PROSPECT FOR MEASUREMENT OF CP-VIOLATION PHASES with *B^s* decays at future Z factories

[EPJC 84 (2024) 859]

 $\mathsf{S}.\mathsf{Chen}^1$, $\mathsf{H}. \mathsf{Li}^2$, $\mathsf{X}. \mathsf{Li}^3$, $\mathsf{X}. \mathsf{Wang}^3, \mathsf{J}. \mathsf{Peng}^1, \ \mathsf{M}. \mathsf{Ruan}^1, \ \mathsf{M}$ ingrui Zhao 3 Date: 10/25/24

¹Institute for High Energy Physics ²South China Normal University ³China Institute of Atomic Energy

CEPC Workshop 2024

Outline

- 1. Introduction
- 2. ϕ_s measurements with $B_s \to J/\psi \phi$
- 3. Penguin control for *β^s*
- 4. *γ* measurements with *Bs*
- 5. Summary

\circ CKM parameter:

◦ In neutral B meson decays to a final state the interference between the amplitude for the direct decay and the amplitude for decay after oscillation, leads to a time-dependent CP-violating asymmetry between the decay time distributions of B and anti-B mesons.

$$
\circ \ \phi_s = -arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)
$$

$$
\circ \ \gamma = arg(V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)
$$

- *◦* Contributions from physics beyond the SM could lead to much larger values of *ϕs*, insensitive to *γ*.
- \bigcirc B_s decay parameters:
	- $\circ \Delta \Gamma_s \equiv \Gamma_L \Gamma_H \Gamma_s \equiv (\Gamma_L + \Gamma_H)/2.$
	- *◦* Able to be calculated with heavy quark expansion (HEQ) theory.

Measurement of *ϕ^s* (∆Γ, Γ*s*) in experiments

Extract the observables ϕ_s , Γ_s , $\Delta\Gamma_s$ from the time dependent angular distribution.

$$
\frac{d^4\Gamma(B_s \to J/\psi\phi)}{dt d\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega),
$$

where

$$
h_k(t|B_s) = N_k e^{-\Gamma_s t} \left[a_k \cosh(\frac{1}{2}\Delta\Gamma_s t) + b_k \sinh(\frac{1}{2}\Delta\Gamma_s t) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) \right]
$$

$$
h_k(t|\bar{B}_s) = N_k e^{-\Gamma_s t} \left[a_k \cosh(\frac{1}{2}\Delta\Gamma_s t) + b_k \sinh(\frac{1}{2}\Delta\Gamma_s t) - c_k \cos(\Delta m_s t) - d_k \sin(\Delta m_s t) \right]
$$

 $f_k(\Omega)$: amplitude function.

b^{*k*} \sim ± | λ | cos(ϕ ^{*s*}), d_k \sim ± | λ | sin(ϕ ^{*s*})</sup>

 $\sigma(\phi_s) \propto 1/\sqrt{N_{\text{eff}}}$

- \bigcirc *N*_{eff} \propto *N*_{*b* \bar{b}}
- # *^N*eff *[∝]* Efficiency
- # *^N*eff *[∝]* Tagging power
- \circ *σ*_{*φ*^{*s*}} $\propto 1/e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2}$

Define:

$$
\xi = 1/\left(\sqrt{N_{b\bar{b}}\times \varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)
$$

Then: $\sigma(\phi_s, FE) = \xi_{FE} \times \frac{\sigma(\phi_s, EE)}{\xi_{EE}}$ *ξEE*

ξ for LHCb Run2 and LHCb on HL-LHC

Numbers are quoted from *Eur.Phys.J.C*79(2019)706

$$
\xi = 1/\left(\sqrt{N_{b\bar{b}}\times\varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)
$$

 \overline{O} $N_{b\bar{b}} \times \varepsilon \times Br = 11700$. Avoid considering the efficiency on LHCb. *◦* ^Lint = 1*.*9fb*−*¹ ,*b* ¯*^b* cross-section:¹⁴⁴ ^µb,*Br* = 20% *[×]* ⁰*.*⁰⁰¹ *[×]* ⁰*.*⁰⁶ *[×]* ⁰*.*5. \circ $\varepsilon = 7\%$, where the $b\bar{b}$ is already in the acceptance, reasonable estimation. \circ Tagging power $p = 4.73\%$. Decay time resolution: 45.5 fs.

ξ:

\n- ○
$$
\xi_{\text{LHCb}} = 0.018, \sigma(\phi_s, \text{LHCb}) = 0.041 \text{rad}
$$
.
\n- ○ $\xi_{\text{LHCb}} = 0.0014, \sigma(\phi_s, \text{HL-LHCb}) = \xi_{\text{HL-LHCb}} \times \sigma(\phi_s, \text{lhcb}) / \xi_{\text{LHCb}} = 3.3 \text{ mrad}$
\n- (HL-LHC: N_{HL-LHCb} = N_{LHCb} × $\frac{300 \text{ fb}^{-1}}{1.9 \text{ fb}^{-1}}$)
\n

$$
\xi = 1/\left(\sqrt{N_{b\bar{b}}\times \varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)
$$

 \circ Tera-Z: 0.152×10^{12} , 10-Tera-Z: 1.52×10^{12}

 \bigcirc $Br = 20\% \times 0.001 \times 0.06 \times 0.5 \times 2$. (*J*/ ψ can also be reconstructed from e^+e^- on CEPC)

ξ for CEPC (Efficiency)

$$
\xi = 1/\left(\sqrt{N_{b\bar{b}}\times \varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)
$$

Reconstruction:

- \circ Assume that we can distinguish $b\bar b$ events from other events.
- \circ Assume that we have perfect ability to distinguish leptons with hadrons.
- # *^ϕ* candidates: ¹*.*⁰¹⁷ *[−]* ¹*.*023 GeV*/c*² , two hadron tracks.
- # *J/ψ* candidates: ³*.*⁰⁷ *[−]* ³*.*14 GeV*/c*² , two lepton tracks.
- \odot B_s^0 candidates: $5.28 − 5.46 \text{ GeV}/c^2$, combination of all $J/\psi \phi$ candidates.

Extraction of *ϕ^s* require a clean background.

The number of background events are 1.7×10^5 times larger than the number of signal events. In pure background (from simulation):

- The probability to find a J/ψ candidate is 0.4%.
- The probability to find a ϕ candidate is 3.6%.
- \circlearrowright The probability to get a B^0_s candidate from $J/\psi\,\phi$ combination is 4.6%.
- # Total: ⁶*.*⁷ *[×]* ¹⁰*−*⁶ .

The background is of same magnitude with the signal.

ξ for CEPC (Efficiency)

Vertex χ^2 : reject background.

Signal χ^2 distribution:

 \circlearrowright Background: very large spread χ^2 distribution. $\sigma \propto \chi^2 < 0.1$ keeps 95% of the signal and reject 99.2% of the background.

 $\varepsilon = 75\%$ with 1% background level.

ξ for CEPC (Tagging power)

$$
\xi = 1/\left(\sqrt{N_{b\bar{b}}\times \varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)
$$

20% of the tagging power can be easily achieved with a naive algorithm and with assumption of perfect pid. (Same side $+$ Opposite side algorithm) Dependence on particle identification:

Corretly identification rate:1 *− ω*, misidentification probability: *ω/*2

Considering the particle identification from the detector simulation, the tagging power is:

- \circ Intrinsic tagging power (without considering the effects from the readout electronics): 19.1%.
- Realistic/conservative tagging power (if the particle identification resolution is degraded by 30% with respect to the intrinsic case): 17.4% . 13/ 30

ξ for CEPC (Time resolution)

$$
\xi = 1/\left(\sqrt{N_{b\bar{b}}\times \varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)
$$

Obtained from detector simulation. Proper decay time: *t* = *mlxy* p_T Fit with sum of three gaussian.

$$
\sigma_{\text{eff}} = \sqrt{-\frac{2}{\Delta m_s^2} \ln(\sum_i f_i e^{-\frac{1}{2}\sigma_i^2 \Delta m_s^2})} = 4.7 \,\text{fs}.
$$

(Reminder LHCb: 45 fs)

The excellect time resolution benefits from the precise vertex reconstruction and large energy of *Bs*.

ξ for CEPC (Summary)

Putting all the components together: $\xi_{\text{CEPC}} = 0.0019$ (Tera-Z), $\sigma(\phi_s, \text{CEPC}) = 4.3 \text{mrad}$.

Impact from time resolution and flavour tagging

- Time resolution and tagging power dependence for observables.
- ϕ_s resolution has potential to be improved with better tagging power.
- $\Delta\Gamma_s$ (and also Γ_s) has weak dependence: lose the factor of 4.3×1.92 .

Results

- \circ Black point: SM global fit (CKMfitter group/UTfit collaboration) + HQE (Proc.Int.Sch.Phys.Fermi 137(1998)329,Adv.Ser.Direct.High Energy Phys.15(1998)239) prediction.
- \circ ATLAS and CMS results are from ATL-PHYS-PUB-2018-041 and CMS-PAS-FTR-18-041.

If the penguin diagram is considered in the B_s decay, the relation between ϕ_s and β_s should be corrected as

$$
\phi_s = -2\beta_s + \Delta\phi_s(a,\theta). \tag{1}
$$

The shift ∆*ϕ^s* could be expressed as

$$
\tan(\Delta\phi_s) = \frac{2\epsilon a \cos\theta \sin\gamma + \epsilon^2 a^2 \sin(2\gamma)}{1 + 2\epsilon a \cos\theta \cos\gamma + \epsilon^2 a^2 \cos(2\gamma)},
$$
\n(2)

where a and θ are penguin parameters, $\epsilon = \lambda^2/(1-\lambda^2)$ is defined through a Wolfenstein parameter λ , and γ is the angle γ of the Unitarity Triangle.

Control channels: $B_s^0 \to J/\Psi K^*$: determine the penguin parameters *a* and θ . The observables in $B^0_s \to J/\Psi K^*$ measurements:

$$
A^{\rm CP} = -\frac{2a\sin\theta\sin\gamma}{1 - 2a\cos\theta\cos\gamma + a^2},\tag{3}
$$

and

$$
H = \frac{1 - 2a\cos\theta\cos\gamma + a^2}{1 + 2\epsilon a\cos\theta\cos\gamma + \epsilon^2 a^2},\tag{4}
$$

where A^{CP} is the CP asymmetry and H is an observable constructed containing the branching fraction information, assuming the $SU(3)$ symmetry.

Results

Follow a similar projection method as for *ϕ^s* and Γ*s*:

The expected uncertainty of *a* and *θ* is obtained by a χ^2 fit, resulting in

 $a = 0.436 \pm 0.023, \theta = 3.057 \pm 0.016^{\circ}.$

. With an error propagation neglecting the correlation between *a* and *θ*, the precision of the penguin shift is estimated as $\sigma(\Delta \phi_s) = 2.4$ mrad. (note: $\sigma(\Delta \phi_s) = 4.6$ mrad)

- \circ The SU(3) symmetry does not always hold.
- \bigcirc The rightmost point corresponds to $\sigma(H) = 0.28$ (current theory uncertainty).
- \circlearrowright $\sigma(\Delta\phi_s)$ is roughly linearly dependent on $\sigma(H)$.
- \circ Without improved theoretical input, the control of penguin contamination will be far from satisfactory.

Extraction of *γ*

γ is extracted by fiting the time distribution:

$$
P_{B_s^0 \to D_s^+ K^-}(t) \propto e^{-\Gamma_s t} \left(\cosh\left(\frac{\Delta \Gamma_s}{2} t\right) - C \cos\left(\Delta m_s t\right) + D_{\bar{f}} \sinh\left(\frac{\Delta \Gamma_s}{2} t\right) - S_{\bar{f}} \sin\left(\Delta m_s t\right) \right)
$$

\n
$$
P_{B_s^0 \to D_s^- K^+}(t) \propto e^{-\Gamma_s t} \left(\cosh\left(\frac{\Delta \Gamma_s}{2} t\right) + C \cos\left(\Delta m_s t\right) + D_f \sinh\left(\frac{\Delta \Gamma_s}{2} t\right) - S_f \sin\left(\Delta m_s t\right) \right)
$$

\n
$$
P_{\bar{B}_s^0 \to D_s^+ K^-}(t) \propto e^{-\Gamma_s t} \left(\cosh\left(\frac{\Delta \Gamma_s}{2} t\right) + C \cos\left(\Delta m_s t\right) + D_{\bar{f}} \sinh\left(\frac{\Delta \Gamma_s}{2} t\right) + S_{\bar{f}} \sin\left(\Delta m_s t\right) \right)
$$

\n
$$
P_{\bar{B}_s^0 \to D_s^- K^+}(t) \propto e^{-\Gamma_s t} \left(\cosh\left(\frac{\Delta \Gamma_s}{2} t\right) - C \cos\left(\Delta m_s t\right) + D_f \sinh\left(\frac{\Delta \Gamma_s}{2} t\right) + S_f \sin\left(\Delta m_s t\right) \right)
$$

The γ parameters are in the *D* and *S* parameters, eg. $D_f = \frac{-2 \, r_{D_s K} \, \cos(\delta - (\gamma - 2 \, \beta_s))}{1 + r_{D_s K}^2}$.

 $\sigma(\gamma) \propto 1/\sqrt{N_{\text{eff}}}$

- \bigcirc *N*_{eff} \propto *N*_{*b*} \bar{b} </sub>
- # *^N*eff *[∝]* Efficiency
- # *^N*eff *[∝]* Tagging power
- \bigcirc $\sigma_{\gamma} \propto 1/e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2}$

Use the similar equation as for *ϕ^s* to estimate the resolution of *γ*.

$$
\xi = 1/\left(\sqrt{N_{b\bar{b}}\times \varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)
$$

Statistics

 \circ Stat:

$$
N_{exp}(Z \to b\bar{b} \to B_s^0 (\to D_s^-(\to K^- K^+ \pi^-) K^+) X)
$$

= $10^{12} \times \mathcal{B}(Z \to b\bar{b}) \times \mathcal{B}(\bar{b} \to B_s^0) \times \mathcal{B}(B_s^0 \to D_s^- K^+) \times \mathcal{B}(D_s^- \to K^- K^+ \pi^-)$
= 149804 (5)

For the specific *^D[−] ^s [→] ^K−K*⁺*^π [−]* subdecay in the signal samples, the events of *B*2*DK* in total should be:

$$
N_{exp}(B_s^0 \to D_s^{\mp}(KK\pi)K^{\pm})
$$

= $N_{exp}(B_s^0 \to D_s^+(KK\pi)K^-) + N_{exp}(B_s^0 \to D_s^-(KK\pi)K^+)$
+ $N_{exp}(\bar{B}_s^0 \to D_s^+(KK\pi)K^-) + N_{exp}(\bar{B}_s^0 \to D_s^-(KK\pi)K^+)$
= $4 \times N_{exp}(Z \to b\bar{b} \to B_s^0 (\to D_s^-(\to K^-K^+\pi^-)K^+)X)$
= 599216 (6)

Parameters extraction at MC Truth level

 \circ Perfect flavour tagging and time resolution.

 \bigcirc Resolution: $\sigma(\gamma) = 0.35^\circ$.

Time resolution and falvour tagging

$$
\xi = 1/\left(\sqrt{N_{b\bar{b}}\times \varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)
$$

- \circ Temporarily ignore the time resolution effects, considering the time resolution of B_s is excellent (from $B_s \to J/\psi \phi$ study).
- \circ Tagging power: 40%
- \bigcirc Resulting $\sigma(\gamma) = 0.55^\circ$
- \circ Expection from HL-LHC LHCb: $\sigma(\gamma) = 0.35^{\circ}$.

. .

Summary

- Competitive ϕ _s resolution for CEPC(Tera-Z) and LHCb(HL-LHC).
	- *◦* Expected *ϕ^s* resolution: CEPC(Tera-Z) is a little worse than LHCb(HL-LHC).
	- *◦* CEPC has potential to improve the flavour tagging to get better *ϕ^s* resolution with better algorithm.
- Only in the 10-Tera-Z configuration, can Z factories be competitive to the LHCb(HL-LHC) for ∆Γ*^s* and Γ*^s* measurements.
- Expect good resolution for γ , but more to investigate.
- Particle identification is critical.
	- *◦* Hadron pid is not used in reconstruction. With the information, a better efficiency is expected.
	- *◦* Tagging power drop fast with particle misidentification.
- \circlearrowright Vertex reconstruction is critical for background suppression.

Thank you for your attention!