Drift chamber towards CEPC Reference TDR

Linghui Wu, Guang Zhao, Gang Li, Xiaohui Qian, Yubing Zhao, Wei Wei, **Mingyi Dong**

On behalf of DC group

2024.3.21

Outline

- Mechanical design and FEA
- Electronics scheme
- Performance study and prototype test

Mechanical design and FEA

Overall Design

CF Frame structure: 8 longitudinal hollow beams + 8 annular hollow beams + inner CF cylinder and outer CF cylinder

- Length : 5800mm
- Outer diameter: 3600mm, Inner Diameter: 1200mm;
- Thickness of each end plate: 25mm, weight :1100kg

Wire tension

	cell number /step	length	single sense wire tension(g)	Single field wire tension(g)	total tension /step (kg)
	2684	4000	43.29	66.52	651.78
	3452	4360	51.43	79.03	995.95
	4220	4720	60.28	92.62	1426.88
	4988	5080	69.82	107.29	1953.63
	5756	5440	80.07	123.03	2585.27
	6524	5800	91.02	139.85	3330.85
total	27623				10944

Diameter of field wire (Al coated with Au) : 60μm Diameter of sense wire (W coated with Au): 20μm Sag = 280 μm

Meet requirements of stability condition:

$$T > (\frac{VLC}{d})^2 / (4\pi\varepsilon_0)$$

Loads

Wire Tension

	cell number/step	length	Sense wire tension(g) /cell	Field wire tension(g) /cell	Sense wire tension (kg)	Field wire tension (kg)	total tension(kg) /step
	2684	4000	43.29	66. 52	116.19	535.59	651.78
	3452	4360	51.43	79.03	177.55	818.41	995.95
	4220	4720	60.28	92.62	254.37	1172.51	1426.88
	4988	5080	69.82	107.29	348.27	1605.36	1953.63
	5756	5440	80.07	123.03	460.87	2124.39	2585.27
	6524	5800	91.02	139.85	593.79	2737.07	3330.85
total	27623				1951	8993	10944

yield	strength	of	7075
alumin	um:505MPa	ł	

1.6

Density of CF

Young's
ModulusPoisson's
Ratio171700000000.33

	Data

	E1	E2	Nu12	G12	G13	G23
1	32000000000	700000000	0.29	420000000	420000000	2700000000

CF parameter

Da	ata						
	Ten Stress Fiber Dir	Com Stress Fiber Dir	Ten Stress Transv Dir	Com Stress Transv Dir	Shear Strength	Cross-Prod Term Coeff	Stress Limit
1	200000000	60000000	22000000	10000000	5000000	0	0

Carbon Fiber Material parameter

性能	东丽M55J复合材料	测试标准	
	室温	NO POINT	
0度拉伸强度,Mpa	2000		
0度拉伸模量, GPa	320		
泊松比	0.29	ASTM D3039	
90度拉伸强度,Mpa	22		
90度拉伸模量, GPa	7.0		
弯曲强度,Mpa	1000		
弯曲模量, GPa	230	ASTIVI D7264	
0度压缩强度,Mpa	600		
0度压缩模量, GPa	300		
90度压缩强度,Mpa	100	ASTIVI D0041	
90度压缩模量 , GPa	6.5		
ILSS , Mpa	50	ASTM D2344	
面内剪切强度, Mpa	50		
面内剪切模量, GPa	4.2	ASTIVI D3518	

M55J CF

FEA

Thickness of CF wall: 3.2mm, including 16 composite layers. Thickness of each composite layer: 200µm

Loads: Wire tension+ Axial self weight :

Stress 20.9MPa, endplate deformation 2.5mm, CF frame deformation 1.4mm

Loads: Wire tension+ Axial self weight :

The maximum stress in the 0 degree direction of CF is 53MPa, located in the -4th layer

The maximum stress in the 90 degree direction of CF is 1.1 MPa, located in the first layer

TSAIW: 0.21, located in the sixteenth layer

safety factor: ~5

Loads: Wire tension+ Axial self weight :

Horizontal self weight Buckling coefficient : ~14

The structure is stable

Vertical self weight Buckling coefficient : ~12

Updated design parameters

R extension	600-1800mm
Length of outermost wires $(\cos\theta=0.85)$	5800mm
Thickness of inner CF cylinder: (for gas tightness, no load)	200μm (0.08% Χ ₀)
Thickness of outer CF cylinder: (for gas tightness, no load)	300μm (0.13% Χ ₀)
Outer CF frame structure:	Equivalent CF thickness: 1.8 mm (0.77% X ₀)
Thickness of end Al plate:	25mm (28% X ₀)
Material budget of cables at end plate	~ 1.8% X ₀
Cell size:	~ 18 mm × 18 mm
Cell number	27623
Diameter of field wire (Al coated with Au)	60µm
Diameter of sense wire (W coated with Au)	20µm
Ratio of field wires to sense wires	3:1
Gas mixture	He/iC ₄ H ₁₀ =90:10
Gas + wire material	0.16% X ₀

Electronics

Global design for DC Elec-TDAQ system

To BEE

Considering : radiation hardness Power consumption, Material budget

FEE-1: A rad-hard (analog) FEE (preamp)

FEE-2:

Non rad-hard FEE for data buffering, in low dose region (ADC and FPGA)

To BEE

Preliminary readout scheme of Drift Chamber

3dB attenuation @ 280MHz

1.4kW for each end plate, air cooling is OK no additional material bufget

Data size estimation

- ADC sampling rate : 1.3Gsps, 12bit, sampling window: 1.5 μ s, data size/single hit: 2k \times 2Byte
- Hit rate of the inner most layer: ~ 70kHz/cell, outer most layer: 10kHz /cell, average hit rate: ~30kHz/ cell
- Average Occupancy: 5% (10.5% for inner most layer, 1.2% for outer most layer)
- Each digital board corresponds to 12 preamplifier channels (sector includes inner to outer layers)
- Data size estimation:
 - 0.5Gbps/12 channels-- compatible with calibration requirement and overall readout scheme of the detector

12 chn Grp by sector

Performance

Waveform-based full simulation

Machine learning reconstruction

- Supervised model for MC simulation
 - Full labels in MC
 - Model structure
 - LSTM-based peak finding
 - DGCNN-based clusterization
- Semi-supervised model for data
 - Lack of labels in data
 - Domain adaptation to map data to MC sample

Clusterization Method	μ	σ	σ/μ
MC truth	16.53	3.93	23.8%
Classical algorithm	18.67	4.60	24.6%
Deep learning	16.65	4.06	24.4%

- Closer to MC truth *N_{cls}* distribution
 - ~10% improvement with ML (equivalent to a detector with 20% larger radius)

Data analysis with ML reconstruction

- Multi-waveform results for samples in different angles
- The algorithm is stable w.r.t. track length

PID performance

- 1.2 m track length
- For 20 GeV/c K/π,
- Separation power: 3.1σ

dN/dx Resolution

- dN/dx resolution: 2.5%2.6% for pion
- 2.6%-2.7% for Kaon

Beam test with detector prototype (IHEP)

Scintillator

• The system was tested with electron beam at IHEP

Typical Waveform

- He: iC4H10 = 90 : 10
- Digitizer: DT5751
 - Sampling rate: 1GHz
 - Four channels, two for scintillators, two for drift tubes

Preliminary analysis

- Low noise and high bandwidth preamplifiers
- Rise time : ~ ns
- Clear peaks

Question and discussion

- Is it possible to construct so big(long) drift chamber? (wire length, wire tension, difficulty for wiring ..., need prototyping)
- Does the wire length (5.8m) (input capacitance) impact on the waveform test ?(need tests)
- Wire layout: all stereo, or axial and stereo (based on requirement of Z resolution)?
- Wire Sag = 280 μ m , is it reasonable, impact on the spatial resolution?
- Any problem for DC operation under 3T magnetic field