TDR of A Reference CEPC Detector

Jianchun Wang (IHEP, CAS) For the CEPC Study Group

CEPC2024 Workshop, Oct 23-27, 2024, Hangzhou

- Motivation of A Reference CEPC Detector TDR
- Technology Selections
- Status of R&D Projects
- R&D Team and International Collaborative Efforts
- **Timeline of The Ref-TDR**

Refer to the presentations at this workshopOverview of The CEPCXinchou LouThe CEPC Accelerator EDRJie Gao

The Circular Electron Positron Collider

- □ The CEPC was proposed in 2012 right after the Higgs discovery. It aims to start operation in 2030s, as an e⁺e⁻ Higgs / Z factory.
- To produce Higgs / W / Z / top for high precision Higgs, EW measurements, studies of flavor physics & QCD, and probes of physics BSM.
- □ It is possible to upgrade to a *pp* collider (SppC) of \sqrt{s} ~ 100 TeV in the future.

CEPC Design Reports

Ideal Timeline of CEPC

TDR of A Reference CEPC Detector

- □ The Ref-TDR needs to be released in a timely fashion, by June 2025, hopefully to boost the chance to receive an official endorsement for the 15th FYP
- □ We treat it as a TDR of real detector system to be built very soon
 - Demonstrate the readiness and feasibility of detector technologies
 - Provide a realistic detector cost estimation
 - Assess requirements and availabilities of people power
- □ We are working on a TDR as a reference. When the two international collaborations are formed, they will deliver TDRs of two detectors for the real experiments.
- □ The exercise and efforts on the Ref-TDR will be very valuable assets, not only in technology development but also in team building.

CEPC Operation Plan

(Operation mode	ZH	Z	W+M-	tī
	\sqrt{s} [GeV]		~91	~160	~360
I	Run Time [years]		2	1	5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
30 MW	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	13	60	4.2	0.65
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
50 MW	∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	21.6	100	6.9	1
	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

CEPC accelerator TDR (Xiv:2312.14363)

While aiming to have a detector that matches the needs of the whole energy range, we emphasize more on the Higgs operation mode.

Requirements on Detector Design

- □ The detectors should be able to operate for at least 10 years in Higgs mode, or better ~18 years of HZ, Z, W⁺W⁻, and tt̄ productions.
- □ Optimized to the CEPC base clock frequency of 43.3 MHz (or period = 23.1 ns).
- □ The system should be able to handle relevant event rates.
 - In Higgs mode and L / IP (50 MW) = 8.3 ×10³⁴ cm⁻²s⁻¹:
 - beam-beam crossing rate ~ 1.34 MHz, ZH ~16.6 mHz, $q\bar{q}$ ~ 5.0 Hz
 - In Z mode and L / IP (50 MW) = 1.92 ×10³⁶ cm⁻²s⁻¹: beam-beam crossing ~ 39.3 MHz, visible Z ~ 66 kHz
- □ The detectors can endure radiation damage and noise hit rates, accordingly.
 - According to very preliminary studies, in the Higgs mode at the Vertex detector:

max noise hit rate ~ 0.6 MHz / cm², max TID ~2.1 Mrad/year

 It is relatively friendly environment comparing to a hadron collider. Radiation resilience and noise hit rate should not be huge problems.

Detector Key Specifications

Sub-system	Key technology	Key Specifications	
Vertex	6-layer CMOS SPD	$\sigma_{r_{\phi}}$ ~ 3 μ m, X/X ₀ < 0.15% per layer	
Tracking	CMOS SPD ITK, AC-LGAD SSD OTK, TPC + Vertex detector	$\sigma\left(\frac{1}{P_T}\right) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{P \times \sin^{3/2} \theta} (GeV^{-1})$	
Particle ID	dN/dx measurements by TPC Time of flight by AC-LGAD SSD	Relative uncertainty ~ 3% $\sigma(t)$ ~ 30 ps	
EM calorimeter	High granularity crystal bar PFA calorimeter	EM resolution ~ $3\%/\sqrt{E(GeV)}$ Granularity ~ 1×1×2 cm ³	
Hadron calorimeter	Scintillation glass PFA hadron calorimeter	Support PFA jet reconstruction Single hadron $\sigma_E^{had} \sim 40\% / \sqrt{E(GeV)}$ Jet $\sigma_E^{jet} \sim 30\% / \sqrt{E(GeV)}$	

- Design of the CEPC detector evolves with the R&D progressing and our better understanding of the physics reach.
- The key specifications continue to be optimized.

Conceptual Detector Designs

Technologies for Ref-TDR

Radius

System	Technologies				
System	Baseline	Backup / Comparison			
Beam pipe	Φ20 mm				
LumiCal	SiTrk + Crystal				
Vertex	CMOS + Stitching	CMOS Si Pixel			
	CMOS Si Pixel ITK	SSD + RO Chip, CMOS SSD			
Trockor	Pixelated TPC	PID Drift Chamber			
TIACKEI	AC-LGAD OTK	SSD / SPD OTK			
		LGAD ToF			
ECAL	4D Crystal Bar	Stereo Crystal Bar, GS+SiPM, PS+SiPM+W, SiDet+W			
HCAL	GS+SiPM+Fe	PS+SiPM+Fe, RPC+Fe			
Magnet	LTS	HTS			
Muon	PS bar+SiPM	RPC			
TDAQ	Conventional	Software Trigger			
BE electr.	Common	Independent			

- The CEPC study group started to compare different technologies in January, 2024
- By the end of June, 2024 the baseline technologies were chosen.
- Multiple factors were considered in the process: performance, cost, R&D efforts, technology maturity, ...

We will continue pursuing better technologies for the two final detectors at CEPC

Geometry and Mechanical Support

order

MDI, Beam Background and LumiCal

- Design of the CEPC interaction region, beam pipe and LumiCal
- Preliminary estimate of beam-induced background, taking into account the collimators and shielding. The worst point at Vertex detector ~2.1 Mrad/year in Higgs mode
- ❑ LYSO bar and SPD based LumiCal design for a 10⁻⁴ luminosity precision, yet to be validated.

Silicon Pixel Vertex Detector

Goal: $\sigma(IP) \sim 5 \mu m$ for high P

Key specifications:

- Single point resolution ~ 3 μm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

A TaichuPix-based prototype detector was tested at DESY in 2023. SP resolution \sim 4.9 μ m. Thermal and material properties need further improvement.

TaichuPix3 1024×512 array of 25×25 μm²

TowerJazz 180nm CIS process

Look into stitching + curved MAPS for less material and easier cooling

Silicon Pixel Inner Tracker

□ Focus on HV-CMOS pixel detector of ~15-20 m^{2.}

□ Exploring SMIC 55 nm and other processes

- COFFEE2 chip: V_{bd} ~ 70V, C(1 pixel) ~ 30-40 fF, I_{Leakage} ~10 pA→1 nA after 10¹⁴ n_{eq}/cm² irradiation, response to laser and rad source
- New MPW submission next spring

Overall detector design based on typical chip size

SMIC 55 nm, COFFEE chip

Pixelated TPC

- Initial TPC design has difficulty at high luminosity Z pole due to IBF
- A pixelated TPC of $(500 \ \mu m)^2$ readout pad size could reduce IBF×Gain ~1 @ G=2000, achieves $\sigma(r-\Phi) \sim 100 \ \mu m$. Optimization of the pad size is in on-going.
- Full simulation study also shows $3\sigma \text{ K}/\pi$ separation at 20GeV
- Preliminary mechanical design \Rightarrow RL = 15% X₀ for endcap and 0.55% X₀ for barrel.
- Plan to have a test beam this fall to assess the performance and validate the design

AC-LGAD OTK (Time Tracker)

The outer silicon tracker ~ 85 m², the Z precision is not crucial

 \Rightarrow Cost-effective SSD

- □ An AC-LGAD Time Tracker combines the two needs in one detector. We expect $\sigma_t \sim 30$ ps, $\sigma_{R\Phi} \sim 10 \mu m$

□ Need to validate with full size sensors

Prototype PFA Calorimeters

□ ScW-ECAL: transverse 20×20 cm, 32 sampling layers

~6,700 channels, SPIROC2E (192 chips)

□ AHCAL: transverse 72×72 cm, 40 sampling layers

~13k channels, SPIROC2E (360 chips)

HCAL: scintillator (tile)+SiPM, steel

Prototypes developed within CALICE

- China: IHEP, SJTU, USTC
- Japan: U. Shinshu, U. Tokyo
- France: CNRS Omega
- Israel: Weizmann Institute

Crystal Bar EM Calorimeter

- □ Compatible to PFA: Boson mass resolution $BMR(H \rightarrow jj) < 4\%$
- □ Optimal EM performance: $\sigma_E / E < 3\% / \sqrt{E}$, BMR(H→ $\gamma\gamma$) ~ 0.6 GeV
- Save readout channels, minimize dead materials
- □ Challenging in pattern recognitions with multiple particles

Testbeam of Prototype Crystal ECAL

20

- ✤ Successful testbeam @ DESY, CERN, 2023-2024 with small prototype
 - EM resolution (preliminary): $1.3\%/\sqrt{E} \oplus 0.7\%$
- To address critical issues at system level, validate design of crystal-SiPM, light-weight mechanical structure
- ✤ A full size prototype will be constructed
- Module development
 - BGO crystal bars from SIC-CAS
 - SiPM: 3×3 mm² sensitve area, 10µm pixel pitch

Glass Scintillator HCAL

- To replace plastic scintillator with high density, low cost glass scintillator for better hadronic energy resolution and BMR
- The Scintillation Glass collaboration continues to progress on the quest for better GS, and technique for mass production
- To produce a full-scale GS-HCAL prototype with integrated electronics for beam test

Parameters	Unit	Goal	BGO	GS1	GS1+	GS5
Density	g/cm ³	6	7.13	6.0	6.0	5.9
Rad. Length, X ₀	cm		1.12	1.59	1.60	1.61
Transmittance	%		82	70	80	80
Refractive Index			2.1	1.74	1.71	1.75
Emission Peak	nm		480	400	390	390
Light Yield, LY	ph/MeV	1000	8000	985	2445	1154
Energy Resol, ER	%		9.5	30.3	25.8	25.4
Decay time	ns	~100	60, 300	36, 105	101, 1456	90, 300

9 20 21 22 23 24 25 26

Muon Detector

- Use extruded plastic scintillator technology, provide Muon ID (P>4 GeV)
- > The magnet return yoke is used as muon absorber
- Solid angle coverage: 0.98×4π, total detection area
 ~ 4500 m², ~40k channels
- To build a prototype detector, measure performance, and validate the design

SC Solenoid Magnet

Central B field	3 T
Inner diameter	7070 mm
Outer diameter	8470 mm
Thickness	700 mm
Length	9050 mm
Cold mass	185 tons
Yoke weight	2960 tons
Magnet weight	290 tons

- Optimizing the baseline LTS design for better uniformity, thinner space, and cost-effectiveness.
- R&D on HTS cable continues

Magnetic field simulation

Cable structure

LTS: Aluminum stabilized <u>NbTi</u> Rutherford cable

Electronics and TDAQ

- Baseline: Triggerless FE readout & BE trigger
- Maximizing the common design:
 - Common FEE blocks, including data aggregation, transmission, optical, powering
 - Common BEE & Common Trigger: configurable for individual subsystems.

CEPC Software

- **CEPCSW** is developed based on components of Key4hep: Gaudi, EDM4hep, K4FWCore DD4hep
- Web-based Phoenix tool for visualization
- Several releases in the past few months, aiming to meet the requirements of the RefTDR
- Use as close as possible the full simulation
- Evaluation of physics performance also provides feedbacks to the CEPCSW

https://cepcvis.ihep.ac.cn/#/

R&D Teams on CEPC Detector

- Researchers from ~35 major domestic research institutes actively participate in the CEPC detector R&D projects. More are joining while the projects progressing and funding support increasing.
- □ About 90 staff members from IHEP are working on the CEPC detector and physics, and close to 200 from other institutes.
- Many of them were key members in building major China-based successful experiments: BES, DayaBay, JUNO, LHAASO, ...
- □ Some take fast rising roles in major experiments abroad: ATLAS, CMS, LHCb, ALICE, AMS, ...
- □ JUNO will switch to operation mode soon. More researchers, especially engineers, will shift their focus onto CEPC.
- International participations (~20 institutes) in subdetector R&Ds, e.g. MAPS detector, TPC, PID Drift chamber, …
- □ When the CEPC receives official endorsement, more international teams will join and propose detector design ideas, and eventually form two international collaborations.

International Collaborative Efforts

- ✤ The CEPC detector design incorporates experience from other future Higgs factory proposals, e.g. ILD.
- International detector R&Ds
 - Some detector R&D efforts were within the international detector R&D collaborations, e.g. CALICE, LCTPC, & RD*
 - Much broader participation in the ECFA DRD program

Sub-system	DRD	Sub-system	DRD	Sub-system	DRD
Pixel Vertex Detector	3	Electromagnetic Calorimeter	6	Super Conducting Magnet	
Inner Silicon Tracker	3	Hadron Calorimeter	1, 6	Mechanical and Integration	(8)
Outer Silicon Tracker	3	Machine Detector Interface	(8)	General Electronics	(7)
Gas Tracker	1 (TPC/DC)	Luminosity Calorimeter		Trigger and DAQ	(7)
Muon Detector	1 (RPC)	Fast Luminosity Monitor	3	Offline Software	

Direct participation from international collaborators in the CEPC R&Ds.

Document Structure of Ref-TDR

- The ref-TDR has 16 chapters, which may be re-structured later.
- Each chapter has a responsible team, including members from domestic and international institutes.
- □ An editorial team has been established.

- 1) Physics Goal and Requirements
- 2) Concept Introduction
- 3) MDI and Luminosity Detectors
- 4) Vertex Detector
- 5) Silicon Trackers
- 6) Gaseous Trackers
- 7) Electromagnetic Calorimeter
- 8) Hadron Calorimeter
- 9) Muon Detector
- 10) Superconducting Solenoid Magnet
- 11) General Electronics
- 12) Trigger and Data Acquisition
- 13) Software and Computing
- 14) Mechanics and Integration
- 15) Physics Performance
- 16) Overall Cost and Project Timeline

Review By The CEPC IDRC

	Ivan Villa Alvarez	IFCA
	Daniela Bortoletto (Chair)	U. Oxford
	Jim Brau	U. Oregon
	Anna Colaleo	INFN/Bari
	Paul Colas	CEA Saclay
	Cristinel Diaconu	СРРМ
	Frank Gaede	DESY
	Colin Gay	UBC
	Liang Han	USTC
	Gregor Kramberger	IJS
	Bob Kowalewski	U. Victoria
	Roman Poeschl	IJCLab
	Burkhard Schmidt	CERN
	Maxim Titov	CEA Saclay
	Tommaso Tabarelli de Fatis	INFN/Milano-Bicocca
	Roberto Tenchini	INFN/Pisa
	Christophe De La Taille	OMEGA/CNRS
	Hitoshi Yamamoto	Tohoku U.
	Akira Yamamoto	KEK
1	0/26/2024	

The CEPC International Detector Committee Meeting in 2024

- The CEPC IDRC (International Detector Review Committee) held a meeting at IHEP, Oct 21-23, 2024, reviewed the status and plan of Ref-TDR
- Generally, there is no showstopper. The committee provided very helpful recommendations which will guide the work in the following months.

Timeline of Ref-TDR

Date	Actions and/or Expectations			
Jan 1, 2024	Start the ref-TDR process by comparing different technologies			
Jul 1, 2024	Baseline technologies are chosen; start to write TDR and address key issues			
Aug 7, 2024	Report to the IDRC chair Prof Daniela Bortoletto			
Oct 21-23, 2024	Review of the Ref-TDR plan by the IDRC			
Oct 23-27, 2024	Report at the CEPC workshop			
Oct 29-30, 2024	Report progresses to the CEPC IAC			
~ January 2025	The first draft of the ref-TDR is ready for internal reviews			
~ April 2025	Finish international reviews			
Jun 30, 2025	The ref-TDR is ready to release			

We welcome more international and domestic teams to join the quest.