Stereo Crystal Ecal: Input Materials

Huaqiao Zhang (IHEP) For Stereo Crystal Ecal study team

Updated: 1: refined electronics design 3: refined mechanics design 5: comparison of SiPM/APD/PD

2: refined endcap conceptional design4: gamma + charged pi separation

Stereo Crystal Electromagnetic Calorimeter: Design

- To improve the 3D position resolution
 - Pointing angle of even layers alone Z: α
 - Pointing angle of odd layers alone Z: $\alpha' = -\alpha$
- Benchmark design:
 - α =20 degrees
 - R segmentation = 10

343.5

342.5

- Crystal: (8-8.1)*10*284 mm³ ۲
- Readout: SiPM (or APD/PD) + electronics
- Cooling pipe planted into the outside of the mechanical support
- 24X0+10mm electronics+10mm support + 10 mm contingency = 300mm

Performance

Items	Priority	Results / Status	Remarks
Boson Mass Resolution	A	H→di-photon: 0.3%(1.3%) with 2MeV(50MeV) thr. H→gg is under study	BMR < 4% CEPCSW fullsim
Intrinsic EM/hadronic energy resolution	A	Stochastic term: 0.9%(3.2%)/sqrt(E) with 2MeV(50MeV) thr.CEPCSW fullsim	
Separation power		5 GeV gamma/gamma, >80%@15mm 5 GeV gamma/10 GeV Pi: >60%@15mm	CEPCSW fullsim
Lepton ID in jets		preparing	Clear shape difference seen(backup)
Timing capability		Could have, accuracy depending on the sensitive material	No showstopper
π^0 reconstruction		Studying	CEPCSW fullsim
Pile-up at Z-pole		-	No showstopper

• Priority/importance for performance requirements: (A) must-have; (B) plus; (C) not essential

Cost

Cost table template for ECAL

Parameter Name	Barrel	Endcaps (x2)	Sum
Inner Radius for ECAL	1900 mm	350 mm	NA
Length for barrel; Outer radius for endcap	5900 mm	1900 mm + <mark>24X₀</mark>	NA
Longitudinal Depth	24X ₀ (Thickness d	lepends on each option)	NA
Modularity	<pre>#modules in phi, #rings along Z</pre>	Assuming ideal geometry if no design?	NA
Material Volume (m ³)	20.26	7.27	27.5
Readout channels	827180	320040	1,144,428
Power dissipation (kW)	16.5kW	6.4kW	22.9kW
Cost: sensitive materials	1316.9M RMB	472.5M RMB	1789M RMB
Cost: electronics	62.8M RMB	24.3M RMB	87M RMB
			<mark>1876 MRMB</mark>

SiPM + Electronics

- SiPM: 56RMB/piece
- Electronics: 20RMB/ch

BGO:

- BGO: 65RMB/cc (SIC)
 - (R.Y. Zhu 42-50RMB/cc)

Power:

• 20mW/ch(Half of HGCal/ch)

Technical readiness level

- Status and plans of simulation studies and R&D (a table template)
- Person power: Xiao ZHAO, Chaochen Yuan, Han WANG, Liheng Huang, Lianyou Shan, Huaqiao ZHANG, Yunlong ZHANG

Category	Status	Design 1	Other Alternative Design (if any)
Technical Readiness Level	Full Simulation (system level)	V1 Implemented in CEPCSW	
	Full Simulation (module level)	V1 Implemented in CEPCSW	
	Prototyping R&D (common)	L3 Ecal, CEPC	C 4D crystal Ecal
	Prototyping R&D (modules, units)		No BGO module, GEO with Sc. In preparing

1	桶部	单位 (毫米)						
2	内部直径	3800	最大外部直接	4400		长度		5900
3	晶体	BGO (24X0=26.88cm)	市场参考价	格: ¥65.00/	/cc			
4	大小	(8.0-8.1)*10*284	数量	827180=140	02*590	体积	20.26m3	
5	重量	144.5吨	价格	13.169 ∕ 乙				
6	机械设计	纯圆桶						
7	外径面支撑	/悬挂	内径面辅助			轴向20个单	元	
8	竖直组装, ;;	旋转90度后推入						
9	总厚度:	24X0 + 1cm电子学 + 1-	2cm支撑=30)0mm				
10								
11	端盖*2	单位 (毫米)						
12	内部直径	700	外部直径	3800+2*24>	(0	厚度	24X0*2	
13	晶体	BGO (24X0)	市场参考价	<mark>格: ¥65/cc</mark>				
14	大小	8*10*284	数量	317248		体积	7.27 m3	
15	重量	51.8吨	价格	4.725亿				
16	机械设计							
17	内径面支撑	,外表面固定						
18	总厚度:	24X0 + 1cm电子学 + 1-	2cm支撑=30)0mm				
19								
20	电子学	1,147,220=827180+320	040					
21	前端板	1.6mm	母版	1.6mm		间隙	2mm	
22	功耗	22.9kW(20mw/channel)	电子学价格	20/ch				
23	SiPM	56/ch	总价格	87MRMB				
24	散热系统	厚度2mm						

7

3/22/24

桶部机械结构

侯少静

Endcap conceptual design: 机械设计→少静

Crystal: 8*10*284mm Horizontal layers has same point angle Pointing angle defined as angle w.r.t. beam in the horizontal plane: 20 degree

常劲帆

Performance of Energy and 3D positioning resolution

5GeV gamma, phi: 10~350°, theta: 90°

- Z resolution ~ 0.84 mm; Phi resolution ~ 1.9 mm
- R resolution ~ 7.6 mm; Energy resolution as function of energy

- Sample: ZH->2neutrinos + γγ at 240 GeV
- Energy, position reconstruction and separation using simplified reconstruction method described above
- Crystal energy threshold: 2 MeV/50MeV

Separation between two 5 GeV photons

- Two 5 GeV photons, vary distance along phi between them
- Success reconstruction: 2 neutral particles, 3.3GeV<Eγ<6.6GeV for each photon
- Separation and energy regression using end-to-end NN
 - trained with flat distributed photon energy and distances

https://journals.aps.org/prd/pdf /10.1103/PhysRevD.108.052002

,32³³³³³⁴⁰,34³⁵⁰

Separation between γ/π

- 5 GeV $\gamma/10 \text{GeV}~\pi,$ vary distance along phi between them
- Separation use end-to-end NN
- Success reconstruction: 3.3GeV<E_γ<6.6GeV not yet applied
- Different π/γ separation power: pointing angle / magnetic field

π+

π-

γ

https://journals.aps.org/prd/pdf /10.1103/PhysRevD.108.052002

Trained with a sample of 1-10GeV γ, 2-20GeV pi+, distance @calor variated around 20 mm

$PiO \rightarrow 2phton invariant mass$

- End-to-end NN regression is used
 - Trained with di-photon events with flat distributed momentum from x GeV to XX GeV, distant < 3 degree
 - Apply to samples of pi0→di-photon with different pi0 moment

Angles between the 2γ from pi0 450 clust 10² 400 350 ering 👼 300 250 angle 10 200 150 100 50 0 3 Ε_{π0} [GeV] 0 2 5 6

End-to-end NN regression

Event display of shower separation/ID

Two 5 GeV photon, 165 mm distance

5 GeV photon and 10 GeV pi-, 66mm

5 GeV photon and 10 GeV pi-, 195mm

SiPM vs APD

• SiPM

- 60 RMB/piece (From HGCal)
 - 3*3 mm
- 10¹⁰ n_{eq}/cm² (10¹⁴ n_{eq}/cm)
 - R&D at IHEP

- APD
 - 20 RMB/piece (From 高能瑞泰,仿制滨松)
 - 3*3 mm
 - R&D needed?
 - Used on CMS (S8664-55)

Package type	ranface mount type	Peak sensitivity wavelength (typ.)	600 nm
Number of channels		Spectral response range	320 to 1000 nm
Effective photosensitive area / ch	3 x 3 mm	Photosensitivity (typ.)	0.24 A/W
Number of pixels /ch	89984m	Dark current (max.)	50 nA
Pixel size	10 µm	Cutoff frequency (typ.)	40 MHz
Spectral response range	290 to 900 nm	Terminal capacitance (typ.)	80 pF
Peak sensitivity wavelength (typ.)	460 nm	Breakdown voltage (typ.)	400 V
Dark count/ch (typ.)	700 kcps	Temperature coefficient of BV	0.78 V/°C
Terminal capacitance/ch (typ.)	530 pF	Gain (typ.)	50
Gain (typ.)	1.8×105		Typ. Ta=25 °C, unless otherwise noted,
Measurement condition	Ta=25 °C	ivieasurement condition	Photosensitivity: λ=420 nm, M=1

S14160-3010PS

PD

34	Photosensitive area	2.4 × 2.4 mm
35	Number of elements	1c
36	Package	Ceramic
37	Cooling	Non-cooled
38	Reverse voltage (max.)	5 V
39	Spectral response range	340 to 1000 nm
40	Peak sensitivity wavelength (typ.)	720 nm
41	Photosensitivity (typ.)	0.43 A/W
42	Dark current (max.)	5 pA
43	Rise time (typ.)	0.5 µs
44	Terminal capacitance (typ.)	160 pF
45	Noise equivalent power (typ.)	2.1×10-15 W/Hz1/2
46	Measurement condition	Typ. Ta=25 °C, Photosensitivity: λ=720 nm, Dark

S1227-33BR

10

KSPDB0096EB

3/24/24

KAPDB0599EB

Gain, crosstalk probability, photon detection efficiency vs. overvoltage (typical example)

SiPM的暗计数 VS 辐照剂量

Spectral response

- Quantum efficiency vs. wavelength

19

	SiPM (S14160-3010PS)	APD (S8664-55)	PD (S1227-33BR)
价格	中(较高)	中(有不确定性)	低
单光子测量	是	否	否
时间测量	~10ps (lab)	~1ns (CMS)	?
线性范围	差	好	好
抗辐照	中	强	中
是否满足Stereo Ecal要求	是	是	是
刻度	单光子	激光	氙气灯
已有实验		CMS	L3(its PD is not available now)

BGO: 8-10 photon/keV Lower threshold: $2MeV: \rightarrow 20,000$ photons * efficiency

Active Elements:

Key Parameters:

Coverage: $1.5 < |\eta| < 3.0$

~215 tonnes per endcap

Power at end of HL-LHC:

~125 kW per endcap

3/22/24

Full system maintained at -30°C

~620m² Si sensors in ~26000 modules

~6M Si channels, 0.6 or 1.2cm² cell size

~370m² of scintillators in ~3700 boards

~240k scint. channels, 4-30cm² cell size

- Hexagonal modules based on Si sensors in CE-E and high-radiation regions of CE-H
- "Cassettes": multiple modules mounted on cooling plates with electronics and absorbers
- Scintillating tiles with on-tile SiPM readout in low-radiation regions of CE-H

_ Electromagnetic calorimeter (CE-E): Si, Cu & CuW & Pb absorbers, 26 layers, 27.7 X₀ & ~1.5λ Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 21 layers, ~8.5λ

Cost from CMS HGCal (kCHF)

• Electronics: 6M Si + 240k Sc

4.6.1	Front-end System (Silicon sensors)	5,778
4.6.2	Front-end System (Scintillator/SiPM sensors)	872
4.6.3	Front-end System (Common to Silicon and SiPM)	A 16A
4.6.4	Clock and Control	500
1.0.1		500
4.6.5	Power Distribution	4,448
4.6	Electronics and Electrical Systems	15,762
4.7.1	DAQ	2,447
4.7.2	Trigger	3,779
4.7	Backend System (Trigger and DAQ)	6,226
4.8.1	DCS	257
4.8.2	DSS	341
4.8	Slow control	598

SiPM + Sc. (4-30 cm2 cell, 240k ch, 370 m2, X mm thick)

4.5	Scintillator/SiPM Modules	2,945
4.5.5	Scintillator/SiPM Module Production	14
4.5.4	Assembly Centre and Tooling	270
4.5.3	Wrapping (ESR film)	111
4.5.2	Plastic scintillator	832
4.5.1	SiPM - Photosensors	1,718

Si sensors: 620 m2

4.3	Silicon Sensors	21,513
-----	-----------------	--------

item	Power	SiPM	Plasic Sc. Mat.	FE	BE+Slow C.	Si
numbers	40 mW/ch	7.2CHF/ch	0.22CHF/cm2	2.5CHF/ch	1.1CHF/ch	3.5CHF/cm2
remarks	Half? in e+e	3*3 mm2	No wrapping			

L3 BGO calorimeter:

L3: BGO+PD:

- 1200 electron (0.2fC) per MeV shower energy
- Dynamical range: 1MeV to 200 GeV

 $\sigma(E)/E = 3.2 \%/\sqrt{E} \oplus 0.9 \%$

decreased strongly (up to 50%) with the distance from the front face. After coating the crystals with a 40-50 μ m thick layer of high reflectivity white paint, the maximum variations in the collected light flux as a function of the distance from the front face were only about 5%.¹⁰

shape (Figure 4.10) with a front surface of $\simeq 2 \times 2 \, cm^2$, a rear surface of $\simeq 3 \times 3 \, cm^2$, and a depth of about 21.5 radiation lengths (24 cm). To minimize the mechanical stress, each crystal was housed in its own cell of a carbon fiber support structure. The walls between the crystals were about 0.2 mm thick. The dead material of the

Meeting on CEPC Ca walls together with the clearances represented about 2.1% of the solid angle coverage

of the ECAL.

23

 $^{^{10}}$ The variations in the crystal light yield were measured using cosmic muons and were required to be less than 10% for all accepted BGO crystals [109].

CMS PWO calorimeter

- CMS: PWO+APD
 - 30MeV-2TeV

Contribution	Barrel (η = 0)	Endcap $(\eta = 2)$
Total stochastic term	2.7%/√E	5.7%/√E
Total constant term	0.55%	0.55%
Total noise (low luminosity) in E _T	155 MeV	205 MeV
Total noise (high luminosity) in E _T	210 MeV	245 MeV

APD/PD monitors the PWO crystals. APDs Anti-k_T, R = 0.4 ---- Calo CMS PN FE FE |η^{Ref}| < 1.3 -- PF Crystak Simulation (1700/SM) 5 $\pi\pi$ Optical Switch (1/2 SM selection) LSDS Level 1 Level 2 Laser (4)) Fanout 🗲 Fanout The ECAL light monitoring system consists of laser source, optical switch based high-level distribution system 100 200 1000 20 p_{τ}^{Ref} (GeV) and two level fanout system.

Energy resolution

0.2

0