finalized.
 - Converging geometries as quickly as possible in preparation for physics simulation
 - Geometry diagram almost finalized

Almost finalized Geometry of the track detector system

General geometry of TPC detector

- General geometry of TPC and the optimization modules in endcap
- 3D optimization design on going

Almost finalized Geometry of TPC detector and the Endplate

Optimization the endcap of TPC

- Optimization modules in the endcap
 - ILD TPC: Coverage of the sensitivity readout area ~89%
 - Coverage of the sensitivity readout area increased from 92% to 96%

Optimization of Geometry of TPC detector and the Endplate

High granularity readout TPC $@\cos\theta \approx 0.98$

Parameters	Higgs run	Z pole run		
B-field	3.0T	2.0T		
Pad size (mm)/All channels	0.5mm×0.5mm/2×3×10 ⁷	0.5mm×0.5mm/2×3×10 ⁷		
Material budget barrel	0.012 X ₀	0.012 X ₀		
Material budget endcap	0.17 X ₀	0.17 X ₀		
Points per track in rφ	2300	2300		
σ _{point} in rφ	100μm (full drift)	400μm (full drift)		
σ _{point} in rz	≃ 0.1 – 0.5 mm (for zero – full drift)	≃ 0.2 – 0.8 mm (for zero – full drift)		
2-hit separation in rφ	0.5mm	0.5mm		
K/ π separation power @20GeV	3.2σ	3σ		
dE/dx	3.2%	3.2%		
Momentum resolution	a = 1.21 e -5	a = 2.69 e -5		
normalised: $\sigma_{1/pT} = \sqrt{a^2 + (b/pT)^2}$	b = 0.60 e -3	b = 0.90 e -3		

• Performance and readiness of Simulation

Simulation framework developed by Garfield++ and Geant4 @IHEP

PID Performance using dN/dx

- Investigating the π/K discrimination capability using reconstructed clusters, a 3σ separation at 20GeV with a 50cm drift distance can be achieved
- dN/dx has significant potential for improving resolution

PID Performance using dE/dx

- A higher granularity is also very helpful for improving dE/dx.
- According to simulation results, for a pad size of 500um, with the current 1.2-meter track length of CEPC, the dE/dx can reach 3.2%.

$$\sigma_{dE/dx} \sim L^{-0.47} \times G^{-0.13}$$

Maxim distortion calculation using new geometry

- Maxim distortion with e+e- to qq at Z pole (物理事例的畸变影响)
- Maxim distortion under the different Beamstruggle background (物理事例×10、×50、×100倍本底的影响)

Hit density at the inner radius at Z pole 2T

- Inner radius (0.6m) hit density validation
 - Hit density at the full simulation with the beam background $(3T \rightarrow 2T)$
 - The data at the inner radius @40M BX Z pole1 Module ~0.05Gbps

• Performance and readiness of TPC detector R&D

Power Consumption – TPC - Validation

- High granularity readout TPC: 3×10^7
- Total power: <10 kW to need the power consumption <100mW/cm²
- R&D on pixel TPC readout for CEPC
 Pixel TPC ASIC chip was started to develop in 2023 and
 1st prototype wafer standalone tested in May.
 - Y Power consumption: <1.1mW/ch (1st prototype)</p>
 - ✓ <400mW/cm² (Test)
- 2nd prototype wafer design done
 - ✓ < 100mW/cm² (Goal and final design)
- The TOA and TOT can be selected as the initiation function in the ASIC chip.

1st readout PCB board and the ASIC layout

Collaboration of Pixel Readout in LCTPC

GridPixes Pixel TPC Readout

- Tests with single and quad devices have been successfully done.
- $\sim 4.1\%$ dE/dx resolution at B = 1.0T at DESY
- For very small readout pads the cluster counting method yields a (Octopuce) very good separation power
 TimePix1

Cost – TPC

• TPC cost estimation

- Chamber
- Endplate
- Electronics
- Alignment
- HV and Gas system
- Electronics and DAQ sections re-estimated and reduced

TPC COST ESTIMATION (Unit: *10K RMB)								
			Detector concept/ Detector items	Unit	Unit cost (RMB)	Quantity	total cost (RMB)	
Number			CEPC					
3.2			Time Projection 18000.00 Chamber					
	3.2.1		Chamber				3600.00	
		3.2.1.1	Fieldcage		1200.00	1	1200.00	
		3.2.1.2	Connector		800.00	1	800.00	
		3.2.1.3	Barrel		600.00	1	600.00	
		3.2.1.4	HV test bef. Assembly		400.00	1	400.00	
		3.2.1.5	Support board		600.00	1	600.00	
3.2.2			Endplate 2500.00					
		3.2.2.1	MPGD detector		800.00	1	800.00	
		3.2.2.2	Support board		600.00	2	1200.00	
		3.2.2.3	Readout bef. Assembly		2.50	200	500.00	
3.2.3			Electronics 10000.00					
		3.2.3.1	FEE ASIC readout		0.012	200000	2400.00	
		3.2.3.2	Cables		0.03	50000	1500.00	
	l	3.2.3.3	Optical driver		0.03	50000	1500.00	
	-	3.2.3.4	Optical link, connectors		1.00	500	500.00	
		3.2.3.5	DAQ system	_	0.30	5000	1500.00	
	•	3.2.3.6	Crate and controller	_	20.00	50	1000.00	
	·	3.2.3.7	Cooling system		1600.00	1	1600.00	
3.2.4			Alignment and calibration 500.00					
		3.2.4.1	Calibration system		500.00	1	500.00	
3.2.5			HV and Gas system 1400.00					
		3.2.5.1	HV and low power		600.000	1	600.00	
		3.2.5.2	Gas system		300.00	1	300.00	
		3.2.5.3	Slow control system		300.00	1	300.00	
		3.2.5.4	Shipping bef. Assembly		200.00	1	200.00	

Many thanks!

 dN/dx (and tracking) can be beneficial from smaller pad size

 $\rho_{cl} \approx 30 cm^{-1} \Rightarrow Pad size \approx 300 \mu m$ (To detect single e⁻)

• Need to find out the optimal pad size considering cost/power consumption

Simulation with 30 cm track length

https://doi.org/10.1088/1748-0221/17/11/P11027

Need to understand their results and tune our simulation!

Extremely powerful PID performance:

> 6σ @ 20 GeV/c, 1.4 m track length

ILD detector rInner = 329 rOuter = 1770 mm MIP resolution = 3.6% at $\theta = \pi/2$ electron resolution = 2.5%Assume Pixel TPC performance at

B = 1 T at p = 5,6 GeV/c

- Separation pion kaon $| < Eloss \pi > - < Eloss K > | / \sigma_{\pi}$
- Separation pion kaon for different cos(theta) values due to the track length dependence
- For cos(theta)=0 till 0.95 the separation lies between the black and red curves. Only above 0.95-0.975 the separation drops till the blue curve.
- Excellent performance over very large polar angle range