Study of $\eta \rightarrow \mu^+ \mu^-$ and $\eta \rightarrow e^+ e^-$

Ying Yue

2024.3.19

OUTLINE

- 1. Motivation
- 2. Data Set
- 3. Initial Event selection
- 4. Study of $\eta \rightarrow \mu^+ \mu^-$
- 5. Search for $\eta \rightarrow e^+e^-$
- 6.Systematic Uncertainty

7.Summary

Motivation

- η meson plays an important role in low-energy of QCD.
- Decays of pseudoscalar mesons to lepton pairs $\eta \rightarrow l^+ l^- (l = e, \mu)$ are rare.
- In the standard model, the decay of $\eta \to l^+ l^-$ proceed through the two-photon intermediate state.
- Using 10 billion J/ ψ events collected from BESIII, there are two decay channels can provide abundant η samples. $J/\psi \rightarrow \gamma \eta$ (10M) $J/\psi \rightarrow \gamma \eta', \eta' \rightarrow \pi^+\pi^-\eta$ (20M)

• Theoretical result and PDG value:

D(m > l+l-)	Тнеотен	DDC volue	
$D(\Pi \to l \ l)$	Hidden gauge	VMD	PDG value
$B(\eta \rightarrow e^+e^-)$	$(4.68 \pm 0.01) \times 10^{-9}$	$(4.65 \pm 0.01) \times 10^{-9}$	$ < 7 \times 10^{-7} (CL = 90\%)$
$B(\eta \rightarrow \mu^+ \mu^-)$	$(4.87 \pm 0.02) \times 10^{-6}$	$(4.96 \pm 0.06) \times 10^{-6}$	$(5.8 \pm 0.8) \times 10^{-6}$

Theoretical result

Data Set

- Boss version : 7.0.8
- Data :10 Billion J/ψ events
- MC Sample:

	Decay mode	Generation		
Signal	$J/\psi \to \gamma \eta', \eta' \to \pi^+ \pi^- \eta, \eta \to \mu^+ \mu^-$	HELAMP 1.0 0.0 1.0 0.0 , DIY , PHSP		
Signal	$J/\psi \rightarrow \gamma \eta', \eta' \rightarrow \pi^+ \pi^- \eta, \eta \rightarrow e^+ e^-$	HELAMP 1.0 0.0 1.0 0.0 , DIY , PHSP		
	$J/\psi \rightarrow \gamma \eta', \eta' \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	HELAMP 1.0 0.0 1.0 0.0 , DIY		
	$J/\psi \rightarrow \gamma \eta', \eta' \rightarrow \pi^+ \pi^- \pi^+ \pi^-$	HELAMP 1.0 0.0 1.0 0.0 , DIY		
Background	$J/\psi o \gamma \pi^+ \pi^- \pi^+ \pi^-$	mPHSP		
	$J/\psi ightarrow \gamma \eta', \eta' ightarrow \pi^+ \pi^- e^+ e^-$	HELAMP 1.0 0.0 1.0 0.0 , DIY		
	$J/\psi \rightarrow \gamma \eta', \eta' \rightarrow \pi^+ \pi^- \eta, \eta \rightarrow \gamma e^+ e^-$	HELAMP 1.0 0.0 1.0 0.0 , DIY , DIY		

Initial event selection

Good Charged Tracks

- ✓ $|R_Z| \le 10 \ cm$, $|R_{xy}| \le 1 \ cm$
- $\checkmark |\cos \theta| \le 0.93$
- ✓ $N_{good} = 4$, $N_P = 2$, $N_m = 2$

Good Photons

- ✓ $E_{\gamma} \ge 25 MeV$, $|\cos \theta| < 0.8 (Barrel)$
- ✓ $E_{\gamma} > 50 MeV$, 0.86 < $|\cos \theta|$ < 0.92 (*Endcap*)
- ✓ $0 \le TDC_{EMC} \le 14 (\times 50ns)$

 $\checkmark N_{\gamma} \geq 1$

Particle identification (PID) && Kinematic Fit

- ✓ PID: TOF + dE/dx;
- ✓ Obtain the χ^2_{PID} value for each assumed combination of $\pi^+, \pi^-, \mu^+, \mu^- or \pi^+, \pi^-, e^+, e^-$.
- ✓ 4C kinematic fit for π^+, π^-, l^+, l^-
- ✓ Select the best combination with the minimum value of $x_{4c+pid}^2 = x_{4c}^2 + \sum_{i=1}^4 x_{pid}^2$ (*i*) from the combinations.

Study of $\eta \rightarrow \mu^+ \mu^-$

Further Events selection

Background Study

rowNo	decay tree	decay final state	iDcyTr	nEtr	nCEtr
1	$J/\psi \to \pi^+ \pi^+ \pi^- \pi^- \gamma^F$	$\pi^+\pi^+\pi^-\pi^-\gamma^F$	2	63	63
2	$J/\psi ightarrow f_0'\gamma, f_0' ightarrow \pi^+\pi^+\pi^-\pi^-$	$\pi^+\pi^+\pi^-\pi^-\gamma$	3	56	119
3	$J/\psi \to \pi^0 \pi^+ \pi^+ \pi^- \pi^-$	$\pi^0\pi^+\pi^+\pi^-\pi^-$	0	28	147
4	$J/\psi \rightarrow K^0_S K^0_S \gamma, K^0_S \rightarrow \pi^+\pi^-, K^0_S \rightarrow \pi^+\pi^-$	$\pi^+\pi^+\pi^-\pi^-\gamma$	8	18	165
5	$J/\psi ightarrow \eta'\gamma, \eta' ightarrow \pi^+\pi^-\eta, \eta ightarrow \mu^+\mu^-\gamma^F$	$\mu^+\mu^-\pi^+\pi^-\gamma^F\gamma$	1	7	172
6	$J/\psi \to f_2(1270)\gamma, f_2(1270) \to \pi^+\pi^+\pi^-\pi^-$	$\pi^+\pi^+\pi^-\pi^-\gamma$	5	5	177
7	$J/\psi ightarrow f_0'\gamma, f_0' ightarrow \pi^+\pi^+\pi^-\pi^-\gamma^f$	$\pi^+\pi^+\pi^-\pi^-\gamma\gamma^f$	6	1	178
8	$J/\psi \rightarrow \eta'\gamma, \eta' \rightarrow \pi^+\pi^-\eta, \eta \rightarrow e^+e^-\gamma^F$	$e^+e^-\pi^+\pi^-\gamma^F\gamma$	7	1	179
9	$J/\psi ightarrow \eta'\gamma, \eta' ightarrow \pi^+\pi^-\eta, \eta ightarrow \pi^+\pi^-\gamma^F$	$\pi^+\pi^+\pi^-\pi^-\gamma^F\gamma$	4	1	180
10	$J/\psi \to \pi^+ \rho(3S)^-, \rho(3S)^- \to \pi^+ \pi^- \rho^-, \rho^- \to \pi^0 \pi^-$	$\pi^0\pi^+\pi^+\pi^-\pi^-$	9	1	181
11	$J/\psi \to K^0_S K^0_S \gamma, K^0_S \to \pi^+\pi^-, K^0_S \to \pi^+\pi^-\gamma^f$	$\pi^+\pi^+\pi^-\pi^-\gamma\gamma^f$	10	1	182

Background and Normalized Event Number

Decay mode	Normalized Event Number
$J/\psi \to \gamma \eta', \eta' \to \pi^+ \pi^- \pi^+ \pi^-$	0.774 ± 0.08
$J/\psi \to \gamma \eta', \eta' \to \pi^+ \pi^- \mu^+ \mu^-$	15.0±3.01
$J/\psi o \gamma \pi^+ \pi^- \pi^+ \pi^-$	free

Cut Flow and Detection Efficiency

Cut	Efficiency
$x_{PID+4C}^{2}(\pi^{+}\pi^{-}\mu^{+}\mu^{-}) < 40$	39.21%
$ \begin{array}{c} x_{PID+4C}^{2}(\pi^{+}\pi^{-}\mu^{+}\mu^{-}) \\ < x_{PID+4C}^{2}(\pi^{+}\pi^{-}\pi^{+}\pi^{-}) \end{array} $	36.65%
$0.945 < M_{\pi^+\pi^-\mu^+\mu^-} < 0.97$	34.18%
$0.45 < M_{\mu^+\mu^-} < 0.6$	29.19%

Data/MC Comparison

• The distribution of $M2_{\mu}$, $M_{2\pi 2\mu}$, $M_{2\pi}$

Data/MC Comparison

• The distribution of P and P_t for μ^+ , μ^- , π^+ , π^- :

Fit to $\mu^+\mu^-$ mass spectrum

> PDF : Signal MC shape +Background MC shape

- $> N_{sig} = 37.9 \pm 6.7$
- Detection Efficiency= (29.19+0.07)%
- > Branching fraction:

$$\mathcal{B}(\eta \to \mu^+ \mu^-) = \frac{N_{sig}}{N_{J/\psi} \cdot \mathcal{B}(J/\Psi \to \gamma \eta') \cdot \mathcal{B}(\eta' \to \pi^+ \pi^- \eta) \cdot \varepsilon}$$

 $=\frac{37.9\pm6.7}{10087\times10^6\times5.25\times10^{-3}\times42.5\times10^{-2}\times0.2919}$

 $= (5.78 \pm 1.02) \times 10^{-6}$

 \succ Significance: 9.8 δ

Search for $\eta \rightarrow e^+e^-$

Background Study

rowNo	decay tree	decay final state	iDcyTr	nEtr	nCEtr
1	$J/\psi ightarrow \eta'\gamma, \eta' ightarrow e^+e^-\pi^+\pi^-$	$e^+e^-\pi^+\pi^-\gamma$	0	2141	2141
2	$J/\psi \rightarrow \eta' \gamma, \eta' \rightarrow \pi^+ \pi^- \eta, \eta \rightarrow e^+ e^- \gamma^F$	$e^+e^-\pi^+\pi^-\gamma^F\gamma$	1	82	2223
3	$J/\psi \to \eta'\gamma, \eta' \to e^+e^-\pi^+\pi^-\gamma^f$	$e^+e^-\pi^+\pi^-\gamma\gamma^f$	2	70	2293
4	$J/\psi \rightarrow \eta'\gamma, \eta' \rightarrow \pi^+\pi^-\eta, \eta \rightarrow e^+e^-\gamma^F\gamma^f$	$e^+e^-\pi^+\pi^-\gamma^F\gamma\gamma^f$	3	4	2297
5	$J/\psi \to K^0_S K^0_S \gamma, K^0_S \to \pi^+\pi^-, K^0_S \to \pi^+\pi^-$	$\pi^+\pi^+\pi^-\pi^-\gamma$	4	1	2298
6	$J/\psi \to \pi^+\pi^+\pi^-\pi^-\gamma^F$	$\pi^+\pi^+\pi^-\pi^-\gamma^F$	5	1	2299
7	$J/\psi \to \pi^0 \rho^0, \rho^0 \to \pi^+ \pi^- \gamma^F$	$\pi^0 \pi^+ \pi^- \gamma^F$	6	1	2300
8	$J/\psi ightarrow f_0' \gamma, f_0' ightarrow \pi^+ \pi^+ \pi^- \pi^-$	$\pi^+\pi^+\pi^-\pi^-\gamma$	7	1	2301
9	$J/\psi \to \pi^0 \pi^+ \pi^+ \pi^- \pi^-$	$\pi^0\pi^+\pi^+\pi^-\pi^-$	8	1	2302

Background and Normalized Event Number

Deserves	Normalized Event Number			
Decay mode	$0.5 < M_{(e^+e^-)} < 0.6$	$0.536 < M_{(e^+e^-)} < 0.558$		
$\eta \rightarrow \gamma e^+ e^-$	0.932	0.776		
$\eta' \rightarrow \pi^+ \pi^- \mathrm{e}^+ e^-$	4.23	0.897		

• Cut Flow and Detection Efficiency

Cut	Efficiency
$x_{PID+4C}^2(\pi^+\pi^-e^+e_{-}) < 50$	34.56%
$0.945 < M_{\pi^+\pi^-e^+e^-} < 0.97$	29.06%
$0.536 < M_{e^+e^-} < 0.558$	28.7%

Double Gaussian Function

 $\mu = \mu_1 f + \mu_2 (1 - f)$ $\sigma^2 = \sigma_1^2 f + \sigma_2^2 (1 - f) + (\mu_1 - \mu_2)^2 f (1 - f)$

□ The signal window is determined by $[\mu - 3\sigma, \mu + 3\sigma]$, which is [0.536, 0.558].

 $> N_{Data} = 2, N_{bkg} = 1.67$

> Detection Efficiency = (28.7+0.07)%

Systematic Uncertainty

Dumber of J/ Ψ events: 0.44% is taken as uncertainty.

 $\square B(J/\Psi \rightarrow \gamma \eta')$: 1.33% is taken as uncertainty, by PDG.

 $\square B(\eta' \rightarrow \pi^+\pi^-\eta)$: 1.18% is taken as uncertainty, by PDG.

■Photon detection: The systematic uncertainty is studied using the control sample of $e^+e^- \rightarrow \gamma \mu^+\mu^-$ the result shows that the difference between data and MC is about 0.5%, then we take 0.5% as the systematic uncertainty for each photon.

D MDC Tracking

• Using the control sample of $J/\psi \to \pi^+\pi^-\pi^0$ to study the tracking of π . Since there is nonspecific samples to study μ at low momentum region, and μ mass is similar to π , so we consider μ with the factor similar to π . And using the mixed sample of $e^+e^- \to e^+e^-\gamma$ at the J/ ψ meson mass and $J/\psi \to e^+e^-\gamma FSR$ to study the tracking of e.

	MDC Tracking	N _{total}	N _{selected}	Efficiency	Uncertainty
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Before correction	450000	131340	29.19%	
$\eta \to \mu \mu$	After correction	450000	130387	28.97%	0.75%
$n \rightarrow a^{+}a^{-}$	Before correction	450000	129160	28.7%	
$\eta \rightarrow e e$	After correction	450000	126387	28.09%	2.1%

### **D** PID

• The control samples used are  $J/\psi \to \pi^+\pi^-\pi^0$  for pion and  $e^+e^- \to e^+e^-\gamma$  at the  $J/\psi$  meson mass and  $J/\psi \to e^+e^-\gamma FSR$  for electrons. For the PID of  $\mu$ , we take the same factor as  $\pi$ .

	PID	N _{total}	N _{selected}	Efficiency	Uncertainty
$n \rightarrow u^+ u^-$	Before correction	450000	131340	29.19%	
	After correction	450000	129974	28.88%	1.1%
$n \rightarrow e^+ e^-$	Before correction	450000	129160	28.7%	
	After correction	450000	126387	28.35%	1.2%

### **\Box** Fit range for $\eta \rightarrow \mu^+ \mu^-$

Change the lower and upper boundaries of the  $\eta$  range independently by 0.01  $GeV/c^2$  or 0.02  $GeV/c^2$  .

Fit range		N _{signal}	Efficiency(%)	$\mathcal{B}_r(\times 10^{-6})$	Uncertainty (%)
Original	[0.45,0.6]	37.8 <u>+</u> 6.7	29.19		
1	[0.45,0.61]	38.1 <u>±</u> 6.9	29.19	$5.80 \pm 1.05$	0.35
2	[0.45,0.59]	38.4 <u>+</u> 6.7	29.19	$5.85 \pm 1.02$	1.21
3	[0.44,0.6]	38.7 <u>±</u> 6.8	29.40	$5.85 \pm 1.03$	1.21
4	[0.46,0.6]	37.5 <u>±</u> 6.6	28.93	5.76±1.02	0.35
5	[0.44,0.61]	38.9 <u>±</u> 6.8	29.44	5.87±1.03	1.56
6	[0.46,0.59]	38.0 <u>+</u> 6.7	28.93	5.84±1.03	1.04

### **D** Background shape



### **G** Signal shape

Use a double Gaussian function instead of the signal MC shape to fit  $\mu^+\mu^-$  mass spectrum.



$$B_r' = 5.36 \times 10^{-6}$$
,  $\delta = \frac{5.78 - 5.36}{5.78} = 1.04\%$ 

### **4**C Kinematic Fit



$$\delta = \frac{\epsilon_1 - \epsilon_2}{2\epsilon_1} = \frac{29.19\% - 27.79\%}{2 \times 29.19\%} = 2.4\%$$

### **Combine PID and Kinematic Fit for** $\eta \rightarrow e^+e^-$

•  $x_{PID+4C}^2 < 50$  is imposed on  $\eta \rightarrow e^+e^-$ . Using the control sample of  $J/\psi \rightarrow$ 

 $\pi^+\pi^-\pi^0$ ,  $\pi^0 \to \gamma e^+e^-$  to study the systematic uncertainty from combine PID and kinematic fit.



### **D** Summary of the Systematic Uncertainty Study

Source	Uncertainty(%)			
Source	$oldsymbol{\eta}  ightarrow \mu^+ \mu^-$		$\eta  ightarrow e^+e^-$	
$N(J/\psi)$	0.4	44	0.44	
$\mathcal{B}_r(J/\Psi \to \gamma \eta')$	1.	33	1.33	
$\mathcal{B}_r(\eta' \to \pi^+ \pi^- \eta)$	1.18		1.18	
MDC Tracking	0.75		2.10	
Photon detection	0.50		0.50	
Signal shape	7.3		_	
Background shape	0.24		-	
PID and Kinematic fit	1.10	2.40	3.20	
Fit range	1.56		-	
Total	8.18		4.27	

## Upper limit for $\eta \rightarrow e^+e^-$



$$> N_{Data} = 2, N_{bkg} = 1.67$$

- Detection Efficiency=129160/450000=28.7%
- > Using the TROLKE approach,  $N^{UL} = 15.8$ , at 90% C.L.

> Upper limit:

 $\mathcal{B}(\eta \rightarrow e^+e^-)$ 

 $= \frac{N_{sig}}{N_{J/\psi} \cdot \mathcal{B}(J/\Psi \to \gamma \eta') \cdot \mathcal{B}(\eta' \to \pi^+ \pi^- \eta)}$  $= \frac{15.8036}{1.0087 \times 10^{10} \times 5.25 \times 10^{-3} \times 0.425}$ 

 $<7.02 \times 10^{-7} (CL = 90\%).$ 

## Summary

- Using 10 Billion J/ $\psi$  events from BESIII, we studied the decay of  $\eta \rightarrow \mu^+\mu^-$  and  $\eta \rightarrow e^+e^-$ .
- $\eta$  is observed in the  $\mu^+\mu^-$  mass spectrum with 9.8  $\sigma$ , but did not observed in the  $e^+e^-$  mass spectrum.
- The branching fraction :

Decay mode	N _{sig}	Efficiency (%)	Significance	δ	B _r	PDG value
$\eta$ -> $\mu^+\mu^-$	37.9	29.19	9.8δ	3.84%	$(5.78 \pm 1.02 \pm 0.47) \times 10^{-6}$	$(5.8 \pm 0.8) \times 10^{-6}$
$\eta  ightarrow e^+e^-$	$N^{UL} = 15.8$	28.7	-	4.27%	$<7.02 \times 10^{-7} (CL = 90\%)$	$< 7 \times 10^{-7} (CL = 90\%)$

• Memo is ready.