

55nm单片HVCMOS探测器原型芯片

陆卫国 (luwg@ihep.ac.cn) On behalf of the CEPC Inner Tracker group

NED2024 青岛,7月17日

- 研究背景
 - CEPC内层径迹探测器
 - 硅径迹探测器现状和趋势
- COFFEE芯片研发
 - COFFEE1和COFFEE2的设计
 - 测试准备和部分结果
- 总结与展望

CEPC内层硅径迹探测器

- CEPC内层硅径迹探测主要需求
 - 面积:>~70m²
 - 位置分辨: <~10µm
 - 功耗: <200mW/cm²
 - 物质量: <1%?
 - 抗辐照: NIEL > ~10¹⁴n_{eq}/cm²?

$$\sigma_{1/p_{\rm T}} = a \oplus \frac{b}{p \sin^{3/2} \theta} [\text{GeV}^{-1}]$$
$$a \sim 2 \times 10^{-5} \text{GeV}^{-1}$$
$$b \sim 1 \times 10^{-3}$$

CEPC:正负电子对撞机,Higgs工厂

2024/7/17

加速器粒子物理实验中的硅探测器

Hybrid to Monolithic

混合式向单片式发展 • NMOS PMOS -- 混合式:目前运行系统的主流探测器类型, 传感器和读出电路可 PWELL NWELL DEEP PWELL 复杂的组装 单片式:传感器和读出电路集成到同一硅片上,低组装成本,低 P" EPITAXIAL LAYER P⁺ SUBSTRATE front-end chip HV-MAPS p-well Deep n-well pixel detector \subset particle Depleted zone N. Wermers/Univ. of Bonn track

小电极:更小的收集极电容, 低噪声,低功耗

NED2024

大电极:更快的电荷收集, 更好的抗辐照性能

2024/7/17

HVCMOS芯片现状

Chip	Pixel size [µm²]	Array size	Noise [e-]	Power density [mW/cm ²]	Fluence [n _{eq} /cm²]	
ATLASPix (AMS/TSI 180 nm)						
ATLASPix1	60 × 50	56 × 320	~200	170	1 × 10 ¹⁵	
ATLASPix3	50 × 150	372 × 132	~60	~150	1.5 × 10 ¹⁵	
MuPix10	80 × 80	256 × 250	75	190		
LF-Monopix (LFoundry 150 nm)						
LF-Monopix1	50 × 250	129 × 36	~200	~288	10 ¹⁵	
LF-Monopix2	50 × 150	340 × 56	~100	~400		
RD50 (LFoundry 150 nm)						
RD50-MPW1	50 × 50	40 × 78			2 × 10 ¹⁵	
RD50-MPW2	60 × 60	8 × 8	~50		2 × 10 ¹⁵	

- 主流工艺180nm 和150nm
- 性能和功耗受限 于工艺
- NIEL > $\sim 10^{15} n_{eq}/cm^2$

* An incomplete compilation of HVCMOS sensors

from周扬

55nm工艺节点

- 更好的性能表现
 - 更高的集成密度
 - 相同的面积可以集成更多的功能电路
 - 更低的功耗
 - 更快的速度
- 工艺可持续
 - 半导体制程的发展趋势
 - 高能物理实验5-10年的研发周期
 - 批量生产支持
- 性价比
 - 国外已经开始28nm的研发,国内 基本130nm以上
 - 成本和性能上的折衷

P. Moreira @ CEPC workshop, Oct 2023

COFFEE系列芯片研发

	COFFEE1	COFFEE2	COFFEE3
			?
计划 2022.3	2022.10	2023.8	计划 2024.10
	时间	轴	
 55nm HV-CMOS工艺上的第一次设计尝试; 因当年半导体行业产能问题,流片被迫取消 	 55nm Low-leakage 工 艺; 第一版成功投片的设计; 特殊的DNW规则,验证 信号收集原理; 	 55nm HV-CMOS 工艺; 高阻衬底: 1k Ω·cm; 工艺摸索; 传感器特性研究; 像素内电子学验证; 	 55nm HV-CMOS 工艺; 高阻衬底: 1k or 2k Ω·cm 设计方案和功能验证; <l< td=""></l<>

FIFTY-FIVE NM PROCESS

NED2024

COFFEE1

- MPW in 55nm Low Leakage process
- 非高阻衬底
- 具有深N阱结构(非常规)
- Diode阵列
- 部分像素集成放大器

工艺剖面示意图

整体版图:3×2mm²。2022年10月提交

芯片实物:2023年4月收到,尺寸×0.9

COFFEE1 : diodes

- 12种不同的传感器尺寸设计
 - 两种像素尺寸
 - 50µm×150µm
 - 25µm×150µm
 - 像素间是否有P stop
 - DNW间距:5µm,10µm,15µm
 - 不同的连接方式
- 每种设计对应3×4的设计用于电 荷共享效应研究
- 像素内填充了Pwell,用于研究有 源情况下的收集极电容

Pixel size:25x150um

COFFEE1:读出电路

- 信号收集极采用有源电阻偏置,AC耦合到 CSA
- 包含电荷注入测试端
- 电荷灵敏前放
 - 折叠共源共栅结构
 - 双电源
 - PMOS输入管
 - 恒流源做反馈电阻
- 源极跟随驱动模拟信号输出
- 6路接sensor,1路独立CSA

COFFEE1测试

- IV测试
 - 击穿电压:~-8V
 - 漏电流:~10pA
- CV测试
 - 收集端等效电容 (25µm×150µm):~150-200fF

NED20<u>24</u>

COFFEE1激光测试

• 650nm激光

Laser

DUT

Focuser

- 清晰的信号响应
 - 对应于~2400e-

DAQ

Charge Signal

项治宇,徐子骏,李一鸣

2024/7/17

Trigger 2

Trigger 1

HV

Voltage

Source

Wave Generator

COFFEE2

- 55nm HVCMOS process
- 高阻衬底:1kΩcm
- 三阱工艺 : no deep Pwell
- 8层普通金属+2层顶层金属
- 无标准IO库

COFFEE2 保护环和像素结构示意图(左),与COFFEE1使用的工艺示意图对比(右)

整体版图: 4×3mm 2023年8月提交

2024/7/17

COFFEE2设计

- 设计目标
 - 工艺摸索
 - 验证传感器结构和信号收集
 - 与电路集成的探索
- 设计
 - 区域1: 纯diode阵列, 验证6种不同的结构
 - 区域2: 32×20的像素的阵列,包 含6种信号收集极结构和3中像素 内电路结构
 - 区域3:26×26规模的像素阵列以及外围数字处理和读出模块

周扬,赵梅,谢坤妤,李乐怡,陈卓俊, Ivan,张慧,董若石

COFFEE2 : diode

- 区域一6种不同的电荷 收集diode设计
- TCAD仿真
 - 3×3像素阵列
 - 实际尺寸(×0.9)
 - 芯片厚度500µm
 - 工艺掺杂按照经验值设 定
- 初步仿真结果
 - 击穿电压:~58V
 - 漏电路:~10pA
 - 单个diode电容: ~30fF (-50V)
 - 耗尽深度:~50µm

COFFEE2 diode测试

- 初步测试结果 •
 - 击穿电压:~70V
 - 漏电流:~10pA
 - 单个diode电容
 - ~30-40fF(50V到70V偏置)

NED2024

360

340

320

300

280

260

1 single pixel

PAD I:

60*20 um² × 1

 $C \sim (40 \times 1 + 200) \, \text{fF}$

Capacitance [fF]

COFFEE2 电路设计

- 区域二目标
 - 像素内数字电路对电荷收集的影响
 - 关键模块的设计积累
- 三种像素内电路结构
 - 1, 仅CSA模拟读出
 - 2, CSA+NMOS比较器
 - 3, CSA+CMOS比较器
 - 行列选通控制读出地址

像素版图:设计尺寸 80 µm×40 µm;制造尺寸72µm×36 µm

周扬,赵梅,谢坤妤,李乐怡,陈卓俊

COFFEE2电路测试准备

- 测试系统
 - 芯片载板+CaR接口板 +KC705+PC
 - I2C总线控制CaR板为芯片提 供可调电源、偏置、刻度注入 和控制信号

- 面向未来硅径迹探测需求,开展了基于HVCMOS 55nm的单片 式像素型芯片研发
- COFFEE1芯片基于LL工艺,开启了设计和测试的积累
- COFFEE2基于高阻衬底HVCMOS工艺
 - Diode设计和测试取得了初步结果
 - 电路测试正在开展
- 基于测试结果和更完善的仿真,计划COFFEE3的提交

