

CEPC Hardware Trigger design for ref-TDR

Jingzhou ZHAO IHEP, Beijing

中國科學院為能物昭和完備 Institute of High Energy Physics Chinese Academy of Sciences

24th Oct. 2024 International workshop on CEPC

- Introduction
- Requirements
- TDAQ structure
- Preliminary trigger design
- Detailed design scheme
- Summary

Introduction

CEPC is designed to operate at around 91.2 GeV as a Z factory, at around 160 GeV of the W W production, at 240 GeV as a Higgs factory.

(Operation mode	ZH	z	W⁺W-	tī
	\sqrt{s} [GeV]	~240	~91	~160	~360
I	Run Time [years]	10	2	1	5
30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115 16		0.5
	∫ <i>L dt</i> [ab⁻¹, 2 IPs]	13	60	4.2	0.65
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
50 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192 26.7		0.8
	∫ <i>L dt</i> [ab⁻¹, 2 IPs]	21.6	100 6.9		1
	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

CEPC accelerator TDR (Xiv:2312.14363)

Detector introduction

- From innermost to outer (ref-TDR baseline option)
 - Vertex
 - 4 signal layers + 1 double layer ladder
 - ITK
 - ITKB 3 layers,
 - ITKE 4 layers
 - TPC
 - Maximum drift time: 34us
 - OTK with TOF
 - 50 ps
 - ECAL
 - 480 modules, 28 layers,
 - HCAL
 - Barrel: 16 sector,48 layers,
 - Muon
 - 6 super layers

Requirements: Physical Event Rate

8 Hz @ Higgs 240GeV(50MW)

- Bunch crossing rate: 2.9 MHz
- Higgs: ~0.02Hz
- 82 kHz @ Z pole 91GeV(50MW)
- Bunch crossing rate: 43.3 MHz
 Physical event rates are sufficiently low relative to the bunch crossing rate.
- Keep physical events as more as possible
 - By a rough selection of the relevant objects (jet, e, muon, tau,v, ...) and their combinations.
 - Required detailed signal feature extraction and simulation studies.

	Higgs	Z	W	tť				
SR power per beam (MW)	50							
Bunch number	446	13104	2162	58				
Dunch angoing (ng)	346.2	23.1	138.5	2700.0				
Bunch spacing (hs)	(×15)	(×1)	(×6)	(×117)				
Train gap (%)	54	9	10	53				
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	8.3	192	26.7	0.8				

Requirements: Data Rate estimation

Data rate before trigger

- <1 TB/s @ Higgs</p>
- Several TB/s @Z
- L1 trigger rate
 - O(1k) Hz @ Higgs
 - O(100k) Hz @ Z
- Event size < 2 MB</p>
 - Related to occupancy and read out window
- Storage rate after HLT
 - <100 Hz(200 MB/s)
 @Higgs</pre>
 - 100 kHz (200 GB/s)
 @Z

	Vertex	Pix(ITKB)	Strip (ITKE)	ОТКВ	ΟΤΚΕ	ТРС	ECAL-B	ECAL-E	HCAL-B	HCAL-E	Muon
Channels per chip	512*102 4	512*128	1024	128		128	8~16				
Data Width /hit	32bit	42bit	32bit	48bit		48bit	48bit				
Avg. data rate / chip	0.18Gbp s/chip, 1Gbps/c hip inner	3.53Mbp s/chip	21.5Mbps /chip	2.9Mb ps/chip	38.8Mb ps/chip	~70Mb ps/mod ule Inmost	10kHz/ch	10kHz/c h	5kHz/chan nel	5kHz/chan nel	10kHz/c hannel, 20kHz/i ner endcap
Detector Channel/m odule	1882 chips @Stch &Ladder	30,856 chips 2204 modules	23008 chips 1696 modules	83160 chips 3780 module s	11520 chips 720 module s	492 Module	0.96M chn ~60000 chips 480 modules	0.39 M chn	3.38M chn 5536 aggregatio n board	2.24M chn 1536 Aggregatio n board	43,176 chn(iner end-cap 6912), 288 modules
Avg Data Vol before trigger	474.2G bps	101.7Gb ps	298.8Gb ps	249.1 Gbps	27.9Gb ps	34.4G bps	460.8Gbps	187Gb ps	811.2Gbps	537.6Gbps	24Gbps
Occupancy	0.22e-4	2.5e-4				2.8e-4	58e-4			19.5e-4	
Sum	3.2 Tbps = 400GB/s @Higgs										

Preliminary background and data rate estimation

TDAQ structure

Electronics framework schema

- Transmit full raw data from Front-End Elec. to Back-End Elec.(BEE)
- Connect trigger with Back-End Elec.

Trigger solutions

- Hardware trigger(L1) + high level trigger(HLT)
 - A single type of common hardware trigger board
 - Collect trigger primitives from BEE common boards
 - Send back trigger accept signal to BEE
 - Provide fast and normal trigger menu
 - Network readout

Main Technical Challenges

High efficiency algorithms in trigger and background compression

- 2.9MHz->O(1k)Hz @Higgs
- 43.3MHz->O(100k)Hz @Z
- Trigger primitive synchronization control with asynchronous data readout from electronics
 - Manage data disorder due to data transfer queuing and delay
 - Align sub-detector data of each bunch crossing within limited time and resource

Preliminary Hardware Trigger Structure

Trigger primitive(TP)

- Extracted by BEE
 Local detector trigger
 - Sub energy and tracking...
 Global trigger
 - E-sum and tracking
 - Fast trigger(FT) and L1A generation on demand
- TCDS (Trigger Clock Distribution System)
- Distribute clock and fast control signals to BEE
 Which detectors participate in trigger needs to be studied

Trigger Prilimilary and alogrithm

Trigger simulation is ongoing

—

- Much more things need to be study
 - Whether ITK short track can reduce background or not? Join trigger or not?
 - ECAL cluster size or energy threshold?
 - HCAL cluster size or energy threshold?
 - Muon tracks or hits, which can be used?
 - How long trigger latency is acceptable for FEE/BEE?

Neural network, ML will be used for cluster finding ,tracking,...

Preliminary design of the common Trigger Board

Common Trigger board function list

- ATCA standard
- Xilinx Virtex Ultrascale Plus FPGA
- Optical channel: 10-25 Gbps/ch
- Channel number:36-80 channels
- Optical Ethernet port: 40-100GbE
- DDR4 for mass data buffering
- SoC module for board management
- IPMC module for Power management

Key components for Trigger board design

FPGA: AMD/XILINX VU7P

- system logic cells: 1,724K
- CLB Flip-Flops: 1,576K
- CLB LUTs: 788K
- DRAM(Mb): 24.1
- BRAM(Mb): 50.6
- GTY(32.75Gb/s): 76
- Footpin: B2104, pin compatable with VU9P, VU11P and VU13P for FPGA resuorce upgrade
- Pin2pin compatable with Fudan Micro chip

optics: Samtec Firefly

- High desity
- 12ch TX/RX /module
- MPO optics fiber port
- 14-25Gbps/ch

Preliminary design of TCDS and Readout

TCDS/TTC

- Clock, BC0, Trigger, orbit start signal distribution
- Full, ERR signal feed back to TCDS/TTC and mask or stop L1A
- Data readout from BEE
 - Read out directly or concentrated by DCTD board
 - Depending on the size of the data volume
- TCDS-Trigger Clock Distribution System
- TTC- Trigger, Timing and Control
- ADCTD- ATCA Data Concentrator and Timing Distribution
- mDCTD-mTCA DCTD
- BEE-BackEnd Electronic

TCDS/TTC

Function list of TCDS/TTC -preliminary

- system clock generation from accelerator clock or local high-precision clock for test.
- orbit signal receive from accelerator and generate orbit number and Bunch Crossing Zero(BC0) signal for Bunch counting.
- Fast trigger or L1A received from trigger system, fanout trigger signal or mask trigger signal to all sub-system according sub-system status.
- sub-system status receive from feedback link.
- Downlink signal to BEE(fan out to all BEE and trigger system)
 - Clock, FT, FT_chk, L1T, L1T_chk, BCO, orbit number?,.....
- Uplink signal information(Feedback to TCDS):
 - Busy, Fiber ERR,

DCTD

DCTD is the xTCA based Data Concentrator and Timing Distribution for trigger insert in trigger ATCA/MTCA crate.

Data concentrate

- receive data from each ATCA trigger board
- package the ATCA crate data based on trigger
- packaged data send to online via TCP or RDMA

Timing Distribution

- system clock/Fast control receive from TCDS or generate locally for test
- system clock fan-out to ATCA trigger board within ATCA crate
- Fast control signals fan-out(FT/L1A, BC0, orbit number,...)
- collect ATCA status information and send back to TCDS

Low latency data transmission link

uniform data transmission link between BEE to trigger sub-system and within trigger system

- 10Gbps/ch or 16Gbps/ch
- low latency for time alignment between different channels
- uniform data frame format with BX number, delay number, trigger primitive(such as cluster, energy, track, hit) information

For ref-TDR, CEPC hardware trigger has a preliminary structure design.

- But much more need to study further.
 - trigger strategy
 - trigger primitive
 - trigger algorithm
 - trigger latency
 -

Previous experience with TDAQ Hardware

Designed and constructed BESIII trigger system

 Comprehensive trigger simulation/hardware design/core trigger firmware development
 GSI PANDA TDAQ R&D

High performance computing node (HPCN) board
 Designed and constructed for Belle II DAQ

Belle2Link and HPCN V3 as ONSEN

Constructed CPPF system for CMS Phase-I trigger

MTCA board, Cluster finding for Muon/RPC
 Designing for CMS Phase-II backend and trigger

ATCA common board for iRPC/RPC

Extensive experience in TDAQ system design, algorithm and hardware development 19

R&D efforts and results

xTCA for physics standard(ATCA/MTCA extension)

- IHEP is a founding and development lab together with DESY, FNAL and SLAC
- Developed a series of xTCA boards
 - Started the design of an ATCA common trigger board for CEPC

