

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences



### **CEPC Accelerator EDR Status**

#### -The path from EDR to start construction

J. Gao

IHEP





- Introduction
- CEPC Accelerator Design and Key Hardware R&D in TDR as Start of EDR
- CEPC EDR Goals, Scope, Plan, Progress status
- CEPC Site Implementation in EDR and Construction Plans
- CEPC technology Industrial preparations and international collaboration in EDR
- Summary





### **Recent Celebrations for HEP Worldwide**

**CERN's 70th anniversary** 



**50 Years Discovery of the J Particle** Oct. 20, 2024, IHEP, China

https://indico.ihep.ac.cn/event/23322/timetable/

It is important to look back for better looking and going forwards in future



CERN's 70<sup>th</sup> anniversary Oct. 1, 2024, CERN, Switzerland https://indico.cern.ch/event/1373628/

60 Years of Colliding Beams and 50 years of Electron Cooling in Budker INP Oct. 1, 2024, BINP, Russia

https://disk.yandex.ru/d/50mE jBtlh5WVQ



#### Worldwide High Energy Physics Goal Timelines and Common Efforts towards Future



HALHF was proposed in 2023 as a Higgs factory based on plasma accelerator technology

## **CEPC Higgs Factory and SppC Layout in TDR/EDR**

CEPC as a Higgs Factory: H, W, Z, upgradable to ttbar, followed by a SppC (a Hadron collider) ~125TeV 30MW SR power per beam (upgradable to 50MW) , high energy gamma ray 100Kev~100MeV



The International workshop on CEPC, Oct. 26, Hangzhou



### **CEPC Accelerator System Parameters in TDR/EDR**

| Linac                                                                                                                                                                                                                                                                    |                       |            |                      |                | Booster |                    |          |                      |          |                              |           | Collider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |             |             |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|----------------------|----------------|---------|--------------------|----------|----------------------|----------|------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|-----------|
| Domomotor                                                                                                                                                                                                                                                                | Symbol                | Unit       | Dagalina             |                |         | tt                 | Ŀ        | Ι                    | W        |                              | Z         | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Higgs      | Z           | W           | tī        |
| rarameter                                                                                                                                                                                                                                                                | Symbol                | Umt        | Dasenne              |                |         | Off axis injection | Off axis | On axis<br>injection | Off axis | f axis<br>off axis injection |           | Number of IPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |             | 2           |           |
| Energy                                                                                                                                                                                                                                                                   | $E_{\star}/E_{\star}$ | GeV        | 30                   | Circumfer.     | km      |                    | njeensn  |                      | 100      |                              |           | Circumference (km)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.0      |             |             |           |
| - 65                                                                                                                                                                                                                                                                     | e- e+                 |            |                      | Injection      | GeV     |                    |          |                      | 30       |                              |           | SR power per beam (MW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 3           | 50          |           |
| Repetition<br>rate                                                                                                                                                                                                                                                       | $f_{rep}$             | Hz         | 100                  | Extraction     | GeV     | 180                | 10       | 20                   | 80       | 4                            | 5.5       | Energy (GeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120        | 45.5        | 80          | 180       |
| Bunch                                                                                                                                                                                                                                                                    |                       |            |                      | energy         | Ue v    | 100                | 14       |                      | 1007     | 2070                         |           | Bunch number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 268        | 11934       | 1297        | 35        |
| number per                                                                                                                                                                                                                                                               |                       |            | 1 or 2               | Bunch number   |         | 35                 | 268      | 261+7                | 1297     | 3978                         | 5967      | Emittance $\varepsilon_{x}/\varepsilon_{y}$ (nm/pm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.64/1.3   | 0.27/1.4    | 0.87/1.7    | 1.4/4.7   |
| pulse                                                                                                                                                                                                                                                                    |                       |            |                      | bunch charge   | nC      | 0.99               | 0.7      | 20.3                 | 0.73     | 0.8                          | 0.81      | Beam size at IP $\sigma_r / \sigma_r$ (um/nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14/36      | 6/35        | 13/42       | 39/113    |
| Bunch                                                                                                                                                                                                                                                                    |                       | nC         | 1.5 (3)              | Beam current   | mA      | 0.11               | 0.94     | 0.98                 | 2.85     | 9.5                          | 14.4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |             |             |           |
| charge                                                                                                                                                                                                                                                                   |                       |            |                      | SR power       | MW      | 0.93               | 0.94     | 1.66                 | 0.94     | 0.323                        | 0.49      | Bunch length (natural/total) (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3/4.1    | 2.5/8.7     | 2.5/4.9     | 2.2/2.9   |
| Energy                                                                                                                                                                                                                                                                   | $\sigma_{r}$          |            | $1.5 \times 10^{-3}$ | Emittance      | nm      | 2.83               | 1.2      | 26                   | 0.56     | 0                            | .19       | Beam-beam parameters £ /£                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.015/0.11 | 0.004/0.127 | 0.012/0.113 | 0.071/0.1 |
| spread                                                                                                                                                                                                                                                                   | $o_E$                 |            | 1.57 10              | RF frequency   | GHZ     | 97                 | 2        | 17                   | 0.87     | 0.46                         |           | $= \frac{1}{2} $ |            | 6           | 50          |           |
| Emittance                                                                                                                                                                                                                                                                | £                     | nm         | 6.5                  | Full injection |         | 0.1                | 0.14     | 0.16                 | 0.07     | 1.0                          | 0.0       | $\mathbf{H} = \mathbf{H} \left( \frac{1034}{1000} - \frac{1000}{1000} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0        | 115         | 10          | 0.5       |
| Linittunee                                                                                                                                                                                                                                                               | 0 <sub>r</sub>        |            | 0.5                  | from empty     | h       | 0.1                | 0.14     | 0.16                 | 0.27     | 1.8                          | 0.8       | Luminosity per IP (10 <sup>-4</sup> cm <sup>-2</sup> s <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.0        | 115         | 10          | 0.5       |
| Running                                                                                                                                                                                                                                                                  | y scenari             | os: Higg   | s 10 years.          | Z 2 years.     | W 1 •   | vear. ff           | bar 5    | vears                |          |                              |           | Luminosity per IP (10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> )<br>From J. Gao's formula below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5          | 115         | 12          | 0.59      |
| $\text{Lmax} [cm^{-2} s^{-1}] = 0.158 \times 10^{34} \frac{(1+r)}{\beta_{y} [\text{mm}]} \sqrt{\frac{R[m]}{C_{\gamma} [\text{mGeV}^{3}]N_{IP}}} (P_{b} [\text{MW}] / E[GeV]^{2}) e^{\frac{\sqrt{\Phi_{p}}}{3.22}} (1+0.000505*\Phi_{p}^{2})  (J. \text{ Gao's formula})$ |                       |            |                      |                |         |                    |          |                      |          |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |             |             |           |
| Transport lines                                                                                                                                                                                                                                                          |                       |            |                      |                |         |                    |          |                      |          |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |             |             |           |
| CE                                                                                                                                                                                                                                                                       | PC Acceleration       | ator EDR S | tatus-J. Gao         |                | Tł      | ne Interna         | tional   | worksh               | op on CI | EPC, Oct                     | . 26, Han | gzhou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |             | 7           | 1         |



## **Power Consumption of CEPC @ Higgs**

| 2233 | 2 3                   | Higgs 30MW |         |       |      |      |                     |        |          | Higgs 50MW |       |      |      |                  |        |
|------|-----------------------|------------|---------|-------|------|------|---------------------|--------|----------|------------|-------|------|------|------------------|--------|
| SN   | System                | Collider   | Booster | Linac | BTL  | IR   | Surface<br>building | Total  | Collider | Booster    | Linac | BTL  | IR   | Surface building | Total  |
| 1    | RF Power Source       | 96.90      | 1.40    | 11.10 |      |      |                     | 109.40 | 161.60   | 1.73       | 14.10 |      |      |                  | 177.40 |
| 2    | Crygenic system       | 9.72       | 1.71    |       |      | 0.14 |                     | 11.57  | 9.17     | 1.77       |       |      | 0.14 |                  | 11.08  |
| 3    | Vacuum System         | 5.40       | 4.20    | 0.60  |      |      |                     | 10.20  | 5.40     | 4.20       | 0.60  |      |      |                  | 10.20  |
| 4    | Magnet Power Supplies | 44.50      | 9.80    | 2.50  | 1.10 | 0.30 |                     | 58.20  | 44.50    | 9.80       | 2.50  | 1.10 | 0.30 |                  | 58.20  |
| 5    | Instrumentation       | 1.30       | 0.70    | 0.20  |      |      |                     | 2.20   | 1.30     | 0.70       | 0.20  |      |      |                  | 2.20   |
| 6    | Radiation Protection  | 0.30       |         | 0.10  |      |      |                     | 0.40   | 0.30     |            | 0.10  |      |      |                  | 0.40   |
| 7    | Control System        | 1.00       | 0.60    | 0.20  |      |      |                     | 1.80   | 1.00     | 0.60       | 0.20  |      |      |                  | 1.00   |
| 8    | Experimental devices  |            |         | _     |      | 4.00 |                     | 4.00   |          |            |       |      | 4.00 |                  | 4.00   |
| 9    | Utilities             | 37.80      | 3.20    | 1.80  | 0.60 | 1.20 |                     | 44.60  | 46.40    | 3.80       | 2.50  | 0.60 | 1.20 |                  | 54.50  |
| 10   | General services      | 7.20       |         | 0.30  | 0.20 | 0.20 | 12.00               | 19.90  | 7.20     |            | 0.30  | 0.20 | 0.20 | 12.00            | 19.90  |
| 2    | Total                 | 204.12     | 21.61   | 16.80 | 1.90 | 5.84 | 12.00               | 262.27 | 276.87   | 22.60      | 20.50 | 1.90 | 5.84 | 12.00            | 339.71 |

Various measures will be studied and implemented towards a green collider, as discussed in the Mini workshop of accelerator, Jan. 18-19, 2024, HKUST-IAS, Hong Kong

https://indico.cern.ch/event/1335278/timetable/?view=standard



## **CEPC Key Technology R&D Status in TDR**

| Specification Mat                                               | Accelerator             | Fraction |
|-----------------------------------------------------------------|-------------------------|----------|
| Specification Met Manufactured                                  | 🗸 Magnets               | 27.3%    |
|                                                                 | Vacuum                  | 18.3%    |
|                                                                 | RF power source         | 9.1%     |
|                                                                 | Vechanics               | 7.6%     |
| Booster                                                         | 🗸 Magnet power supplies | 7.0%     |
|                                                                 | SC RF                   | 7.1%     |
| Collider                                                        | Cryogenics              | 6.5%     |
| Position Ring                                                   | Linac and sources       | 5.5%     |
| Linac Linac                                                     | Instrumentation         | 5.3%     |
|                                                                 | Control                 | 2.4%     |
|                                                                 | Survey and alignment    | 2.4%     |
|                                                                 | Radiation protection    | 1.0%     |
|                                                                 | SC magnets              | 0.4%     |
| Key technology R&D in TDR spans all component lists in CEPC CDR | Damping ring            | 0.2%     |

9



## **CEPC Booster 1.3 GHz 8 x 9-cell High Q Cryomodule**

| Parameters                                       | SARI/China         | CEPC Booster<br>horizontal test<br>results | CEPC Booster<br>Higgs Spec | LCLS-II, SHINE<br>Spec | LCLS-II-HE<br>Spec   |
|--------------------------------------------------|--------------------|--------------------------------------------|----------------------------|------------------------|----------------------|
| Average usable CW <i>E</i> <sub>acc</sub> (MV/m) | 29.1               | 23.1                                       | 21.8 MV/m                  | 16 MV/m                | 20.8 MV/m            |
| Average Q <sub>0</sub>                           | 4×10 <sup>10</sup> | 3.4×10 <sup>10</sup>                       | 3.0×10 <sup>10</sup>       | 2.7×10 <sup>10</sup>   | $2.7 \times 10^{10}$ |



The International workshop on CEPC, Oct. 26, Hangzhou



### **CEPC Accelerator Development: Klystrons**



The International workshop on CEPC, Oct. 26, Hangzhou

| Parameters      | Value    |
|-----------------|----------|
| Frequency       | 5720 MHz |
| Output Power    | 80MW     |
| Pulsed width    | 2.5us    |
| Repetition rate | 100Hz    |
| Gain            | 54 dB    |
| Efficiency      | 47%      |
| 3dB bandwith    | ±5MHz    |
| Beam voltage    | 420 kV   |
| Beam current    | 403 A    |
| Focusing field  | 0.28 T   |

#### C band 5720MHz 80MW Klystron

C band 5720MHz 80MW **Klystron design completed** 

Technical assessment has been done on August 12, 2024, start construction Soon, to be completed on 2025



# CEPC Accelerator International TDR Review and Cost Review June 12-16, and Sept. 11-15, 2023, in HKUST-IAS, Hong Kong



CEPC Accelerator TDR Review June 12-16, 2023, Hong Kong



Domestic Civil Engineering Cost Review, June 26, 2023, IHEP



CEPC Accelerator TDR Cost Review Sept. 11-15, 2023, Hong Kong



9<sup>th</sup> CEPC IAC 2023 Meeting Oct. 30-31, 2023, IHEP

Table 12.1.2: CEPC project cost breakdown. (Unit: 100,000,000 yuan) **CEPC** Accelerator TDR Total 100% 364 completion was announced 4 0.8% Project management 190 Accelerator 52% during the ICFA Seminar from Conventional facilities 101 28% 3 0.8% Gamma-ray beam lines Nov. 28-Dec.1, 2023, DESY, 40 Experiments 11% 27 Contingency (8%) 7.4% Hamburg, Germany 7.4 Project management Accelerator CONTRACTOR DATE IN CONTRACTOR DATE 11% Conventional facilities RADIATION CEPC DETECTION **Technical Design Report** Gamma-ray sources TECHNOLOGY Accession and the 52% AND METHODS Experiments Contingency 辐射探测性术与方法 美文》 When he Chief, Jongho V. e CERCIENT DE LE MARIE DE L Composito de la marie de la m Distribution of CEPC Project total TDR cost of 36.4B RMB (~5.2USD) **CEPC** accelerator TDR has been completed and formally released on December 25, 2023: http://english.ihep.cas.cn/nw/han/y23/202312/t20231229 654555.html

CEPC accelerator TDR has been published formally in Journal Radiation Detection Technology and Methods (RDTM) on June 3, 2024: DOI: 10.1007/s41605-024-00463-y https://doi.org/10.1007/s41605-024-00463-y

The International workshop on CEPC, Oct. 26, Hangzhou

### **CEPC Milestones, Timeline and Human Resources**



# CEPC Engineering Design Report (EDR) Goal

| 2012.9        | 2015.3  | 2018.11 | 2023.10 | 2025                                               | 2027 | 15 <sup>th</sup> five year plan |
|---------------|---------|---------|---------|----------------------------------------------------|------|---------------------------------|
| CEPC proposed | Pre-CDR | CDR     | TDR     | CEPC Proposal<br>CEPC Detector<br>reference design | EDR  | Start of construction           |

#### **CEPC EDR Phase General Goal: 2024-2027**

After completion CEPC accelerator TDR in 2023, CEPC accelerator will enter into the Engineering Design Report (EDR) phase (2024-2027), which is also the preparation phase with the aim for CEPC proposal to be presented to and selected by Chinese government around 2025 for the construction start during the "15th five year plan (2026-2030)" (for example, around 2027) and completion around 2035 (the end of the 16th five year plan).

CEPC EDR includes accelerator and detector (TDRrd) CEPC detector TDR reference design (rd) will be released by June 30, 2025

CEPC Accelerator EDR Phase goals, scope and the working plan (preliminary) of 35 WGs summarized in a documents of 33 pages to be reviewed by IARC in Spet. 18-20, 2024

# S

## **CEPC Magnet Automatic Production Line in EDR**

15



Plan: Technical design review has been done. To be completed in 2025



#### CEPC NEG Coated Vacuum Chamber (200km) Automatic Production Line in EDR



Plan: Technical design review has been done. To be completed in 2025

16



#### **CEPC Accelerator SRF Development in EDR**







CEPC collider ring 650MHz 2\*cell short test module has been completed in TDR phase



The collider Higgs mode for 30 MW SR power per beam will use 32 units of 11 m-long collider cryomodules will contain six 650 MHz 2-cell cavities, and therefore, a full size 650 MHz cryomodule will be developed in EDR

Plan: Technical design review has been done. To be completed in 2025

The International workshop on CEPC, Oct. 26, Hangzhou



#### **CEPC Collider Ring Magnets in EDR**







#### **Correctors: mechanical design completed**

Dual aperture quadrupole: block iron core and new cooling and power line design in EDR













### **CEPC MDI in EDR**



![](_page_19_Picture_0.jpeg)

### **CEPC MDI Development in EDR**

![](_page_19_Figure_2.jpeg)

![](_page_19_Figure_3.jpeg)

![](_page_19_Picture_4.jpeg)

#### **CEPC SC Quadrupole Magnet Design with CCT Coil**

#### Design parameters of Q1a, Q1b, Q2 magnet with CCT coil @ Higgs mode

| Magnet name                                            | Qla                                                            | Q1b  | Q2   |  |  |  |  |
|--------------------------------------------------------|----------------------------------------------------------------|------|------|--|--|--|--|
| Field gradient (T/m)                                   | 142.3                                                          | 85.4 | 96.7 |  |  |  |  |
| Magnetic length (mm)                                   | 1.21                                                           | 1.21 | 1.5  |  |  |  |  |
| Excitation current (A)                                 | 780                                                            | 650  | 770  |  |  |  |  |
| Conductor (HTS or LTS)                                 | 0.8 or 0.7mm in diameter                                       |      |      |  |  |  |  |
| Maximum dipole field in aperture (Gs)                  | 226                                                            | 124  | 127  |  |  |  |  |
| Stored energy (KJ)                                     | 16.7                                                           | 15.2 | 22.9 |  |  |  |  |
| Peak field in coil (T)                                 | 4.3                                                            | 3.4  | 4.5  |  |  |  |  |
| Integrated field harmonics                             | <2×10 <sup>4</sup>                                             |      |      |  |  |  |  |
| (Single aperture) Coil inner radius (mm)               | 20                                                             | 26   | 31   |  |  |  |  |
| (Single aperture) Coil outer diameter (mm)             | 30.5                                                           | 39   | 44   |  |  |  |  |
| Magnet mechanical length (m)                           | 1.22                                                           | 1.23 | 1.53 |  |  |  |  |
| Net weight (kg)                                        | 25                                                             | 32   | 43   |  |  |  |  |
| Total weight of Q1a, Q1b, Q2 (kg)                      | 100                                                            |      |      |  |  |  |  |
| (For comparison, old net weight with iron option (kg)) | Q1a: 93, Q1b:124, Q2: 235<br>Total weight of Q1a, Q1b, Q2: 452 |      |      |  |  |  |  |

![](_page_19_Figure_8.jpeg)

![](_page_19_Figure_9.jpeg)

![](_page_20_Picture_0.jpeg)

## **CEPC Alignment and Installation Plan in EDR**

![](_page_20_Figure_2.jpeg)

![](_page_21_Picture_0.jpeg)

### **CEPC Installation Strategy Study in EDR**

RF regions LSS4 IP4 Linac LSS3 traight section regions Detector Linac: 1.6km TL:1.5km Circumference of ring tunnel:100km Collider: 100km Booster: 100km Tunnel cross section: 6X5m

Interaction regions

| 37603  | de of the r |
|--------|-------------|
| 1.8m ( | oste        |
|        | 8m<br>col   |

SPPC

**Tunnel cross section** 

#### **CEPC** component list and quantities

| Component                   | Collider Ring | Booster | Linac, DR, TL | Total |
|-----------------------------|---------------|---------|---------------|-------|
| Dipole                      | 16258         | 14866   | 135           | 31259 |
| Quadrupole                  | 4148          | 3458    | 714           | 8320  |
| Sextupole                   | 3176          | 100     | 72            | 3348  |
| Corrector                   | 7088          | 2436    | 275           | 9799  |
| BPM 、 PR 、 DCCT 、<br>kicker | 3544          | 2408    | 180           | 6132  |
| Septum Magnet               | 68            | 32      | 2             | 102   |
| Kicker                      | 8             | 8       | 2             | 18    |
| Cryomodule                  | 32            | 12      |               | 44    |
| Electrostatic separator     | 32            |         |               | 32    |
| Collimator dump             | 36            |         | 8             | 44    |
| Superconducting<br>Magnets  | 4             |         |               | 4     |
| Solenoid                    |               |         | 37            | 37    |
| Accelerating structure      |               |         | 577           | 577   |
| Cavity                      |               |         | 4             | 4     |
| Electron Source             |               |         | 1             | 1     |
| Positron Source             |               |         | 1             | 1     |
| Detector                    | 2             |         |               | 2     |
| Total                       | 34396         | 23320   | 2008          | 59724 |

![](_page_22_Picture_0.jpeg)

### **CEPC Tunnel Mockup for Installation in EDR**

![](_page_22_Figure_2.jpeg)

A 60 m long tunnel mockup, including parts of arc section and part of RF section

To demonstrate the inside tunnel alignment and installation, especially for booster installation on the roof of the tunnel

Plan: Technical design review has been done. To be completed in 2025

## **Advanced Technologies Development in Progress**

![](_page_23_Figure_2.jpeg)

J<sub>e</sub> of IBS expected to be similar as ReBCO in 2020s with better mechanical properties and lower cost, ready for mass applications in ultra high field magnets

![](_page_23_Figure_4.jpeg)

- Longitudinal polarization for collision
- · Polarization beam injection, positron polarization and ramping in booster

CEPC Accelerator EDR Scope, Plan and Status J. Cars

The CEPC LARC Morning in 2024, Sept. 18-28, 2024, IHEP

Key technology development for polarized electron beam generation, measurement and manipulation have been started 24

![](_page_23_Figure_10.jpeg)

#### SppC HF Magnet Development

![](_page_23_Figure_12.jpeg)

Picture of LPF1-U

Dual aperture superconducting dipoles achieve 12T@4.2 K and 14T@4.2K entirely fabricated in China. The next step is reaching 16-20T

CEPC Advelopment (GSR Script, Ploa and States -) Julia

![](_page_24_Picture_0.jpeg)

#### **CEPC Conventional Facility and Civil Engineering in EDR**

![](_page_24_Figure_2.jpeg)

![](_page_25_Picture_0.jpeg)

## **CEPC Site Implementation and Construction Plans**

![](_page_25_Figure_2.jpeg)

| 董河港瀏規划设计研究院 Vellow River Engiliseering Convelli | 有限公司<br>ng Co., Lid. | General Layout Plan of IP1/IP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surface Structure                               | (m)                  | HERE AND A REAL PROPERTY AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Control and duty rooms                          | 1200                 | A CONTRACTOR OF A CONTRACTOR O |
| Magnet powers source                            | 100                  | No. of the second secon |
| High-frequency power source                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 110kV substation                                | 2000                 | The second secon |
| 10kV substation                                 | 1000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HVAC system                                     | 1200                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cryogenic system (helium compression<br>system) | 2500                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cooling water system                            | 3000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Experimental assembly and storage hall          | 1500                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Transfer system                                 | 500                  | A CONTRACT OF A DESCRIPTION OF A DESCRIP |
| Air compression system                          | 300                  | A CONTRACTOR OF A CONTRACTOR O |
| Electronic room                                 | 1000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Data Center                                     | 600                  | AT A STORE THE AREA STORE AND AND A STORE  |
| Miscellaneous                                   | 500                  | AND A CARDINAL PROPERTY AND A  |
| Total                                           | 15400                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 黄河沿洲<br>Yellow River                               | 规划设计<br>Engineering | 研究院有<br>Convolting | 限公司<br>[Ca.Lul |        |           |        |         | Lay  | out of | the S | urface | Struct | ures    |
|----------------------------------------------------|---------------------|--------------------|----------------|--------|-----------|--------|---------|------|--------|-------|--------|--------|---------|
|                                                    |                     |                    | P              | rea of | surface s | tructu | res (m² | 3    |        |       |        |        |         |
| Surface Structure                                  | P1 (IP1)            | P2                 | P3(IP2)        | P4     | P5 (IP3)  | P6     | P7(IP4) | P8   | LINAC  | BT    | Total  | TDR    | EDR-TDR |
| Control and duty rooms                             | 1200                | 300                | 300            | 300    | 1200      | 300    | 300     | 300  | 400    |       | 4600   | 4600   | 0       |
| Magnet powers source                               | 100                 | 100                | 100            | 100    | 100       | 100    | 100     | 100  | 200    | 200   | 1200   | 13900  | -12700  |
| High-frequency power source                        |                     |                    | 6000           |        |           |        | 6000    |      | 9800   |       | 21800  | 16400  | 5400    |
| 110kV substation                                   | 2000                |                    | 3000           |        | 2000      |        | 3000    |      |        |       | 10000  | 14000  | -4000   |
| 10kV substation                                    | 1000                | 800                | 1000           | 800    | 1000      | 800    | 1000    | 800  | 600    |       | 7800   | 11200  | -3400   |
| HVAC system                                        | 1200                | 1000               | 1200           | 1000   | 1200      | 1000   | 1200    | 1000 | 1500   | 300   | 10600  | 14500  | -3900   |
| Cryogenic system<br>(helium compression<br>system) | 2500                |                    | 6000           |        | 2500      |        | 6000    |      |        |       | 17000  | 10000  | 7000    |
| Cooling water system                               | 3000                | 2500               | 3000           | 2500   | 3000      | 2500   | 3000    | 2500 | 1500   | 300   | 23800  | 29800  | -6000   |
| Experimental assembly<br>and storage hall          | 1500                | 1000               | 1000           | 1000   | 1500      | 1000   | 1000    | 1000 | 500    |       | 9500   | 6000   | 3500    |
| Transfer system                                    | 500                 | 300                | 400            | 300    | 500       | 300    | 400     | 300  | 200    | 150   | 3350   | 3550   | -200    |
| Air compression system                             | 300                 | 300                | 300            | 300    | 300       | 300    | 300     | 300  | 300    |       | 2700   | 1350   | 1350    |
| Electronic room                                    | 1000                | 300                | 300            | 300    | 1000      | 300    | 300     | 300  | 200    | 100   | 4100   | 6150   | -2050   |
| Data Center                                        | 600                 |                    |                |        | 600       |        |         |      |        |       | 1200   | 0      | 1200    |
| Miscellaneous                                      | 500                 | 500                | 500            | 500    | 500       | 500    | 500     | 500  | 300    | 100   | 4400   | 9000   | 4600    |
| Total                                              | 15400               | 7100               | 23100          | 7100   | 15400     | 7100   | 23100   | 7100 | 15500  | 1150  | 122050 | 140450 | -18400  |

#### 黄河勘测规划设计研究院有限公司 Yellow River Engineering Consulting Co., Ltd. General Layout Plan of IP2/IP4 IP2/IP4 Surface Structure (m) Control and duty rooms 300 110kw Magnet powers source 100 High-frequency power source 6000 110kV substation 3000 10kV substation 1000 HVAC system 1200 Cryogenic system Chelium compression 6000 system) Cooling water system 3000 High-frequence Experimental assembly and storage hall 1000 power source Transfer system 400 Air compression system 300 Electronic room 300 It of orange fail Data Center Miscellaneous 500 Total 23100

CEPC Accelerator EDR Status-J. Gao

## **CEPC Site Implementation and Construction Plans**

![](_page_26_Figure_1.jpeg)

#### **CEPC** site implementation plan in EDR

![](_page_27_Picture_0.jpeg)

#### **Participating and Potential Collaborating Companies in China (CIPC) and Worldwide**

高能锐新

上海超导

※ 岩和窟博

中国有色集团成员企业

东方钽业

OTIC

中国电建

POWERCHINA

TOLY ELECTRIC

![](_page_27_Figure_2.jpeg)

CEPC Accelerator EDR Status-J. Gao

The International workshop on CEPC, Oct. 26, Hangzhou

#### Potential international collaborating suppliers worldwide

![](_page_27_Figure_5.jpeg)

![](_page_27_Picture_6.jpeg)

![](_page_28_Picture_0.jpeg)

16:00

17:00

### **CIPC Parallel Sessions**

There are 19 CIPC talks covering a wide spectrum of CEPC-SppC related accelerator technologies

and industrial production capabilities in China

Nov. 23, 2024, Room 289

CEPC 高动率高效率650MI6/803kW连续波波器管闭射进展

| 14:00 | Accelerating Equipments Development at HERT | 未透氣(生产部登還)       |
|-------|---------------------------------------------|------------------|
|       | Room 269                                    | 14:00 - 14:20    |
|       | 射機關导設制造技术提升及产业化                             | <b>秋</b> 代乐(工程時) |
|       | Room 289                                    | 14-20 - 14-40    |
|       | 加速前部导系统相关部件进展工程                             | 李荣 (副总经理)        |
|       | Finam 289                                   | 14:40 - 15:00    |
| 15:00 | 大型核高新冲机研究与应用进展                              | 王广南技术中心副主任       |
|       | Roam 289                                    | 15:00 - 15:20    |
|       | <b>祭司任憲技术及接</b> 心設備                         | 秋浩卿 (お松の主任)      |
|       | Roam 269                                    | 15:20 - 15:40    |

#### Nov. 24, 2024, Room 289

| 09.00 | 项目过程建制结真研究描述与CEPC相关进展                                   | Prot 王佳道<br>(970-1923)                               |
|-------|---------------------------------------------------------|------------------------------------------------------|
|       | API後元田時仅在英連器領域的应用<br>Enner 283                          | 新日本<br>新日本<br>新日本<br>新日本<br>新日本<br>新日本<br>新日本<br>新日本 |
|       | HTC <b>及直空绳门</b> 介绍<br>FTC <b>及直空绳门</b> 介绍<br>Froom 209 | 2010-0000<br>別长江 (重句)<br>69.40-10:00                 |
| 10.00 | 費亞产生的環境与北京世华尖峰公司介绍<br>Room 288                          | 劇圖種 (経運)<br>10:00-10:20                              |
|       |                                                         | E                                                    |
|       |                                                         | C                                                    |
| 11:00 | 科特公司介绍与优势技术<br>Poom 209                                 | 龙风(副总经理)<br>11.00-11.20                              |
|       | 国内藏版产业介绍和上海克林发展与优势<br>Foom 209 -                        | 活病生(応日道)<br>1120-1140                                |
|       | 崔屏蔽产业概述及在离器物理中应用<br>Room 288                            | <i>能降(主任)</i><br>11-40-12-00                         |
| 12:00 | 編記版产产业发展与江苏减量的优势<br>Room 289                            | 史教君(总经理)<br>12:10-12:25                              |

16:00 - 16:2 0005 285 无锡华康园态放大器的现状及未来发展 用圣信 (总纪语) 16:20 - 16 0071 289 田心脉冲周制器 王聪聪(御总) 18.40 - 17.00 新华三智能绿色数据中心解决方案 供販売(にて解決方案工程)的 oom 289 17:00 - 17:20 北京高能新技术有限公司的发展与技术特点 17:20 - 17:40 00/19 285 二代素選倡导材料应用研究进展及未来产业 慶洪修 (忠政)創长) Room 289 17:40 - 18:00

https://indico.ihep.ac.cn/event/22089/sessions/14178/#20241023

王少哲(前长始日

![](_page_29_Picture_0.jpeg)

### **International Industrial Connection Sessions**

Nov. 25, 2024, Room 289 There are 12 international industrial talks covering a wide spectrum on detector technologies

| 11:00 | CAEN on Detector High Voltage                                                                                                                     |               |         |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|
|       | Room 289                                                                                                                                          | 11:00 - 11:15 |         |
|       | Design and Development of Thin-Walled Vacuum Chambers and High-Pressure Chambers for Applications in Physics Experiments (应用于物理实验的薄壁真空室和高气压室设计研制) | Yuntao Shen   | 1       |
|       | Room 289                                                                                                                                          | 11:15 - 11:30 |         |
|       | SIPM readout ASIC from Microparity                                                                                                                | Mr Wei Shen   | 8       |
|       | Room 289                                                                                                                                          | 11:30 - 11:45 |         |
|       | Imdetek on Advanced Detector Material                                                                                                             |               | 32      |
|       | Room 289                                                                                                                                          | 11:45 - 12:00 | -       |
| 12:00 | High Energy Physics and Medical Imaging (United-Imaging)                                                                                          | Mr Pengwei Xk | 60      |
|       | Room 289                                                                                                                                          | 12:00 - 12:15 | 11      |
|       | NCAP on Advanced Packaging Technology                                                                                                             |               | $\odot$ |
|       | Room 289                                                                                                                                          | 12:15 + 12:30 |         |

| 14.00 | New Generation Software-defined Modular Instrument Platform               | LIKUD AIE       |
|-------|---------------------------------------------------------------------------|-----------------|
|       | Room 289                                                                  | 14:00 - 14:15 2 |
|       | Intelligent special power supply service provider from Fullde Electronics | Ms Qiuping Li   |
|       | Room 289                                                                  | 14:15 - 14:36   |
|       | talk12 - TBD                                                              | 6               |
|       | Room 289                                                                  | 14:30 - 14:4.   |
|       | Keysight for High-end Instruments for Precision Measurement               |                 |
|       | Room 289                                                                  | 14:45 - 15:00   |
| 15:00 | NAT Europe on MicroTCA Crates & Standard (TBD)                            |                 |
|       | Room 289                                                                  | 15:00 - 15:15   |
|       | SAMTEC on Advanced Interconnections & Sockets (TBD)                       |                 |
|       | Room 289                                                                  | 15:15 - 15:30   |

https://indico.ihep.ac.cn/event/22089/sessions/14187/#20241025

![](_page_30_Picture_0.jpeg)

### **CEPC Industrial Preparation**

![](_page_30_Picture_2.jpeg)

#### Large-scale Cryogenic Refrigeration & Liquefaction Equipment S PHERE (CIPC member)

#### First 18kW@4.5K helium refrigerator fabricated in in China passes inspection

-It was developed by the Institute of TIPC,CAS, and integrated and manufactured by Fullcryo.

 The super large horizontal cold box with a length of 28m and a diameter of 4.2m achieves ultra-high vacuum and extremely low leakage.

 The horizontal cold box at megawatt-level is the largest of its kind in China and even in the world.

-The horizontal cold box system has exceeded the set targets.

-On-site testing: 1. The airtightness test of each internal channel revealed a pressure drop of 0, surpassing the target value of 0.02 bar. 2. The overall leakage rate is 9.1×10<sup>-10</sup> Pa.m<sup>3</sup>/s, surpassing the target value of 1×10<sup>-7</sup> Pa.m<sup>3</sup>/s.

-Expected Goals: Achieving 3 operational mode adjustments: the cooling capacity ≥ 18kW@4.5K; the cooling capacity in the superfluid helium temperature range ≥4kW@2K.

#### HE-RACING Technology and OTIC on SRF Technologies (CIPC members)

High RRR Nb sheet

10GeV L3GHz and 650MHz SRF accelerators (ttar)

We had built the business relationship with many groat customers such as DESY, MSU, Fermilab, ILAB, INFN, STFC, CERN, TRIUMF, RL ZANON, IHEP, IBS, RRCAT etc.

CEPC booster and colliders: 2GeV 1.3GHz and 650MHz SRF accelerators (Higgs);

![](_page_30_Figure_12.jpeg)

![](_page_30_Picture_13.jpeg)

(CIPC member)

![](_page_30_Picture_15.jpeg)

2017 INFN and STEC - ESS RRR300 Nb: 12.5 tons, 100% of the project

2019 185 - RISP, CERN - HL-LHC, Formilab - PIP-II, Shanghai - SHINE 8885300 niobium material procurement in progress

![](_page_30_Picture_18.jpeg)

![](_page_30_Picture_19.jpeg)

北京中科富海低温科技有限公司 Beijing Sinoscience Fullcryo Technology CO., Ltd. (CIPC member)

1.3GHz cryomodule assembly

High RRR Nb ingod High RRR large grain Nb

#### CEPC 650MHz 800kW CW High Efficiency Klystrons

![](_page_30_Picture_22.jpeg)

Kamihan National Research Institute has successively developed 650MHz/800KW klystron sample tubes, 650MHz/800KW high-efficiency klystron sample tubes, 648MHz pube klystron tubes, 650MHz/800KW multi-injection klystron beam tubes, and the intest 324MHz pube klystron tubes Electro vacuum products for 50 years. Provide high power thyristor of GL1536A in batches for BEPCII in 2012.

![](_page_30_Picture_24.jpeg)

#### **RF Shielding all Metal Gate Vacuum Valve**

#### HIC 日揚科技

- Two prototypes of RF shielding All metal gate valve have been developed, and the leakage of one of them have been tested.
- The delivery inspection leakage test results for two valves, conducted by the manufacturer, were found to be < 1×10<sup>9</sup> mbar -L/s (30 times open and closed).
- The difference of leakage by IHEP & manufacture will be checked and retested in next.

![](_page_30_Figure_30.jpeg)

![](_page_30_Figure_31.jpeg)

![](_page_30_Picture_32.jpeg)

![](_page_31_Picture_0.jpeg)

## CEPC in Synergy with other Accelerator Projects in China $_{\scriptscriptstyle 32}$

| Project name    | Machine type                                        | Location                                             | Cost (B RMB)                          | Completion time                         |
|-----------------|-----------------------------------------------------|------------------------------------------------------|---------------------------------------|-----------------------------------------|
| CEPC            | Higgs factory<br>Upto ttar energy                   | Led by IHEP, China                                   | <b>36.4 (where</b><br>accelerator 19) | Around 2035 (starting time around 2027) |
| <b>BEPCII-U</b> | e+e-collider 2.8GeV/beam                            | IHEP (Beijing)                                       | 0.15                                  | 2025                                    |
| HEPS            | 4 <sup>th</sup> generation light source of 6GeV     | IHEP (Huanrou)                                       | 5                                     | 2025                                    |
| SAPS            | 4th generation light source of 3.5GeV               | IHEP (Dongguan)                                      | 3                                     | 2031 (in R&D, to be approved)           |
| HALF            | 4th generation light source of 2.2GeV               | USTC (Hefei)                                         | 2.8                                   | 2028                                    |
| SHINE           | Hard XFEL of 8GeV                                   | Shanghai-Tech Univ., SARI and SIOM of CAS (Shanghai) | 10                                    | 2027                                    |
| S3XFEL          | S3XFEL of 2.5GeV                                    | Shenzhen IASF                                        | 11.4                                  | 2031                                    |
| DALS            | FEL of 1GeV                                         | Dalian DICP                                          | -                                     | (in R&D, to be approved, )              |
| HIAF            | High Intensity heavy ion Accelerator Facility       | IMP, Huizhou                                         | 2.8                                   | 2025                                    |
| CIADS           | Nuclear waste transmutation                         | IMP, Huizhou                                         | 4                                     | 2027                                    |
| CSNS-II         | Spallation Neutron source proton injector of 300MeV | IHEP, Dongguan                                       | 2.9                                   | 2029                                    |

The total cost of the accelerator projects under construction:39B RMB more than CEPC cost of 36.4B RMB

![](_page_32_Picture_0.jpeg)

### **CEPC International Collaboration-1**

# CEPC attracts significant International participation and collaborations

Accelerator TDR report: 1114 authors from 278 institutes (including 159 International Institutes, 38 countries) Published in Radiation Detection Technology and Methods (RDTM) on June 3, 2024: DOI: 10.1007/s41605-024-00463-y https://doi.org/10.1007/s41605-024-00463-y

![](_page_32_Picture_4.jpeg)

- More than 20 MoUs have been signed with international institutions and universities
- CEPC International Workshop since 2014
- EU-US versions of CEPC WS since 2018
- Annual working month at HKUST-IAS (mini workshops and HEP conference) since 2015

![](_page_32_Picture_9.jpeg)

![](_page_33_Picture_0.jpeg)

### **CEPC International Collaboration-2**

#### HKIAS23 HEP Conference, Feb. 14-16, 2023

#### https://indico.cern.ch/event/1215937/

![](_page_33_Picture_4.jpeg)

The 2024 HKUST IAS Mini workshop and conference were held from Jan. 18-19, and Jan. 22-25, 2024, respectively. https://indico.cern.ch/event/1335278/timetable/?view=standard

Joint Workshop to Commemorate the MOU Between Korea University (KU) and the Institute of High Energy Physics (IHEP), Oct. 14-15,2024, Korea Uiniversity, Korea https://indico.korea.ac.kr/event/104/

The 2025 HKUST IAS HEP conference: Jan. 13-17, 2025.

CEPC Workshop EU Edition (Barcelona, Spain), May 5-8, 2024

CEPC Accelerator EDR Status-J. Gao

The 2023 International Workshop on Circular Electron Positron Collider, EUEdition,University of Edinburgh, July 3-6, 2023 <u>https://indico.ph.ed.ac.uk/event/259/overview</u>

![](_page_33_Picture_11.jpeg)

![](_page_33_Picture_12.jpeg)

The 2024 international workshop on the high energy Circular Electron Positron Collider (CEPC) are held from Oct. 23-27, 2024, Hangzhou, China https://indico.ihep.ac.cn/event/22089/

The International workshop on CEPC, Oct. 26, Hangzhou

The 2023 international workshop on the high energy Circular Electron Positron Collider (CEPC)

https://indico.ihep.ac.cn/event/19316/

![](_page_33_Picture_17.jpeg)

Professor Peter Higgs passed away on **April 8, 2024**. We miss him.

The 2024 international workshop of CEPC, EU-Edition were held in Marseille, France, April 8-11, 2024. <u>https://indico.in2p3.fr/event/20053/overview</u>

![](_page_33_Picture_20.jpeg)

FCPPNL, Bordeaux, France, June 10-14, 2024 https://indico.in2p3.fr/event/20434/overview

![](_page_34_Picture_0.jpeg)

### **CEPC Planning, Schedule and Teams**

#### TDR (2023), EDR(2027), start of construction (~2027)

| CEPC           | Project Timeline                                                                                                                                             | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028            | 2029 | 2030 | 2031 | 2032 | 2033            | 2034 | 2035 | 2036 | 2037 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|-----------------|------|------|------|------|-----------------|------|------|------|------|
| -              | Technical Design Report (TDR)                                                                                                                                |      |      |      |      |      | 15   | <sup>th</sup> F | Ϋ́   |      |      | 16   | <sup>th</sup> F | FY   |      |      |      |
| lerator        | Engineering Design Report (EDR)<br>R&D of a series of key technologies<br>Prepare for mass production of devices though CIPC                                 |      |      |      |      |      | ļ.   |                 |      |      |      |      |                 |      |      |      |      |
| Acce           | Civil engineering, campus construction                                                                                                                       |      |      |      |      |      |      |                 |      |      |      |      |                 |      |      |      |      |
|                | Construction and installation of accelerator                                                                                                                 |      |      |      |      |      |      |                 |      |      |      |      |                 |      |      |      |      |
|                |                                                                                                                                                              | -    | _    | _    | -    |      |      |                 |      |      |      | _    | _               | _    | _    |      |      |
|                | New detector system design &<br>Technical Design Report (TDR)                                                                                                |      |      |      |      |      |      |                 |      |      |      |      |                 |      |      |      |      |
| Detector       | Detector construction, installation &<br>joint commissioning with accelerator                                                                                |      |      |      |      |      |      |                 |      |      |      |      |                 |      |      |      |      |
|                | Experiments operation                                                                                                                                        |      |      |      |      |      |      |                 |      |      |      |      |                 |      |      |      |      |
| lat<br>no      | Further strengthen international cooperation in the                                                                                                          |      |      |      |      |      |      |                 |      |      |      |      |                 |      |      |      |      |
| atior          | filed of Physics, detector and collider design                                                                                                               |      |      |      |      |      |      |                 |      |      |      |      |                 |      |      |      |      |
| Intern<br>Coop | Sign formal agreements, establish at least two<br>international experiment collaborations, finalize<br>details of international contributions in accelerator |      |      |      |      |      |      |                 |      |      |      |      |                 |      |      |      |      |
|                |                                                                                                                                                              |      |      |      |      |      |      |                 |      |      |      |      |                 |      |      |      |      |

**CEPC team (domestic)** CEPC accelerator and detector/experiments/theory group is an highly **experienced** team with strong international collaboration experiences. It has demonstrated its expertise and achievements is the following related projects, both domestic and international ones, such as: **BEPC-BEPCII (BES-BESIII), BFELP,** CSNS, ADS, HEPS, LEP, LHC, LHCb, ILC, EXFEL, HL-LHC, BELLE, **BELLE-II, CLEO, Daya Bay, JUNO,** LHAASO, etc. **CEPC** international partners and collaborators

![](_page_35_Picture_0.jpeg)

### CEPC IARC EDR Review-2024 (Sept. 18-20)

Meeting of the CEPC International Accelerator Review Committee September 18-20, 2024, IHEP, Beijing

#### Charge

Charge

The CEPC Study Group, hosted by the Institute of High Energy Physics (IHEP), has been working on the design and development of a forefront e'e' collider as a Higgs factory that can extend to energies corresponding to the Z, WW and the top quark pairs, with the upgrade potential to a high energy pp collider. The CEPC represents a grand plan proposed, studied, and to be constructed by Chinese scientists in close collaboration with international partners. The CEPC Accelerator Technical Design Report was released in December, 2023, which documents the design, the outcomes of the R&D of key technologies, the technical systems, and the cost estimate of the e'e' collider.

#### **Report**

#### First CEPC IARC EDR Review Report

#### CEPC IARC EDR Review Committee

11 October 2024

The CEPC Study Group, hosted by the Institute of High Energy Physics (IHEP), has been working on the design and development of a forefront  $e^+e^-$  collider as a Higgs factory that can extend to energies corresponding to the Z, WW and top-quark-pair production, with the upgrade potential to a high-energy pp collider. The CEPC represents a grand plan proposed, studied, and to be constructed by Chinese scientists in close collaboration with international partners. The CEPC Accelerator Technical Design Report, which documents the design, the outcomes of the R&D of key technologies, the technical systems, and the cost estimate of the  $e^+e^-$  collider, was released in December, 2023. Going beyond the TDR and preparing CEPC for construction, which may begin in 2027-8, the CEPC Study Group has initialized the Engineering Design Study which will be documented in a formal report (EDR). In 2025, a CEPC proposal will be submitted to Chinese government aiming for CEPC be included into the 15th five year plan. The International Accelerator Review Committee (IARC), chaired by Dr. Maria Enrica Biagini (INFN, Frascati) has been asked to conduct the first review on the development of the CEPC accelerator technical systems within the context of the EDR study. The Committee is specifically asked to review and comment on the following aspects:

| Sep 18th 2024B     | eijing time | CET time | Talk t | imeSpeaker         | Title                                                      |
|--------------------|-------------|----------|--------|--------------------|------------------------------------------------------------|
| Wednesday          | 9:00        | 3:00     | 5'     | Yifang Wang        | Welcome                                                    |
|                    | 9:05        | 3:05     | 25'    | Xinchou Lou        | CEPC general status                                        |
|                    | 9:30        | 3:30     | 30'    | Jie Gao            | CEPC accelerator EDR general scope, plan and status        |
|                    | 10:00       | 4:00     | 30'    | Coffee break       |                                                            |
|                    | 10:30       | 4:30     | 30'    | IARC preparation   | meeting (closed)                                           |
|                    | 11:00       | 5:00     | 30'    | Wen Kang/Mei Yang  | CEPC Magnets (both collider & booster)                     |
|                    | 11:30       | 5:30     | 30'    | Cai Meng/Jingru Zl | han CEPC Linac EDR plan and status                         |
|                    | 12:00       | 6:00     | 30'    | Dou Wang           | CEPC booster and damping ring (DR) EDR plan and status     |
|                    | 12:30       | 6:30     | 90'    | Lunch              |                                                            |
|                    | 14:00       | 8:00     | 30'    | Yiwei Wang         | CEPC collider ring beam dynamics EDR plan and status       |
|                    | 14:30       | 8:30     | 30'    | Sha Bai            | CEPC MDI EDR plan and status                               |
|                    | 15:00       | 9:00     | 30'    | Haijing Wang       | CEPC Interaction Region engineering design status          |
|                    | 15:30       | 9:30     | 30'    | Coffee break       |                                                            |
|                    | 16:00       | 10:00    | 30'    | Guangyi Tang       | Radiation in the tunnel and its mitigation for CEPC EDR    |
|                    | 16:30       | 10:30    | 60'    | IARC discussion    | and Q/A with CEPC accelerator speakers                     |
|                    | 17:30       | 11:30    | 30'    | IARC members       | Closed session                                             |
|                    |             |          |        |                    |                                                            |
| Sep 19th 2024      | 9:00        | 3:00     | 30'    | Yingshun Zhu       | CEPC SC quadrupoles development plan in EDR and status     |
| Thursday           | 9:30        | 3:30     | 30'    | Haijing Wang       | CEPC Mechanical system EDR plan and status                 |
|                    | 10:00       | 4:00     | 30'    | Yongsheng Ma       | CEPC Vacuum system EDR plan and status                     |
|                    | 10:30       | 4:30     | 30'    | Coffee break       |                                                            |
|                    | 11:00       | 5:00     | 90'    | IARC discussion    | and Q/A with CEPC accelerator speakers (partly closed if   |
|                    | 12:30       | 6:30     | 90'    | Lunch              |                                                            |
|                    | 14:00       | 8:00     | 30'    | Tivuan Zhai/Peng S | Sha CEPC SRF (both collider & booster) EDR plan and status |
|                    | 14:30       | 8:30     | 30'    | Rui Ge/Mei Li      | CEPC cryogenic system EDR plan and status                  |
|                    | 15:00       | 9:00     | 30'    | Zusheng Zhou       | CEPC RF power sources and power distribution EDR plan an   |
|                    | 15:30       | 9:30     | 30'    | Coffee break       |                                                            |
|                    | 16:00       | 10:00    | 60'    | IARC discussion    | and Q/A with CEPC accelerator speakers                     |
|                    | 17:30       | 11:30    | 60'    | IARC members       | Closed session                                             |
|                    | 18:30       |          | 180'   | Banquet            |                                                            |
| Sep 20th 2024      | 9:00        | 3:00     | 30'    | Xiaolong Wang      | CEPC alignment and installation EDR plan and status        |
| ridav              | 9:30        | 3:30     | 30'    | Yanfeng Sui        | CEPC accelerator instrumentation EDR plan and status       |
| ~                  | 10:00       | 4:00     | 30'    | Yuhui Li           | CEPC sustainable development issues                        |
|                    | 10:30       | 4:30     | 30'    | Coffee break       | ·                                                          |
|                    | 11:00       | 5:00     | 60'    | IARC discussion    | and Q/A with CEPC accelerator speakers (partly closed if   |
|                    | 12:30       | 6:00     | 90'    | Lunch              |                                                            |
|                    | 14:00       | 8:00     |        | Adjourn and visi   | t to HEPS facility                                         |
|                    |             |          |        |                    |                                                            |
| Sep <b>**</b> 2024 | 14:30       | 8:30     | 150'   | IARC members       | Closed session for document editing and final reading      |
| (IRN)              | 17:00       | 11:00    | 60.    | ALL                | Keport presentation to CEPC Team                           |
|                    | 17.1301     | 111100   |        |                    | AC 101170                                                  |

![](_page_35_Picture_12.jpeg)

![](_page_35_Picture_13.jpeg)

Visiting PAPS and HEPS's commission 40mA stored beam

![](_page_36_Picture_0.jpeg)

### Summary

- The CEPC TDR optimizations designs with high luminosity (30MW and 50MW) operations for all four energies (Higgs, W/Z and ttbar) satisfy the CEPC scientific goals.
- CEPC accelerator TDR international review and cost review were held from June 12-16, 2023 and Sept. 11-15, 2023, respectively, and endorsed by IAC meeting held from Oct. 30-31, 2023. CEPC Accelerator TDR has be released formally on December 25, 2023 and published in Journal Radiation Detection Technology and Methods (RDTM) on June 3, 2024: DOI: 10.1007/s41605-024-00463-y https://doi.org/10.1007/s41605-024-00463-y
- EDR site selection and site dependent engineering design have already been started
- Detailed preparation of CEPC EDR phase (2024-2027) before construction working plan and beyond have been established with the aim for CEPC proposal to be presented to and selected by Chinese government around 2025 for the construction start during the "15th five year plan (2026-2030)" (for example, around 2027) and completion around 2035.
- CEPC Accelerator EDR have progressed well with corresponding EDR budgets and EDR human resources, and has been reviewed by IARC in Sept. 18-20, 2024 at IHEP.
- A beam driven PWFA experimental program has been initialized and started at IHEP to address the cascade and e+ accelerations aiming on future plasma injector for CEPC and future linear colliders.

• International collaboration and participation are warmly welcome. CEPC Accelerator EDR Status-J. Gao The International workshop on CEPC, Oct. 26, Hangzhou

![](_page_37_Picture_0.jpeg)

Thanks go to CEPC-SppC accelerator team's hard works, international and CIPC collaborations

Special thanks to CEPC IB, SC, IAC, IARC and TDR review (+cost) committee's critical advices, suggestions and supports

# Thanks for your attention