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About myself

e 2012-2017: BESIII, search for and study of exotic hadron states, e.g. X(3872),
Y(2175), Ds0(2317)

e 2017-2019: CEPC, simulation of synchrotron radiation and optimization of
Machine-Detector-Interface

e 2017-2024:. ATLAS, online/offline tracking and vertexing, GPU-based
accelerator, quark-gluon tagging and search for heavy higgs

e 2019-2024: FASER, tracking and detector alignment, observation of collider
neutrino and search for long-lived particle

e Now, BESIIl again, combine software and physics to build an Al scientist,
i.e. Dr. Sai



Outlines

e Introduction to machine learning

e Selected state-of-art ML applications at ATLAS

Jet taggers

Track and vertex reconstruction
Anomaly detection

Al assistant

e How about BESIII ?
e Summary
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No technical details in this talk
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Wide usage in addition to
signal-background separation



How machine learn -

X O—¥
Output
. . . x; O——w, b 2
e InCS, neuron is a simple function o(3 xw+b) ™ g L/]
. : non-linear
e Neural network: multiple connected neurons % 0——w,
Weights

o  An extremely complex function which maps
the input to output
Millions/Billions float parameters
Training: adjust the parameters to make
outputs move towards target, e.g. truth,
similar to fitting
o  Two key parts:
m Data representation
m  Function (model)

input layer hidden layer 1 hidden layer 2 output layer



ATLAS experiment

~35m

e The largest detector, will collect the biggest dataset at HL-LHC over the world

e | will focus on three questions:

o  How to reconstruct event correctly
m  200M readout channels
m  ~50 soft collisions (pile-up) per bunch-crossing

o  How to select event efficiently —l Al/ML
m 2x10"8 collisions so far, only 1/2,000,000,000 have higgs, much less BSM particles

o  How to make the whole process easier and faster
m > 3 years for one physics result



Selected state-of-art ML applications @ ATLAS

e Jettagger
o b(bb)-tagger
o W-tagger

o Quark-gluon tagger

e Tracking and vertexing
o GNN-based track finder
o CNN-ased primary vertex finder

e Anomaly detection
o CWola
o AutoEncoder

e Al assistant
o  chATLAS

o Educational outreach

Not covered in this talk but also important:
GNNC for jet/missing-ET calibration, fastGN1 for bjet trigger, ML-based pixel clustering and track seed filter, GAN for
fast calorimeter simulation ...



Jet-tagging

How to get the truth labels from
reconstructed objects

Parton level

\ Particle Jet Energy depositions
P in calorimeters

e Convert physics problem to computing problem

e Three directions for improvements
o More input features : jet -> jet+track -> jet constituents
o More reasonable data representation : jet+track -> Lund plane
o More complex model: CNN -> GNN -> Transformer



b-tagger

e H->bb is dominant decay of Higgs
e But difficult to be identified

o  Heavy flavor (b,c) jet are overwhelming minority w.r.t. other jets
e Db-jet efficiency and purity is very important in many areas of

the physics programme

| = u/d/s-quark or gluon

' b-jet
do
\ 9

The picture gets complicated at high pr!

Borrow from S. Stroud

Higgs decays at m«=125GeV

Features of b-jets (relies on B-hadron properties)

Relatively long life time

Displaced (secondary) vertex

Large impact parameter (d0) tracks

Large B-hadron mass

Semileptonic decays (e/u from b-hadron decay)


https://indico.cern.ch/event/1232499/attachments/2602341/4494127/2023-03-01_GN1_Seminar.pdf

History of b-taggers at ATLAS

BDT / shallow NN Graph NN (GN1)

Early Run2 Early Run3

Full Run2 State-of-art GN2

Deep NN (DL1, RNN) Transformer

TWO-Stag e app roach: Manually Optimised Trained

We have new

LOW + hlgh Ievel Low Level
approaches now

algorithms

High Level
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Manually
optimised
algorithms

GNN based all-in-one tagger

e Inputs are jet, tracks and associated hits
o Jet variables are concatenated with each track
o Lepton identification for GN1 Lep
o Treat each track as a node

Trained
algorithms

v

High level Track origins
algorithm (DL1r] !
& . y Vertices

o Fully connected, similar to Transformer T et C T e
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State-of-art b-tagger: GN2
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/

bb tagger: GN2X

e Similar to GN2 but trained on large-radius(R) jet

e Aim to improve improve the sensitivity of H->bb and searches for

new resonances Beyond the Standard Model,

4 1\
large-R Jet kinematics,
20 track and associated hits variables

\ J

4 1\
Variable-radius (VR) subject
kinematics and flavor-tagging info

\ J

4 )
Flow constituent (charge+neutral)
kinematics

\ J

Reference taggers:

D

° 2 VR : tagger using the same inputs as

GN2X but training uses R=0.4 jets

° tagger based on DL1 (used in Run2)

The network generates probability scores that indicate
the likelihood of a given jet being identified as H->bb,

H->cc, top or multijet
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ATLAS Simulation Preliminary
[ VS =13 TeV, Anti-k; R=1.0 UFO jets
pr>250 GeV, 50 < m; <200 GeV, |n| <2
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https://cds.cern.ch/record/2866601/files/ATL-PHYS-PUB-2023-021.pdf
https://cds.cern.ch/record/2866601/files/ATL-PHYS-PUB-2023-021.pdf
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. . . . . & 10°F E
of 1.6(2.5) in the top jet (multijet) rejection 7
e GN2X also outperforms the 2-tag VR across all efficiencies
F— o
10° e L 1 1 1 1 ;
20 f_l T T T ]
- I [mesmaonm ]
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in the top rejection benefit from the i T T ] eI T A
information on the large-R jet substructure, - 8 o —— 4
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Top ratio

multijet rejection benefit from neutral jet ‘ ' ' ' ' :ofs ie o o5 S =
information g of . H(bb) efficiency
° Further work combining the flow and

subjets is therefore warranted
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https://cds.cern.ch/record/2866601/files/ATL-PHYS-PUB-2023-021.pdf
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W-taggers
Two approaches

e Jet constituents (ParticleTransformer, ParticleNet, ParticleFlowNetwork, EnergyFlowNetwork)
o  Try to fully utilize jet constituents information using state-of-the-art ML/DL algorithms
o ParticleTransformer achieves the best performance, see next page
e Lund jet plane (LundNet)
o Inspired by theory calculation of jet formation
o  Build Lund plane with approximation: core -> hard constituents, emission-> soft constituents
o Each node has 3 variables: momentum fraction of the branching, transverse momentum, emission angle
o  Each emission represented by a point in the kT-emission angle plane

oA ;
ARij = VAyizj +A¢t?j’ = i :pl’ ke = prAR;;
N g} i

In(RIBR) e —— SRS
-3 -3 0 1 - -3 -2 3 2

-1 -1 0
log1o(kT) logio(kT)

C-Aclustering steps
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https://cds.cern.ch/record/2864131/files/ATL-PHYS-PUB-2023-017.pdf
https://cds.cern.ch/record/2866592/files/ATL-PHYS-PUB-2023-020.pdf
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ATLAS S|mu|at#on Preliminary
£ Vs =13 TeV, W tagging
[ anti-k, R=1.0 UFO Soft-Drop CS+SK jets
[ P, >200 GeV, | <2.0
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W-taggers

|

/ better

Background rejection (1/ef5,)

e LundNet achieves the best performance, followed by constituent based tagge
e At 50% signal efficiency, the background rejection of
LundNet(ParticleTransformer) is roughly 3(2.8) times better than the previous
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Chinese Phys. C 48 (2024)
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e Quark and gluon jets are difficult to distinguish but many analyses ég’ : = ig::,p:goe:v 1 Chinese journal
need to know the origin of the jet S10p £ 1200<pr <1500 GeV | -
. . .. . . - ] Chinese Physics C
e  Major discriminator: Gluon jets tend to be wider and have more 0.05[- £
charged constituents than quark jets ’ W S Bl
oo TS | DR DN N BT O
Two taggers are defined and calibrated: Mhrack
° One based on charged-particle constituent multiplicity L ' ]
° The second combined several jet kinematic and jet substructure 08l ATLAS Simuiaton / bettér

F Vs=13TeV

: Quark-jet tagging
0.6 500 GeV < pr < 600 GeV

variables using a Boosted Decision Tree (and MLP).
o BDT outputs the higher AUC

° Both are in-situ calibrated

Gluon Rejection
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o
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https://iopscience.iop.org/article/10.1088/1674-1137/acf701
https://iopscience.iop.org/article/10.1088/1674-1137/acf701

Quark-gluon tagger

e Similar to W-tagger, constituents based
tagger, PFN, EFN, ParticleNet,
ParticleTransformer

o ~2.6M parameters for each model

e New particle attention block (Dynamically

Enhanced Particle Transformer, DeParT)
o  Allow heads to communicate

e DeParT and ParT provide the best rejection

o Obvious improvement w.r.t. BDT o
o But large dependence on MC modeling -
| Same with W-tagger

ATL-PHYS-PUB-2023-032

Talkis

Multihead

Particle Attention
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https://cds.cern.ch/record/2878932

Track and vertex reconstruction

e One of the main input features for jet-tagging - tracks and vertices

e Recently many studies on ML-based track/vertex finder
o Different problem with jet-tagging
o More like a clusterization problem
| Find a cluster of hits to form a track
[ Find a cluster of tracks to form a vertex
o But one collision could produce ~10k tracks and 200 pile-up
[ How to find them efficiency and with high purity ? and quickly ?
° Biggest CPU consumer in trigger system
[ Traditional approaches can provide >90% and >90% purity
| How ML can improve ?
° GNN-based track finder
° CNN-based primary vertex (PV) finder

18



GNN track finder

Convert event to graph:

e Represent each hit as a node
e Connect nodes by edges

o  Edge means two hits belong to the same track

e Edge classification

o Classifies edges as true or false by assigning

score to each edge

e Graph: track candidate, a list of nodes based on edges
e Trained on simulated events in InnerTracker (ITk)
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/

GNN track finder

Preliminary comparison to the traditional approach,
combinatorial KalmanFilter (CKF)

e Slightly lower efficiency, but at the same level
o  Need further optimization
e Less strip clusters
o  Overlap strip modules are not considered yet

e One advantage:
o  Much fasteron GPU ™| mm oy
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https://cds.cern.ch/record/2882507/files/ATL-SOFT-PROC-2023-047.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012008/pdf

Primary Vertex (PV) finder

e Among 200 pile-ups, only one hard-scatter vertex
e Crucial for all the downstream processes, e.g. jet tagging, physics analysis
e Best traditional approach:
o Adaptive Multi-Vertex Finder (AMVF), assign and fit the tracks to vertices
m >90 efficiency
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1

Primary Vertex (PV) finder

ATLAS Simulation Preliminary, Vs=13TeV, tt

e PV-finder, a deep learning primary vertex finder
o  Migrated from LHCb
o  First build track density
m  Kernel Density Estimator (KDE) from track impact
parameters and uncertainties
m 3D point of closest approach (POCA) -> 1D density o

X, y [mm]

o  CNN-based finder with inputs from track density o6
m  a series of convolutions layers an o
m  UNet and UNet++ (more connections between layers) ” o ey o

0.00 2.00 4.00 6.00 8.00
z values [mm]

8
n

- POCA distribution (y, z)
ATLAS Work In Progress /

1. KDE-A: Sum of track probability values

°
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2. KDE-B: Sum of the squares of track probability values
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3. XMax: Location of the maximum summed track probability in x (mm)
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4. YMax: Location of the maximum summed track probability in y (mm)
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Anomaly detection

e Traditional search
o Looking for specific physics motivated signal
o Not very useful for other models
e ML-based model-independent search for BSM

o Look for unknown from known events
o Less sensitive to specific model

o AtATLAS

o Classification WithOut Labels (CWolLa)
o  Anomaly detection using unsupervised ML
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Classification WithOut Labels (CWoLa)

New bump hunting technique
Builds on generic dijet search to be more sensitive to a broad class

AUC

of models
No need of MC info

Trained on two mixed samples (real data) which have different
fractions of signal and background

o  Fractions could be known (LLP) or unknown (CWoLa)
o  No sensitivity if fractions are the same in 2 regions
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https://link.springer.com/article/10.1007/JHEP10(2017)174
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PhysRevlett.125.131801
Universe 2022, 8(10), 494

Classification WithOut Labels (CWoLa)

e Performed on dijet search
o  Slicing window in mjj as signal region and two neighboring sideband regions
e Thresholds applied on NN outputs = Efficiency
e Apply classifier score cuts: enhance signal sensitivity e Limits for some signals >2x better
Fit the dijet mass over the NN score threshold (eff = 0.1/0.01) ® Dedicated diboson searches show
greater sensitivity
o But no sensitivity at other mass points

NN output vs. inputs jet masses, it is able to catch the signal “ o CWolas sensitive at everywhere
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PhysRevl ett.132.081801

Anomaly detection using unsupervised ML

e Model independent search

e Use ML to define anomaly region
o  Train the NN to learn the SM events from data
o Input features are Rapidity Mass Matrix constructed from final states object kinematics

[ RMM was found to produce more robust AutoEncoder(AE) training
[ Expected to have different characteristics for different processes

Missing momentum & Transverse masses Example
e myp(j)  mr(je) .mr(in) mr(u)  mr(pe) . ..mr(py) Multi-jet QCD process Higgs process
h(i) - en(iy) m(Gyja) -..mlr,in) mis, ) m(Gipa) ...m(ji,py) | Invariant e ibliiiasataneiiiiitanises s
: . s e . ; ] masses g :
hi(d2)  h(i,ds) “dex(ja) ...m(j2,dn) m(ja,pa) mGa, p2) ... m(3G2, pwv) 10
m/Ecy,
_— e H10
hi(Gn) k(5 dn) oo -wdertin) m(ivap) mUn, ) - mUNEN) | £ /E,,, #
hi(u) h(pa,dn) R(p,g2) - h(pa,gn) - ew(pn) m(pa, p)  m(ps, py) | scaled o
; ) ) transverse i
hr(p2) h(#z,Jl) h(p,g2) - hpa, gn)  h(ua, p2) dex(uz) m(pa, fn) energies &
energy 10*
e i i
hi(pn) hlpn,51) b g2) - h(pn,dn) BQew, ) h(ps, ) der(un)

Rapidity difference h(i,j)-cosh(y; - y;)


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.081801

PhysRevl ett.132.081801

Anomaly detection using unsupervised ML

e Trained with randomly selected 1% events
o  Sufficient statistics to train and well represent the full collision dataset
o Expected to have no anomaly (signal) events
o  Even if there are, shape of anomaly score is not expected to produce bumps, so search for the enhancements
should not be affected significantly

e Define anomaly region

o  Should enhance BSM signal = (- SR SRR
: . : : 0L ATLAS —_—
o 3 regions for different assumption on cross sections 2 10 E o Ll
_ i 10°E Vs=13TeV, 140 b ;’KK p V‘:jfvT)eV)
- E e VB e
e Then do bump-hunting on 2 object mass spectrum 114 pliteidt e S
107 é_ ‘‘‘‘‘‘‘‘‘‘‘‘‘ Z' (DM) (2 TeV)
Inpu Ouf 1 B ;_ ’\ —
36-9- 1287 \I/ariables 1287 vz?r)il;:ales 185 . : ....:op';l;I:gR
oo R ir 3 \ WL g
10°F
10°E .
10F
107'E
="

log (Loss)
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Anomaly detection using unsupervised ML

o x AxexB[pb]

Searched in 9 invariant masses including j+j, b-jet+], j+elu

PhysRevl ett.132.081801

Largest deviation reported by BumpHunter is at m(j+u) ~ 4.8 TeV, local significance 2.90

For j+j, the limits are factor 2-3 better than a dedicated search

Demonstrated the successful application of unsupervised anomaly detection using event level info

T I o o B R N !
N ATLAS 95% CL Upper Limits ]
—e— 0)/m=00bs. o
—=— 6,/m,=0.05 Obs. o

64/m,=0.10 Obs. |
—o— 0y,/m,=0.15 Obs. 3

Dedicated search for jj

ATLAS ;
__(s=13TeV, 140t ___|

T T T

x A X e x Bpb]

29


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.081801
https://doi.org/10.1007/JHEP06%282020%29151

Al Assistant

e Many generic LLM models, e.g. GPT/LLaMa/Gemini
o astonishing capabilities in recognition and generation of text/code
e How it can help us
o  Text-related works
o  Coding and debugging
o Understand heterogeneous sources of knowledge
m Assistant, could be a teacher
chATLAS
Educational outreach
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Al assistant: chATLAS

e An Al Assistant for the ATLAS Collaboration, chATLAS
e Inspired by the chatGPT
e Motivation:

o  An assistant which understand the internal heterogeneous sources of knowledge, e.g.
o  Provide quick and accurate search result and summary
o  Long-term plan: debugging software

e Use GPT3.5/4 as backend
PDF files from cds/indico scraping shown with Nougat and Marker

® Status: ATLAS cp
. Twiki S
¢ PFOtOtype finished ® Start with set of “Starting m Discover whether the CDS L]
URLs" paper has a Gitlab latex repo

o  Preparing more data

®m Recursively visit included links | m If latex exists, pull from repo
and (planned) convert to

m Find all headers, and visit
markdown

content below
= (Planned) Use unstructured

® Append metadata of twiki X
library to parse markdown

(parent structure, date
revised, etc.) m [f latex does not exist, use
nougat library to read PDF
(including equations) into
markdown

C. Randazzo, LIPS workshop

twiki, indico, cds

Indico

Load event list

Scrape timetable contents
(date, title, speaker, etc.)

(Planned) Pull PDF slide
decks and minutes

(Planned) Parse in the same
way as in CDS
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https://indico.desy.de/event/38849/contributions/162120/

K. Schmieden, LIPS workshop

Al assistant for educational outreach

e (Goal: large-language model assistant to help people without expert knowledge (junior student) to
analyze ATLAS open data

e Status:
o  Customised GPT for ATLAS Diphoton Open Data based on GPT 4.0 model

« Initial prompt: guide students through data analysis of ATLAS
Open Data to identify Higgs boson candidates in a dataset which

SLASOReDER HOG S e contains proton proton collision events with two photons. Students

e should design their python data analysis which reads in ROOT
; o files, creates plots and performs significance tests to extract the
ATLAS SpenDalaHiggs analysiaguide Higgs boson mass from a fit of the di-photon invariant mass.

By Philipp Gadow &

* Emphasis on python and scikit-hep ecosystem
» Crawled websites of:

Guides on Higgs boson data analysis with ATLAS Open Data.

Guide me through analyzing ATLAS Open Da... Explain the significance test for Higgs boson ... - Open data and |tS documentatlon
How do | read ROOT files for my analysis? Help me plot the diphoton invariant mass dist... e intrOd UCtlon to dl-phOton analySIS ||nk

« example for analysis with ROOT link
« HSF tutorials for software tools link

* Provided structure and data format of CERN Open Data files 32

L['J |-1=:‘~?~1:r?- ATLAS Open Data Higgs analysis guide.

ChatGPT can make mistakes. Consider checking important information.

https://chat.openai.com/g/g-nVaVmFOrz-atlas-open-data-higgs-analysis-quide


https://indico.desy.de/event/38849/contributions/162122/attachments/88528/118671/2024-02-21-Lips-ATLASOpenData.pdf
https://chat.openai.com/g/g-nVaVmFOrz-atlas-open-data-higgs-analysis-guide
https://chat.openai.com/g/g-nVaVmFOrz-atlas-open-data-higgs-analysis-guide
https://root.cern/doc/master/df104__HiggsToTwoPhotons_8py.html
https://hepsoftwarefoundation.org/training/center.html

How about BESIII

QATLA

EXPERIMENT

W l

\

%
r \x

1500-1000500 8 500 //

EXVM

e Very successful ML application at ATLAS
o Jet tagging, event classification
e AtBESI
o no jet, much more clean environment than ATLAS-> will not gain too much from ML
o One possible direction: build Al assistant/scientist using Large Language Model, i.e. Dr. Sai (more details in slides)

| Heterogeneous inputs: BESIII hypernews, internal memo/draft/indico/source code, arXiv papers, HaiChat history ...

| Functionality: > chATLAS + educational outreach assistant
= ~ 10 active developers
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https://indico.ihep.ac.cn/event/19951/contributions/135542/

Summary

e Now ML is widely used at ATLAS in addition to signal-background separation

o Jet-tagger (overwhelming better than traditional tagger)
m  More low level features + more complex model (Transformer) always give best result
m  But large uncertainty due to MC modeling

o Track and Vertex finder

m  Approaching to traditional CKF and AMVF
m  Could be much faster from introducing GPU

o Anomaly detection

m  Generic search, sensitive to a wide range of BSM models
m  Sensitivity comparable to dedicated search

e Next
o Al assistant based on Large Language Model (LLM)
m CchATLAS, outreach assistant
m Dr. Sai (preliminary version is coming, stay tune)
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https://indico.desy.de/event/38849/contributions/162122/attachments/88528/118671/2024-02-21-Lips-ATLASOpenData.pdf
https://indico.ihep.ac.cn/event/19951/contributions/135542/

back-up
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Quark-gluon tagger

Constituent Variables

An=n—n"
Ap=¢—¢*
AR = \/An® + A¢®
log pr
log £
log £L
p
log ,%
m

Constituent Interaction Variables

Linear Constituent Variables

logAab - log \/(na _nb)2 + (¢a . d)b)Q
log k%b = log (min (p7, pér)Aab)

2% = min (pF, p1)/ (0 + PF)

log m2ab — log (p° +pu,b)2

Anp=n—n*
Ap=¢—¢"

AR = \/ An® + A¢*
AR=y/

Do
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ATLAS: GN1 -> GN2 difference

FTAG-2023-01

Type Name GN1 GN2
Hyperparameter | Trainable parameters 0.8M 1.5M
Hyperparameter | Learning rate le—3 OneCycle LRS (max LR 4e—5)
Hyperparameter | GNN Layers 3 6
Hyperparameter | Attention Heads 2 8

Hyperparameter | Embed. dim 128 192

Architectural Attention type GATv2 | ScaledDotProduct
Architectural Dense update No Yes (dim 256)
Architectural Separate value projection | No Yes

Architectural LayerNorm + Dropout No Yes

Inputs Num. training jets 30M 192M

Initial Track
Representation

Initial Neutral
Representation

Updated Track
‘ Representation
1 Updated Neutral

Representation
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/

ParticleTransformer

arXiv:2202.03772

Class token ()

Lblocks
A

Particle Particle Particle
FParticles Attention Attention feeeaaan
Block Block xt1

Embedding ) ( Embedding

: U
Interactions =»| g et e e e e
Xelass
- N
P-MHA

5 L
Xelass X

(c) Class Attention Block

(b) Particle Attention Block


https://arxiv.org/pdf/2202.03772.pdf

UNet and UNet++

4 64 4128 64
D
1
[}
=l = o o ol o o
o R " X % x X
sl 3 3 3 3 3 3| softplus
1
G B | N i,
N\ Ll
128

64 x 6000
64 x 6000
64 x 6000
)
646000
! |

64 | ¥ iza
g 8 64 g il 8- I convolution, batch
‘2.-*‘;3 K pdt normalization, ReLU
3 3 3 =
g6 3t ~Jp- max pool "
§ﬁ>§ Lol A \ down-sampling
g g g e = up-convolution
3 p»- Skip connection / up-sampling
g- (concatenation)

~» skip-connection



