Crystal/glass calorimeter option (electromagnetic sector): input materials

Yong Liu (IHEP) Mar. 22, 2024 CEPC Calorimeter Weekly Meeting

Performance: long-crystal design

ltems	Priority	Results / Status	Remarks
Boson Mass Resolution	А	TBD (ongoing studies)	Required BMR < 4%
Intrinsic EM energy resolution	A	$1.5 - 2\% / \sqrt{E(GeV)}$	Geant4 full simulation + digitisation
Separation power		Results for γ/γ and γ/π ; no results for π/π	gamma/gamma, gamma/hadron, hadron/hadron
Lepton ID in jets		No results	
Timing capability		~1.3ns (MIP); 0.34ns (shower maximum)	DESY Beamtest results for long BGO bars (40/60 cm)
π^0 reconstruction		No results	
Pile-up at Z-pole		No results	

• Priority/importance for performance requirements: (A) must-have; (B) plus; (C) not essential

Performance: short-crystal design

ltems	Priority	Results / Status	Remarks
Boson Mass Resolution	А	3.6-3.7 %	1cm ³ BGO cubes for Higgs to gluon jets
Intrinsic EM energy resolution	A	$1.5 - 2\% / \sqrt{E(GeV)}$	Geant4 full simulation + digitisation
Separation power		Results for γ/γ and γ/π ; no results for π/π	gamma/gamma, gamma/hadron, hadron/hadron
Lepton ID in jets		No results	
Timing capability		TBD	Ongoing studies in simulation and beam tests
π^0 reconstruction		Simulation results	1cm ³ BGO cubes
Pile-up at Z-pole		No results	

Performance: scintillating glass option

ltems	Priority	Results / Status	Remarks
Boson Mass Resolution	А	No results	Studies can be planned (Expect similar performance as crystal cubes)
Intrinsic EM energy resolution	A	$2 - 3\% / \sqrt{E(GeV)}$	Geant4 full simulation + digitisation;
Separation power		No results	Studies can be planned
Lepton ID in jets		No results	
Timing capability		TBD (ongoing studies)	1cm ³ glass cube: 14 ps (MIP), 5-7 ps (shower maximum)**
π^0 reconstruction		No results	Studies can be planned
Pile-up at Z-pole		No results	

* Glass is a promising option in the form factor of cubes/short bars, in terms of technical feasibility and cost effectiveness ** Based on a reference on 2016 CERN beamtest results (Crystal Clear Collaboration)

Cost: long crystal design

Parameter Name	Barrel	Endcaps (x2)	Sum	
Inner Radius for ECAL	1900 mm	350 mm	NA	
Length for barrel; Outer radius for endcap	5900 mm	1900 mm + <mark>24X₀</mark> (<i>2168.3mm for BGO</i>)	NA	* Noto: ECAL onderne will
Longitudinal Depth	24X ₀ (2	68.3 mm BGO)	NA	encompass barrel
Modularity	28 modules in phi, 15 rings along Z	No concrete design (ideal cylinder for now)	NA	
Material Volume (m ³)	20.2	7.8	28.0	(Preliminary) Key components
Readout channels	0.92 M	0.36 M	1.3 M	and materials SiPM (3x3mm ²): 56 CNY / nc
Power dissipation	18.4 kW	7.2 kW	25.6 kW	FE electronics: 20 CNY / ch
Cost: sensitive materials	1.3 billion CNY	0.5 billion CNY	1.8 billion CNY	Crystal: 65 CNY / cm ³ (quote
Cost: SiPMs + Front-End electronics	70 million CNY	27.4 million CNY	97.4 million CNY	from SIC, including 13% VAT) Power: <mark>~20 mW / ch</mark>

(References also attached)

Cost: short crystal design (one scenario)

Parameter Name	Barrel	Endcaps (x2)	Sum
Inner Radius for ECAL	1900 mm	350 mm	NA
Length for barrel; Outer radius for endcap	5900 mm	1900 mm + <mark>24X₀</mark> (<i>2168.3mm for BGO</i>)	NA
Longitudinal Depth	24X ₀ (20	68.3 mm BGO)	NA
Modularity	28 modules in phi, 15 rings along Z	No concrete design (ideal cylinder for now)	NA
Material Volume (m ³)	20.2	7.8	28.0
Readout channels	4.5 M*	1.7 M*	6.2 M*
Power dissipation	90 kW	34 kW	124 kW
Cost: sensitive materials	1.3 billion CNY	0.5 billion CNY	1.8 billion CNY
Cost: SiPMs + Front-End electronics	342M CNY	130M CNY	472M CNY

(Preliminary) Key components and materials SiPM (3x3mm²): 56 CNY / pc FE electronics: 20 CNY / ch Crystal: 65 CNY / cm³ (quote from SIC, including 13% VAT) Power: ~20 mW / ch

* Dependent on the longitudinal granularity: hereby assuming 6 longitudinal layers

(References also attached)

Cost: scintillating glass option (one scenario)

Parameter Name	Barrel	Endcaps (x2)	Sum
Inner Radius for ECAL	1900 mm	350 mm	NA
Length for barrel; Outer radius for endcap	5900 mm	1900 mm + <mark>24X₀</mark> (2318 mm for glass)	NA
Longitudinal Depth	$24X_0$) (41.8 cm)	NA
Modularity	28 modules in phi, 15 rings along Z	No concrete design (ideal cylinder for now)	NA
Material Volume (m ³)	31.5	12.2	43.7 m ³
Readout channels	4.5 M*	1.7 M*	6.2 M*
Power dissipation	90 kW	34 kW	124 kW
Cost: sensitive materials	567 million CNY	220 million CNY	787 M CNY
Cost: SiPMs + Front-End electronics	342M CNY	130M CNY	472M CNY

Scintillating glass $\rho = 6 \text{ g/cc}$ $X_0 = 1.74 \text{ cm}$ $\lambda_I = 22.44 \text{ cm}$

(Preliminary) Key components and materials SiPM (3x3mm²): 56 CNY / pc FE electronics: 20 CNY / ch Glass: 18 CNY/ cm³ (1/3 BGO) Power: ~20 mW / ch

* Dependent on the longitudinal granularity: hereby assuming 6 longitudinal layers

Technical status: simulation and R&D

- Status and plans of simulation studies and R&D: details in the table below
- Person power: IHEP (Fangyi Guo, Yong Liu, Baohua Qi, Weizheng Song, Shengsen Sun, Yang Zhang), SIC-CAS (Junfeng Chen), SJTU/TDLI (Jiyuan Chen, Haijun Yang, Zhiyu Zhao)

Category	Status Long crystal bars		Short crystal bars	
	Full SimulationCEPCSW: barrel geometry;(system level)reconstruction (ongoing developments)		CEPCsoft: full geometry, Arbor	
	Full Simulation (module level)	Geant4 simulation, digitisation (module 40x40x28 cm ³)	Geant4 simulation, digitisation (flexible module dimensions)	
Technical Readiness Level	Prototyping R&D (common)	High pixel density SiPMs (6/10 um pixel pitch), front-end electronics (ASICs), timing resolution		
	Prototyping R&D (modules, units)	Crystal module (12x12x24 cm ³); long crystal bars (40/60 cm)	No module developments; Short bars (2/4cm)	

• Scintillating glass option: EM performance studies with Geant4 simulation + digitisation (Baohua Qi)

References for calorimeter cost estimates

Yong Liu (IHEP) March 8, 2024

Aim: to collect references including TDRs and other project documents to provide solid inputs to the cost estimates of CEPC calorimeters for the *CEPC Reference Detector TDR*

ILD-ECAL options

ECAL major components

Total ECAL cost

Table III-7.3
Expected prices for
major components in
the calorimeters, see
text for further com-
ments. Except where
explicitly stated all cur-
rent costs are based on
actual costs of compo-
nents procured for the
prototypes.

Material	Cost [ILCU]	System	Comment
Tungsten	123/kg	SiECAL, ScECAL, AHCAL, FCAL	quote from manufac- turer (130 EUR/kg)
Stainless Steel	5/kg	AHCAL, SDHCAL	processing costs to be added (1-4 EUR/ kg)
Si sensors	$3/cm^2$	SiECAL	based on extrapolation of current quotation of 5 EUR/ ${\rm cm}^2$
SiPM	1/pc	ScECAL, AHCAL, muon	based on manufacturer extrapolation, current price 7-10 EUR/piece
ASIC	0.22- 0.25/ch	SiECAL, ScECAL, AHCAL	current price 0.5 EUR/ch
ASIC	0.1/ch	SDHCAL	current price of 0.18 EUR/ch
PCB	$7900/m^2$	SiECAL	prototype
PCB	$2600/m^2$	ScECAL	extrapolated from prototype price of $10800/m^2$
PCB	$1800/m^2$	SDHCAL, AHCAL	for AHCAL extrapolated from prototype price of $10800/m^2$

Table III-7.4 Cost table of the electromagnetic calorimeter.

SiECAL			ScECAL
ltem	Cost [kILCU]	ltem	Cost [kILCU]
Tungsten Carbon fiber struc-	16310 2130	Tungsten + carbon parts	18500
ture		Module realisation	1700
Silicon sensors	75000	Scintillators	1030
Readout ASIC	16500	Photo Detectors	10200
Readout Board	21000	Readout ASIC	2500
Materials	1300	Readout Board	25000
Cables, connectors	2220	Readout System	6200
Tooling	9300	Cables, connectors	1000
Assembly	13500	Power supplies	4100
Integration	500	Tooling	3800
Sum SiECAL 15	57760	Sum ScECAL	74000

HCAL options: AHCAL and SDHCAL

Table III-7.5Cost breakdown forthe two HCAL optionsAHCAL and SDHCAL.

AHCAL		SDHCAL	
	Cost		Cost
ltem	[kILCU]	ltem	[kILCU]
Absorber	5200	Absorber	6500
Module production	3400	Module mechanics	2300
6			
Cassettes	2100		
Scintillators	1500	RPC incl cassettes	6800
Reflective Foil	1200		
Photo sensors	7700		
ASIC	1800	ASIC	6600
Readout Board	13200	Readout Board	13000
Readout	2300	Readout	2000
Cabling, connections	1000	Elec Integration	1600
HV/ LV supplies	1000	Services incl. HV/ LV	200
Cooling system	1000	Cooling System	1000
		Gas System	900
Tooling, testing	500	Testing	200
Assembly, installation	2800	Assembly, tooling	3900
DAQ	200		incl.
Sum AHCAL	44900	Sum SDHCAL	44800

HCAL options: AHCAL and SDHCAL

Table III-7.6 Cost table of the coil and the iron yoke.

	Cost		Cost
ltem	[kILCU]	ltem	[kILCU]
Coil		Yoke	
Conductor and winding	12900	Steel, including machin- ing	80400
Internal Cryogenics	1000	Support	1700
Suspension system	560	Moving System	3500
tooling, assembly	10000	Assembly	6700
Qualification, testing	1100	Survey	500
Ancillaries			
Cryogenics, vacuum	6800	Integration	933
Electrical installation	1700	Field Mapping	560
Control and Safety system	350	Engineering	2200
Sum	131000		

Table III-7.7 Summary table of the cost estimate of the ILD detector. Depending on the options used the cost range is between 336 Mio ILCU and 421 Mio ILCU.

System	Option	Cost [MILCU]	Mean Cost [MILCU]
Vertex			3.4
Silicon tracking	inner	2.3	2.3
Silicon tracking	outer	21.0	21.0
TPC		35.9	35.9
ECAL			116.9
	SiECAL	157.7	
	ScECAL	74.0	
HCAL			44.9
	AHCAL	44.9	
	SDHCAL	44.8	
FCAL		8.1	8.1
Muon		6.5	6.5
Coil, incl anciliaries		38.0	38.0
Yoke		95.0	95.0
Beamtube		0.5	0.5
Global DAQ		1.1	1.1
Integration		1.5	1.5
Global Transportation		12.0	12.0
Sum ILD			391.8

ILD sub-system: cost contribution percentages

CMS PWO crystal calorimeter

CMS The Electromagnetic Calorimeter Technical Design Report (CERN/LHCC 97–33, CMS TDR 4)

	Barrel	Cost (kCHF)	Funds (kCHF)	Institute
3.1.1	Crystals	22 191	22 200	ETHZ, CERN, ROME, IN2P3
	Crystals & Tools	19 536		ETHZ, CERN
	Acceptance & Assembly	2 155		CERN, ROME, IN2P3, ETHZ
	Manpower Acc & Ass	500		CERN, ROME
3.1.2	Electronics	22 308	22 300	ETHZ, PRINCETON, IN2P3, PSI, NEU, CERN, ROME, MINN., SACLAY, CYPRUS, CROATIA
	APD, Capsule & Test Equipment	6 845		PSI, NEU, MINN., IN2P3, ETHZ, CYPRUS
	Front End Readout	7 940		ETHZ, PRINCETON, IN2P3
	Upperlevel Readout	5 395		ETHZ, CERN, IN2P3
	Power Supplies, Services & Controls	2 128		ROME, SACLAY, CROATIA, ETHZ

3.1.3	Mechanical Structure	8 313	8 300	ETHZ, IN2P3, ROME, CERN
	Tooling	9 72		ETHZ, CERN
	Submodule	3 255		IN2P3, ETHZ
	Module	3 118		ETHZ, ROME
	Supermodule	968		CERN, ROME

3.1.4	Assembly & Installation	5 700	5 700	ETHZ, CERN, SACLAY, ROME
	Tools & Platforms	2 800		ETHZ, CERN
	Cooling System	500		CERN
	Manpower	2 400		ETHZ, CERN, SACLAY, ROME

3.1.5	Monitoring	1 661	1 670	SACLAY, CALTECH
	Light Injection	543		CALTECH
	Light Distribution & Control	1 118		SACLAY
	Total	60 173		

	Endcap	Cost (kCHF)	Funds (kCHF)	Institute
3.2.1	Crystals	7 700	7 700	ETHZ, CERN, UK
	Crystals & Tools	7 200		ETHZ, CERN
	Acceptance & Assembly	500		UK, CERN, ETHZ
3.2.2	Electronics	6 900	6 900	ETHZ, UK, RDMS
	VPT & Test Equipment	2 000		UK, RDMS, ETHZ
	Front-End Readout	2 400		ETHZ
	Upperlevel Readout	1 800		ETHZ
	Power Supplies, Services & Controls	700		UK, ETHZ
2228	Mash Stunstung 9	2 500	2 500	LIZ - DDMC
3.2.4	Assembly	2 300	2 300	CK + KDM3
3.2.5	Monitoring	500	500	SACLAY
				1
3.2.6	Preshower	5 400	5 400	CERN, GREECE, RDMS, INDIA
	Total	23 000		

Table 1.2: ECAL design parameters

Parameter	Barrel	Endcaps	
Pseudorapidity coverage ECAL envelope: r _{inner} , r _{outer} [mm] ECAL envelope: z _{inner} z _{outer} [mm]	η < 1.48 1238, 1750 0, ±3045	$\begin{array}{c} 1.48 < \eta < 3.0 \\ 316, 1711 \\ \pm 3170, \pm 3900 \end{array}$	
Granularity: $\Delta \eta \times \Delta \phi$ Crystal dimension [mm ³] Depth in X ₀	$\begin{array}{c} 0.0175 \times 0.0175 \\ \text{typical: } 21.8 \times 21.8 \times 230 \\ 25.8 \end{array}$	$\begin{array}{c} 0.0175 \times 0.0175 \ \text{to} \ 0.05 \times 0.05 \\ 24.7 \times 24.7 \times 220 \\ 24.7 \end{array}$	
No. of crystals Total crystal volume [m ³] Total crystal weight [t]	61 200 8.14 67.4	21 528 3.04 25.2	
Modularity 1 supermodule/Dee 1 supercrystal unit	36 supermodules 1700 crystals (20 in φ, 85 in η) –	4 Dees 5382 crystals 36 crystals	

A 3-D view of the barrel and endcap electromagnetic calorimeter is shown in Fig. 1.5.

Fig. 1.5: A 3-D view of the electromagnetic calorimeter.

Barrel

- Funds: 22M CHF
- Volume: 8.14 m³
- Unit cost: 2.7CHF/cc

Endcaps

- Funds: 7.7M CHF
- Volume: 3.04 m³
- Unit cost: 2.5CHF/cc

Extra Slides

Designs and EM resolution

Geant4 full simulation + digitisation

Light Yield vs Stochastic Term

Key Parameters	Value
MIP light yield	~200 p.e./MIP
Dynamic range	$1 - 10^5$ p.e.
Energy threshold	~0.1 MIP
Timing resolution	1ns (→100 ps?)
Response non-uniformity	<1%
Temperature stability	Stable at $\sim 0.05 \ ^\circ C$
Gap tolerance	~100 µm

Higgs physics performance

Baohua Qi, Dan Yu (IHEP); Zhiyu Zhao (SJTU)

16

Flavor physics performance

- Crystal ECAL
 - Higher sensitivity to photons and much better EM resolution
- Potentials for π^0/γ in flavor physics

<u>B0 to pipi @CEPC(CEPC Flavor Physics/New Physics/Detector</u> <u>Technology Workshop, Fudan, 2023), Yuexin Wang</u>

ECAL Resolution	σ_{m_B} (MeV)	$B^0 \to \pi^0 \pi^0$	$B^0_s \to \pi^0 \pi^0$
$17\%/\sqrt{E}\oplus 1\%$	170	$\sim 1.2\%$	~ 21%
$3\%/\sqrt{E}\oplus 0.3\%$	30	$\sim 0.4\%$	$\sim 4\%$

Crystal ECAL: prototyping and beamtests

Expected performance at CERN PS-T9

- Timing resolution (MIP level): ~1.8 ns (two ends) \rightarrow ~1.3ns (single end)
- Timing resolution (upstream crystals as pre-shower): ~0.34 ns (single end for large signals)