CEPC trigger simulation

Boping Chen

中国科学院高能物理研究所 IHEP On behalf of CEPC TDAQ Group

Oct. 24, 2024

CEPC workshop, Oct. 24, 2024

Boping Chen (中科院高能所 IHEP)

æ

3 1 4 3 1

< 一型

Circular Electron Positron Collider (CEPC) introduction

- Proposed by the Chinese particle physics community in 2012 to explore the aforementioned physics program
- Double-ring collider with electron and positron beams circulated in opposite directions in separate beam pipes, with two interaction points (IPs)
- Four different modes: **Higgs**, Z, W and $t\bar{t}$
- Higgs factory for precision measurements and searches for BSM physics

Physical Event Rate

- Higgs mode (240GeV) bunch crossing rate: ~ 1.34 MHz
 - Higgs boson production rate: \sim 0.017 Hz
 - $q\bar{q}$ rate: \sim 5 Hz
- Z mode (91GeV) bunch crossing rate: ~39.3 MHz
 - Visible Z: \sim 66 kHz
- Very low physical event rates compared to the bunch crossing rate
- Trigger: remove as much background as possible, and keep physical events as more as possible

	Higgs	Z	W	tť				
SR power per beam (MW)	50							
Bunch number	446	13104	2162	58				
Bunch spacing (ns)	346.2	23.1	138.5	2700.0				
	(×15)	(×1)	(×6)	(×117)				
Train gap (%)	54	9	10	53				
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	8.3	192	26.7	0.8				

CEPC Physics & Detector CDR

CEPC Accelerator TDR

Electronics framework schema

- Full data transmission from Front-End Elec
- Connect trigger with Back-End Elec
- More detail will be presented by W. Wei on Oct. 26.
- Trigger solutions
 - Baseline option: hardware trigger(L1) + high level trigger(HLT)
 - L1: Calorimeter and Muon detector (presented in this talk)
 - L1: may be able to use vertex, tracker and even TPC (30 us time window), to be studied
 - L1 trigger rate: Higgs: O(1k) Hz; Z: O(100k) Hz
 - HLT: Full detector information (to be studied)
 - HLT trigger rate: Higgs: <100Hz; Z: 100kHz
 - Other option: full software trigger
 - More complicated algorithm, may be helpful for new physics

< ロト < 同ト < ヨト < ヨト

Signal

- $ee \rightarrow ZH$
 - Z \rightarrow ee, $\mu\mu$, $\tau\tau$, $\nu\nu$
 - H \rightarrow bb, WW, au au, cc, ZZ, $\gamma\gamma$, Z γ , $\mu\mu$...
- $ee \rightarrow qq$, WW, ZZ...

Background

- Beam induced background
- Detector noise and other background(to be studied)

Signal MC Simulation: $ee \rightarrow ZH$

Signal sample in this talk

- $Z \rightarrow \nu \nu$
- H \rightarrow bb/ $\gamma\gamma/\mu\mu$ for jet, photon, and muon
- Generated by Whizard
- Detector simulated by CEPCSW 24.9.0

PDG

Table 11.3: The branching ratios and the relative uncertainty for a SM Higgs boson with $m_H = 125 \text{ GeV} [39, 40]$.

Decay channel	Branching ratio	Rel. uncertainty			
$H \rightarrow \gamma \gamma$	2.27×10^{-3}	2.1%			
$H \rightarrow ZZ$	2.62×10^{-2}	$\pm 1.5\%$			
$H \rightarrow W^+W^-$	2.14×10^{-1}	$\pm 1.5\%$			
$H \rightarrow \tau^+ \tau^-$	6.27×10^{-2}	$\pm 1.6\%$			
$H \rightarrow b\bar{b}$	$5.82 imes 10^{-1}$	$^{+1.2\%}_{-1.3\%}$			
$H \rightarrow c\bar{c}$	2.89×10^{-2}	$^{+5.5\%}_{-2.0\%}$			
$H \rightarrow Z\gamma$	$1.53 imes 10^{-3}$	$\pm 5.8\%$			
$H \rightarrow \mu^+ \mu^-$	2.18×10^{-4}	$\pm 1.7\%$			

MC Simulation: beam induced background

- Single Beam
 - Touschek Scattering
 - Beam Gas Scattering(Elastic/inelastic)
 - Beam Thermal Photon Scattering
 - Synchrotron Radiation
- Luminosity Related
 - Beamstrahlung
 - Radiative Bhabha Scattering
- Combine 10 bunch crossing into one event
- More detail will be presented by H. Shi tomorrow

ECal trigger primitive

- Basic module for EM Calorimeter (ECal): ~1x1x40cm³
- Cluster modules into 40x40cm² for both ECal and Had Calorimeter (HCal)
- Use 40x40cm² cluster as trigger primitive for both ECal and HCal

Calorimeter trigger primitive

- Barrel(left): divided into 15(Ζ)×32(φ) in Z-φ plane; endcap(right) in X-Y plane
- Each point represents the center of the basic module
- Red square shows the cluster

10/28

ECal Barrel energy distribution

- Left: $Z(\nu\nu)H(\gamma\gamma)$; middle: $Z(\nu\nu)H(bb)$; right: beam induced background, W. Song
- Up: single event; down: maximum energy distribution
- Large energy deposition(> 30 GeV) for photon, and Jet (>5 GeV)
- Very tiny energy deposition(<0.5 GeV) for beam background, mostly from pair production</p>

HCal Barrel energy distribution

- Similar to ECal Barrel, large energy deposition(> 0.1 GeV) for photon, and Jet (>0.5 GeV)
- Very tiny energy deposition(<0.05 GeV) for beam background

ECal Endcap energy distribution

- \bullet Similar to ECal Barrel, large energy deposition(> 30 GeV) at Barrel ECal for photon, and Jet (>1 GeV)
- Small energy deposition(<5 GeV) for beam background, but comparable with ${\rm Jet}({\rm Z}(\nu\nu){\rm H}(bb))$

Boping Chen (中科院高能所 IHEP)

CEPC workshop, Oct. 24, 2024

HCal Endcap energy distribution

- Small energy deposition(< 5 GeV) for photon and jet
- Large energy deposition for beam background
 - Concentrate in a small area
 - Leak from Muon detector

Preliminary selection and efficiency

Preliminary selection

- Select the two clusters with the highest energy from each sub-detector
- Apply energy threshold
- Low threshold for Barrel(0.5 GeV), high for Endcap(5 GeV for ECal and 50 GeV for HCal)

Efficiency

- Efficiencies for all the channels are good
- Will try energy isolation for HCal Endcap
- Higher efficiency with visible Z
- Will study more algorithms

Sub-detector	Energy threshold
ECal Barrel	>0.5 GeV
or HCal Barrel	>0.5 GeV
or ECal Endcap	>5 GeV
or HCal Endcap	>50 GeV
	I
Higgs decay cha	nnel Efficiency
$Z(\nu\nu)H(\gamma\gamma)$	100%
$Z(\nu\nu)H(bb)$	100%
$Z(\nu\nu)H(Z\gamma)$	99.7%
$Z(\nu\nu)H(\tau\tau)$	96.7%
$Z(\nu\nu)H(WW)$	/) 99.1%
$Z(\nu\nu)H(ZZ)$	95.8%
Beam backgrou	und 4.8%

Muon Barrel detector

- Signal: $Z(\nu\nu)H(\mu\mu)$
- Left: Muon Barrel detector in the X-Y plane
- Right: single $Z(\nu\nu)H(\mu\mu)$ event, with two clear tracks
- Beam background: 0 hit for most of the time

Muon Barrel number of hit distribution

- Left: $Z(\nu\nu)H(\mu\mu)$; right: beam background
- Signal: lots of hits(>100); beam background: relatively less hits(N<50)
- With simple selection requirement: number of hit > 10
 - Z($\nu\nu)H(\mu\mu):$ 100% (at least one truth muon inside Barrel detector)
 - Beam background: 19%

- Left: Muon Endcap detector; middle: $Z(\nu\nu)H(\mu\mu)$; right: beam background
- Different from Barrel, lot of hits at Endcap for beam background

Muon Endcap number of hit distribution

- Left: $Z(\nu\nu)H(\mu\mu)$; Right: beam background
- Beam background: lots of hits(N>1000)
- Further study need to be done

Vertex

- Left: one ZH $\rightarrow \nu \nu \mu \mu$ event
- Center: one beam background event
- Right: Beam background vertex hit distribution

< 口 > < 凸

æ

.∋...>

- Left: one ZH $\rightarrow \nu \nu \mu \mu$ event
- Center: one beam background event
- Right: Beam background ITK hit distribution

A B A B
A B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

æ

- ∢ ∃ →

- Lots of simulation and research need to be done
- Try Muon track reconstruction
- Study the possibility of other detectors for L1
- Detector electronics noise/threshold
- Use tracker information for HLT

- Calorimeter and Muon detector simulation for the trigger study are shown
- Comparison between signal and beam background for Vertex and ITK
- Preliminary trigger selections give promising results

Backup

æ

イロト イヨト イヨト イヨト

- Data rate before trigger
 - $\bullet~<1~\text{TB/s}$ for Higgs mode
 - $\bullet\,$ Several TB/s for Z mode
- Event size < 2 MB</p>
 - Related to occupancy and read out window
- L1 trigger rate
 - O(1k) Hz Higgs
 - O(100k) Hz Z
- Storage rate after HLT
 - <100 Hz(200 MB/s) Higgs
 - 100 kHz (200 GB/s) Z

Belle II trigger level tracking algorithm

- Hough transformation
 - Transfer to parameters space
- Assuming Z=0, reconstruct the track at r- ϕ plane
- Can't seperate the track from the IP(z=0) or far away from IP(|z|>> 0)
- $\bullet\,$ Track from beam background probably from the vertex far away from IP(|z|>> 0)

Offline reconstructed Z value from data arXiv:2402.14962

Belle II trigger level tracking algorithm

- First time to use NN to reconstruct track
- Output the z value to reduce background
- Can be use in CEPC to reduce beam background

Left: offline reconstructed Z; Right: NN results; Up: without Z selection; Down: at least one track with |z| < 20

Anomaly detection

- Use auto-encoder
- Model independent
- Input: kinematic information from physics objects $(e/\gamma/\mu...)$

Trigger rate(CMS L1: 100 kHz)			1kHz	5k	Hz	10kHz
$H \rightarrow aa \rightarrow 4b$ improvement			46%	100%		133%
Latency	LUTs	FFs	DSF	s	BRA	AMs
2ticks (50 ns)	2.1%	~0%	6 0%	ó	0	%

CMS: 2024 JINST 19 C03029

< ロト < 同ト < ヨト < ヨト