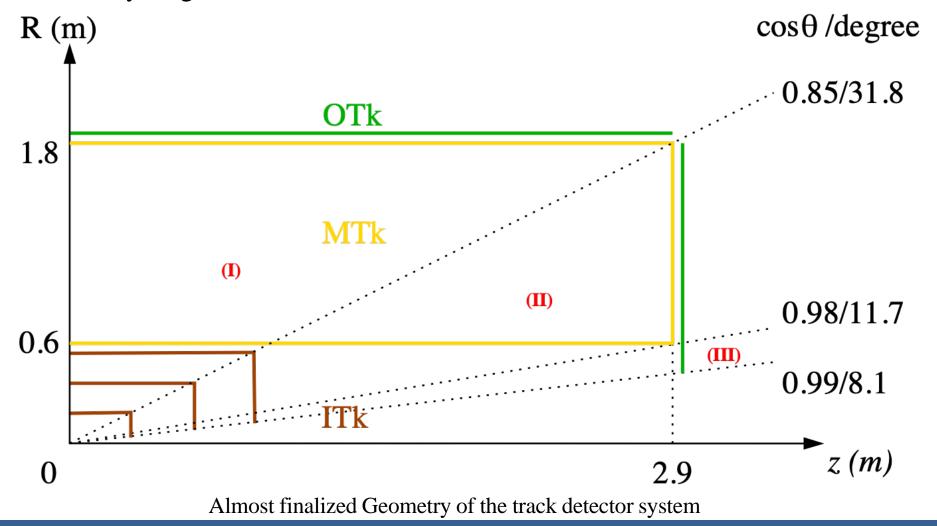
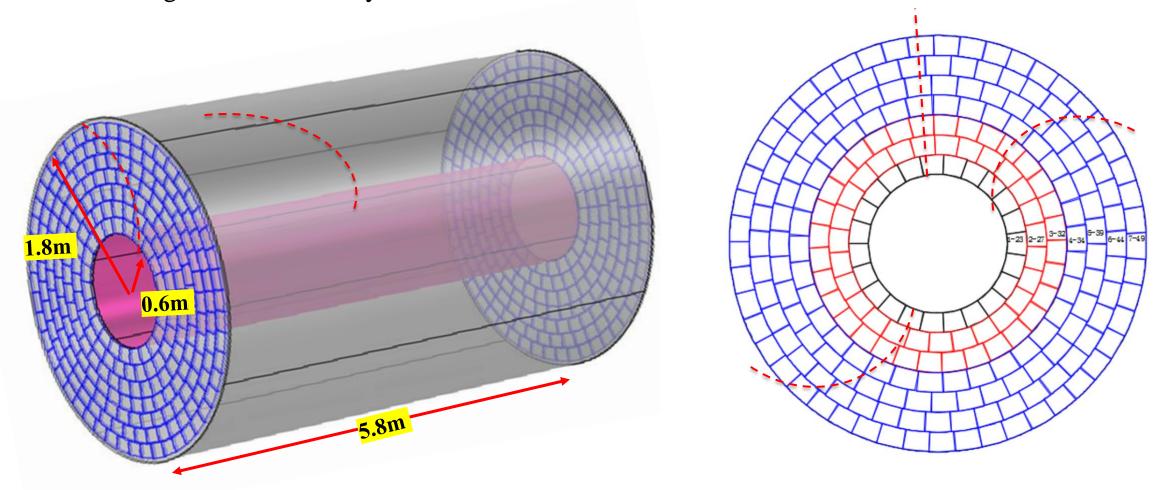


Progress of High granularity readout TPC for CEPC TDR


Huirong Qi, Zhi Deng

Yue Chang, Xin She, Jian Zhang, Lingwu Wu, Guang Zhao, Gang Li, Liwen Yu CEPC Track meeting, 2024.03.19

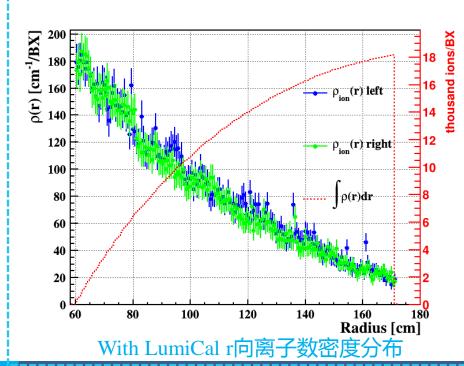

Track detector system in CEPC Phy.&Det. TDR

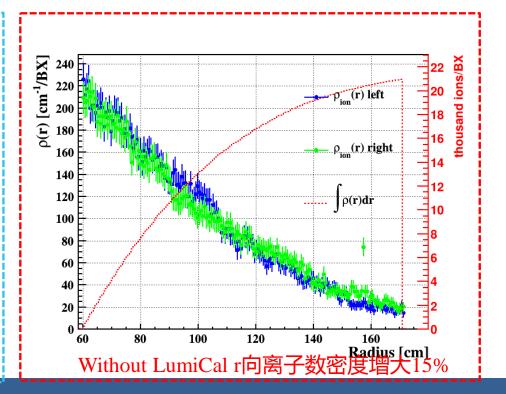
- The track detector system's geometry was finalized.
 - Converging geometries as quickly as possible in preparation for physics simulation
 - Geometry diagram almost finalized

Optimization the endcap of TPC

- Optimization modules in the endcap
 - ILD TPC: Coverage of the sensitivity readout area ~89%
 - Coverage of the sensitivity readout area increased from 92% to 96%

High granularity readout TPC $@\cos\theta \approx 0.98$

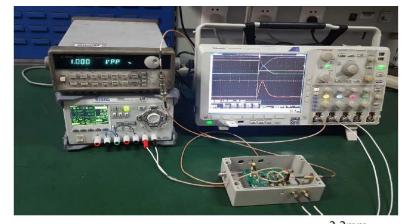

Parameters	Higgs run	Z pole run
B-field	3.0T	2.0T
Pad size (mm)/All channels	0.5 mm $\times 0.5$ mm $/2\times 3\times 10^7$	0.5 mm $\times 0.5$ mm $/2\times 3\times 10^7$
Material budget barrel	0.012 X ₀	0.012 X ₀
Material budget endcap	0.17 X ₀	0.17 X ₀
Points per track in rφ	2300	2300
σ_{point} in r ϕ	120μm (full drift)	400μm (full drift)
σ _{point} in rz	$\simeq 0.1 - 0.4 \text{ mm}$ (for zero – full drift)	$\simeq 0.2 - 0.8 \text{ mm}$ (for zero – full drift)
2-hit separation in rφ	0.5mm	0.5mm
K/π separation power @20GeV	3 σ	3 σ
dE/dx	3.2%	3.2%
Momentum resolution normalised:	a = 1.210 e -5	a = 2.69 e -5
$\sigma_{1/pT} = \sqrt{a^2 + (b/pT)^2}$	b = 0.589 e -3	b = 0.90 e -3

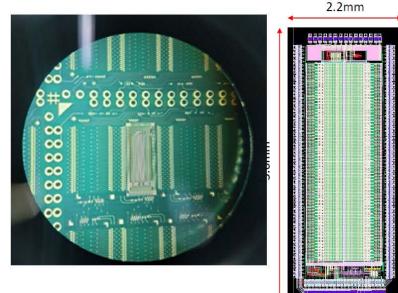

Huirong Oi

Estimation of the LumiCal at the inner of TPC

- With and without the LumiCal in the MDI region
- Optimization of the LumiCal position

With LumiCal	Without LumiCal
Edep~4.73GeV (10000BX)	Edep~5.45GeV (10000BX)
18.20k ions/BX	20.97k ions/BX
Max. $\rho_{sc} = 5.46 nC/m^3$	Max. $\rho_{sc} = 6.18nC/m^3$




Power Consumption – TPC - Validation

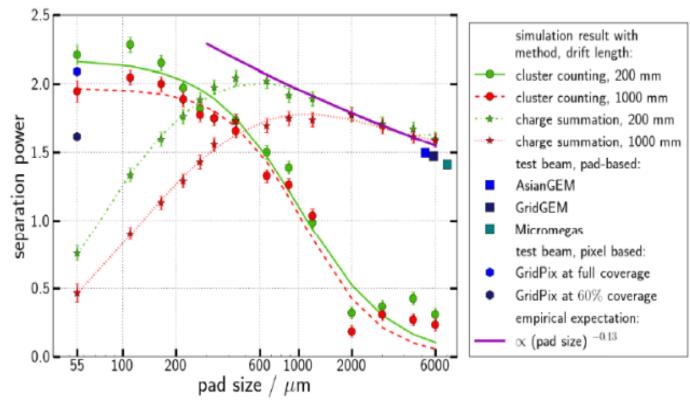
- High granularity readout TPC: 3×10^7
- Total power: <10 kW to need the power consumption <100mW/cm²
 - R&D on pixel TPC readout for CEPC

 Pixel TPC ASIC chip was started to develop in 2023 and

 1st prototype wafer standalone tested in May.
 - ✓ Power consumption: <1.1mW/ch (1st prototype)
 - √ <400mW/cm² (Test)
 </p>
 - 2nd prototype wafer design done
 - ✓ < 100mW/cm² (Goal and final design)
 - The TOA and TOT can be selected as the initiation function in the ASIC chip.

1st readout PCB board and the ASIC layout

Pad size optimization


- Pad size optimization ongoing.
 - Optimized the pad size to validate the PID performance

 dN/dx (and tracking) can be beneficial from smaller pad size

$$\rho_{cl} \approx 30cm^{-1} \Rightarrow Pad\ size \approx 300\mu m$$
(To detect single e⁻)

 Need to find out the optimal pad size considering cost/power consumption

Simulation with 30 cm track length

https://doi.org/10.1088/1748-0221/17/11/P11027

Huirong Oi

Many thanks!