PROSPECT FOR MEASUREMENT OF CP-VIOLATION PHASES WITH B_s decays at future Z factories

[EPJC 84 (2024) 859]

S.Chen¹, H.Li², X.Li³, X.Wang³, J.Peng¹, M.Ruan¹, Mingrui Zhao³ Date: 10/25/24

¹Institute for High Energy Physics ²South China Normal University ³China Institute of Atomic Energy

CEPC Workshop 2024

1. Introduction

- 2. ϕ_s measurements with $B_s \to J/\psi \phi$
- 3. Penguin control for β_s
- 4. γ measurements with Bs
- 5. Summary

INTRODUCTION

○ CKM parameter:

 In neutral B meson decays to a final state the interference between the amplitude for the direct decay and the amplitude for decay after oscillation, leads to a time-dependent CP-violating asymmetry between the decay time distributions of B and anti-B mesons.

•
$$\phi_s = -arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$$

•
$$\gamma = arg(V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$$

- $\circ~$ Contributions from physics beyond the SM could lead to much larger values of $\phi_s,$ insensitive to $\gamma.$
- \bigcirc B_s decay parameters:
 - $\Delta \Gamma_s \equiv \Gamma_L \Gamma_H$, $\Gamma_s \equiv (\Gamma_L + \Gamma_H)/2$.
 - $\,\circ\,$ Able to be calculated with heavy quark expansion (HEQ) theory.

ϕ_s measurements with $B_s \to J/\psi \phi$

Measurement of ϕ_s ($\Delta\Gamma$, Γ_s) in experiments

Extract the observables $\phi_s, \Gamma_s, \Delta \Gamma_s$ from the time dependent angular distribution.

$$\frac{d^4\Gamma(B_s \to J/\psi\phi)}{dtd\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega),$$

where

$$h_k(t|B_s) = N_k e^{-\Gamma_s t} \left[a_k \cosh(\frac{1}{2}\Delta\Gamma_s t) + b_k \sinh(\frac{1}{2}\Delta\Gamma_s t) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) \right]$$
$$h_k(t|\bar{B}_s) = N_k e^{-\Gamma_s t} \left[a_k \cosh(\frac{1}{2}\Delta\Gamma_s t) + b_k \sinh(\frac{1}{2}\Delta\Gamma_s t) - c_k \cos(\Delta m_s t) - d_k \sin(\Delta m_s t) \right]$$

 $f_k(\Omega)$: amplitude function.

 $b_k \sim \pm |\lambda| \cos(\phi_s), \ d_k \sim \pm |\lambda| \sin(\phi_s)$

 $\sigma(\phi_s) \propto 1/\sqrt{N_{\rm eff}}$

- $\bigcirc~N_{\rm eff} \propto N_{b\bar{b}}$
- $\bigcirc~N_{
 m eff} \propto$ Efficiency
- \bigcirc $N_{
 m eff} \propto$ Tagging power
- $\bigcirc \ \sigma_{\phi_s} \propto 1/e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2}$

Define:

$$\xi = 1/\left(\sqrt{N_{b\bar{b}}\times\varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)$$

Then: $\sigma(\phi_s, FE) = \xi_{FE} \times \frac{\sigma(\phi_s, EE)}{\xi_{EE}}$

ξ for LHCb Run2 and LHCb on HL-LHC

Numbers are quoted from Eur. Phys. J.C79(2019)706

$$\xi = 1/\left(\sqrt{N_{b\bar{b}}\times\varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)$$

N_{bb̄} × ε × Br = 11700. Avoid considering the efficiency on LHCb.
S_{int} = 1.9fb⁻¹, bb̄ cross-section:144 μb, Br = 20% × 0.001 × 0.06 × 0.5.
ε = 7%, where the bb̄ is already in the acceptance, reasonable estimation.
Tagging power p = 4.73%.
Decay time resolution: 45.5 fs.

 ξ :

○
$$\xi_{LHCb} = 0.018, \sigma(\phi_s, LHCb) = 0.041 \text{rad.}$$

○ $\xi_{LHCb} = 0.0014, \sigma(\phi_s, HL-LHCb) = \xi_{HL-LHCb} \times \sigma(\phi_s, \text{lhcb}) / \xi_{LHCb} = 3.3 \text{ mrad}$
(HL-LHC: $N_{\text{HL-LHCb}} = N_{\text{LHCb}} \times \frac{300 \text{ fb}^{-1}}{1.9 \text{ fb}^{-1}}$)

$$\xi = 1/\left(\sqrt{N_{b\bar{b}}\times\varepsilon\times Br}\times \sqrt{p}\times \exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)$$

 $\bigcirc~$ Tera-Z: $0.152\times10^{12},$ 10-Tera-Z: 1.52×10^{12}

 \bigcirc $Br = 20\% \times 0.001 \times 0.06 \times 0.5 \times 2$. (J/ ψ can also be reconstructed from e^+e^- on CEPC)

ξ for CEPC (Efficiency)

$$\xi = 1/\left(\sqrt{N_{b\bar{b}}\times \pmb{\varepsilon}\times Br}\times \sqrt{p}\times \exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)$$

Reconstruction:

- \bigcirc Assume that we can distinguish $b \bar{b}$ events from other events.
- Assume that we have perfect ability to distinguish leptons with hadrons.
- $\bigcirc~\phi$ candidates: $1.017-1.023\,{\rm GeV}/c^2,$ two hadron tracks.
- $\bigcirc J/\psi$ candidates: $3.07 3.14 \, {\rm GeV}/c^2$, two lepton tracks.
- $\odot~B^0_s$ candidates: $5.28-5.46\,{\rm GeV}/c^2$, combination of all $J\!/\!\psi~\phi$ candidates.

Extraction of ϕ_s require a clean background.

The number of background events are 1.7×10^5 times larger than the number of signal events. In pure background (from simulation):

- \bigcirc The probability to find a $J\!/\!\psi\,$ candidate is 0.4%.
- $\bigcirc\,$ The probability to find a ϕ candidate is 3.6%.
- \bigcirc The probability to get a B^0_s candidate from $J\!/\!\psi\,\phi$ combination is 4.6%.
- Total: 6.7×10^{-6} .

The background is of same magnitude with the signal.

 ξ for CEPC (Efficiency)

Vertex χ^2 : reject background. Signal χ^2 distribution: Abritrary scaled 10 (vertex) hadrens tracks edoms tracks 10 10^{-} 10 10 10 10^{-3} 10^{-1} 10^{3} $D_{xy}^2 [mm^2]$ 10

Background: very large spread χ² distribution.
 χ² < 0.1 keeps 95% of the signal and reject 99.2% of the background.

 $\varepsilon=75\%$ with 1% background level.

ξ for CEPC (Tagging power)

$$\xi = 1/\left(\sqrt{N_{b\bar{b}}\times\varepsilon\times Br}\times \sqrt{p}\times \exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)$$

20% of the tagging power can be easily achieved with a naive algorithm and with assumption of perfect pid. (Same side + Opposite side algorithm) Dependence on particle identification:

Corretly identification rate: $1 - \omega$, misidentification probability: $\omega/2$

Considering the particle identification from the detector simulation, the tagging power is:

- Intrinsic tagging power (without considering the effects from the readout electronics): 19.1%.
- Realistic/conservative tagging power (if the particle identification resolution is degraded by 30% with respect to the intrinsic case): 17.4%.

13/30

ξ for CEPC (Time resolution)

$$\xi = 1 / \left(\sqrt{N_{b\bar{b}} \times \varepsilon \times Br} \times \sqrt{p} \times \exp(-\frac{1}{2} \Delta m_s^2 \sigma_t^2) \right)$$

Obtained from detector simulation. Proper decay time: $t = \frac{m l_{xy}}{p_{\rm T}}$ Fit with sum of three gaussian.

$$\sigma_{\text{eff}} = \sqrt{-\frac{2}{\Delta m_s^2} \ln(\sum_i f_i e^{-\frac{1}{2}\sigma_i^2 \Delta m_s^2})} = 4.7 \,\text{fs}.$$

(Reminder LHCb: 45 fs)

The excellect time resolution benefits from the precise vertex reconstruction and large energy of $B_{s}. \label{eq:benefit}$

ξ for CEPC (Summary)

Putting all the components together: $\xi_{CEPC} = 0.0019$ (Tera-Z), $\sigma(\phi_s, CEPC) = 4.3$ mrad.

	LHCb(HL-LHC)	CEPC(Tera-Z)	CEPC/LHCb	_
$bar{b}$ statics	43.2×10^{12}	0.152×10^{12}	1/284	
Acceptance×efficiency	7%	75%	10.7	
Br	6×10^{-6}	12×10^{-6}	2	
Flavour tagging (perfect pid)	4.7%	20%	4.3	
Time resolution $(\exp(-rac{1}{2}\Delta m_s^2{\sigma_t^2}^2)$	0.52	1	1.92	
scaling factor ξ	0.0014	0.0019	0.8	
$\sigma(\phi_s)$	$3.3 \mathrm{mrad}$	$4.3 \mathrm{mrad}$		
Flavour tagging (realistic/conservative pid)	4.7%	17.3%	3.7	
$\sigma(\phi_s)$	$3.3 \mathrm{mrad}$	$4.6 \mathrm{mrad}$		

Impact from time resolution and flavour tagging

- Time resolution and tagging power dependence for observables.
- $\, \bigcirc \, \phi_s$ resolution has potential to be improved with better tagging power.
- $\bigcirc \Delta \Gamma_s$ (and also Γ_s) has weak dependence: lose the factor of 4.3×1.92 .

Results

- Black point: SM global fit (CKMfitter group/UTfit collaboration) + HQE (Proc.Int.Sch.Phys.Fermi 137(1998)329,Adv.Ser.Direct.High Energy Phys.15(1998)239) prediction.
- ATLAS and CMS results are from ATL-PHYS-PUB-2018-041 and CMS-PAS-FTR-18-041.

PENGUIN CONTROL FOR β_s

If the penguin diagram is considered in the B_s decay, the relation between ϕ_s and β_s should be corrected as

$$\phi_s = -2\beta_s + \Delta\phi_s(a,\theta). \tag{1}$$

The shift $\Delta \phi_s$ could be expressed as

$$\tan(\Delta\phi_s) = \frac{2\epsilon a\cos\theta\sin\gamma + \epsilon^2 a^2\sin(2\gamma)}{1 + 2\epsilon a\cos\theta\cos\gamma + \epsilon^2 a^2\cos(2\gamma)},\tag{2}$$

where a and θ are penguin parameters, $\epsilon = \lambda^2/(1-\lambda^2)$ is defined through a Wolfenstein parameter λ , and γ is the angle γ of the Unitarity Triangle.

Control channels: $B_s^0 \to J/\Psi K^*$: determine the penguin parameters a and θ . The observables in $B_s^0 \to J/\Psi K^*$ measurements:

$$A^{\rm CP} = -\frac{2a\sin\theta\sin\gamma}{1 - 2a\cos\theta\cos\gamma + a^2},\tag{3}$$

and

$$H = \frac{1 - 2a\cos\theta\cos\gamma + a^2}{1 + 2\epsilon a\cos\theta\cos\gamma + \epsilon^2 a^2},\tag{4}$$

where A^{CP} is the CP asymmetry and H is an observable constructed containing the branching fraction information, assuming the SU(3) symmetry.

Results

Follow a similar projection method as for ϕ_s and Γ_s :

The expected uncertainty of a and θ is obtained by a χ^2 fit, resulting in

 $a = 0.436 \pm 0.023, \theta = 3.057 \pm 0.016^{\circ}.$

. With an error propagation neglecting the correlation between a and θ , the precision of the penguin shift is estimated as $\sigma(\Delta\phi_s) = 2.4 \text{ mrad.}$ (note: $\sigma(\Delta\phi_s) = 4.6 \text{ mrad}$)

- The SU(3) symmetry does not always hold.
- The rightmost point corresponds to $\sigma(H) = 0.28$ (current theory uncertainty).
- $\bigcirc \ \sigma(\Delta \phi_s) \text{ is roughly linearly dependent on} \\ \sigma(H).$
- Without improved theoretical input, the control of penguin contamination will be far from satisfactory.

γ measurements with Bs

 γ is extracted by fiting the time distribution:

$$P_{B_s^0 \to D_s^+ K^-}(t) \propto e^{-\Gamma_s t} \left(\cosh\left(\frac{\Delta\Gamma_s}{2}t\right) - C\cos\left(\Delta m_s t\right) + D_{\bar{f}}\sinh\left(\frac{\Delta\Gamma_s}{2}t\right) - S_{\bar{f}}\sin\left(\Delta m_s t\right) \right) \\P_{B_s^0 \to D_s^- K^+}(t) \propto e^{-\Gamma_s t} \left(\cosh\left(\frac{\Delta\Gamma_s}{2}t\right) + C\cos\left(\Delta m_s t\right) + D_f\sinh\left(\frac{\Delta\Gamma_s}{2}t\right) - S_f\sin\left(\Delta m_s t\right) \right) \\P_{\bar{B}_s^0 \to D_s^+ K^-}(t) \propto e^{-\Gamma_s t} \left(\cosh\left(\frac{\Delta\Gamma_s}{2}t\right) + C\cos\left(\Delta m_s t\right) + D_{\bar{f}}\sinh\left(\frac{\Delta\Gamma_s}{2}t\right) + S_{\bar{f}}\sin\left(\Delta m_s t\right) \right) \\P_{\bar{B}_s^0 \to D_s^- K^+}(t) \propto e^{-\Gamma_s t} \left(\cosh\left(\frac{\Delta\Gamma_s}{2}t\right) - C\cos\left(\Delta m_s t\right) + D_f\sinh\left(\frac{\Delta\Gamma_s}{2}t\right) + S_f\sin\left(\Delta m_s t\right) \right) \\P_{\bar{B}_s^0 \to D_s^- K^+}(t) \propto e^{-\Gamma_s t} \left(\cosh\left(\frac{\Delta\Gamma_s}{2}t\right) - C\cos\left(\Delta m_s t\right) + D_f\sinh\left(\frac{\Delta\Gamma_s}{2}t\right) + S_f\sin\left(\Delta m_s t\right) \right) \\P_{\bar{B}_s^0 \to D_s^- K^+}(t) \propto e^{-\Gamma_s t} \left(\cosh\left(\frac{\Delta\Gamma_s}{2}t\right) - C\cos\left(\Delta m_s t\right) + D_f\sinh\left(\frac{\Delta\Gamma_s}{2}t\right) + S_f\sin\left(\Delta m_s t\right) \right) \\P_{\bar{B}_s^0 \to D_s^- K^+}(t) \propto e^{-\Gamma_s t} \left(\cosh\left(\frac{\Delta\Gamma_s}{2}t\right) - C\cos\left(\Delta m_s t\right) + D_f\sinh\left(\frac{\Delta\Gamma_s}{2}t\right) + S_f\sin\left(\Delta m_s t\right) \right) \\P_{\bar{B}_s^0 \to D_s^- K^+}(t) \propto e^{-\Gamma_s t} \left(\cosh\left(\frac{\Delta\Gamma_s}{2}t\right) - C\cos\left(\Delta m_s t\right) + D_f\sinh\left(\frac{\Delta\Gamma_s}{2}t\right) + S_f\sin\left(\Delta m_s t\right) \right)$$

The γ parameters are in the D and S parameters, eg. $D_f = \frac{-2 \, r_{D_s K} \, \cos(\delta - (\gamma - 2 \, \beta_s))}{1 + r_{D_s K}^2}.$

 $\sigma(\gamma) \propto 1/\sqrt{N_{\rm eff}}$

- $\bigcirc~N_{\rm eff} \propto N_{b\bar{b}}$
- $\bigcirc~N_{
 m eff} \propto$ Efficiency
- $\, \bigcirc \, N_{\rm eff} \propto$ Tagging power
- $\bigcirc \ \sigma_\gamma \propto 1/e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2}$

Use the similar equation as for ϕ_s to estimate the resolution of γ .

$$\xi = 1 / \left(\sqrt{N_{b\bar{b}} \times \varepsilon \times Br} \times \sqrt{p} \times \exp(-\frac{1}{2} \Delta m_s^2 \sigma_t^2) \right)$$

Statistics

○ Stat:

$$N_{exp}(Z \to b\bar{b} \to B_s^0(\to D_s^-(\to K^-K^+\pi^-)K^+)X)$$

= $10^{12} \times \mathfrak{B}(Z \to b\bar{b}) \times \mathfrak{B}(\bar{b} \to B_s^0) \times \mathfrak{B}(B_s^0 \to D_s^-K^+) \times \mathfrak{B}(D_s^- \to K^-K^+\pi^-)$
= 149804 (5)

 $\odot\,$ For the specific $D^-_s\to K^-K^+\pi^-$ subdecay in the signal samples, the events of B2DK in total should be:

$$N_{exp}(B_{s}^{0} \to D_{s}^{\mp}(KK\pi)K^{\pm}) = N_{exp}(B_{s}^{0} \to D_{s}^{+}(KK\pi)K^{-}) + N_{exp}(B_{s}^{0} \to D_{s}^{-}(KK\pi)K^{+}) + N_{exp}(\bar{B}_{s}^{0} \to D_{s}^{+}(KK\pi)K^{-}) + N_{exp}(\bar{B}_{s}^{0} \to D_{s}^{-}(KK\pi)K^{+}) = 4 \times N_{exp}(Z \to b\bar{b} \to B_{s}^{0}(\to D_{s}^{-}(\to K^{-}K^{+}\pi^{-})K^{+})X) = 599216$$
(6)

Parameters extraction at MC Truth level

○ Perfect flavour tagging and time resolution.

 \bigcirc Resolution: $\sigma(\gamma) = 0.35^{\circ}$.

$$\xi = 1/\left(\sqrt{N_{b\bar{b}}\times\varepsilon\times Br}\times\sqrt{p}\times\exp(-\frac{1}{2}\Delta m_s^2\sigma_t^2)\right)$$

- Temporarily ignore the time resolution effects, considering the time resolution of B_s is excellent (from $B_s \rightarrow J/\psi\phi$ study).
- \bigcirc Tagging power: 40%
- \bigcirc Resulting $\sigma(\gamma) = 0.55^{\circ}$
- Expection from HL-LHC LHCb: $\sigma(\gamma) = 0.35^{\circ}$.

SUMMARY

Summary

- \bigcirc Competitive ϕ_s resolution for CEPC(Tera-Z) and LHCb(HL-LHC).
 - Expected ϕ_s resolution: CEPC(Tera-Z) is a little worse than LHCb(HL-LHC).
 - $\circ\,$ CEPC has potential to improve the flavour tagging to get better ϕ_s resolution with better algorithm.
- \bigcirc Only in the 10-Tera-Z configuration, can Z factories be competitive to the LHCb(HL-LHC) for $\Delta\Gamma_s$ and Γ_s measurements.
- \bigcirc Expect good resolution for $\gamma,$ but more to investigate.
- Particle identification is critical.
 - $\circ\,$ Hadron pid is not used in reconstruction. With the information, a better efficiency is expected.
 - Tagging power drop fast with particle misidentification.
- $\, \odot \,$ Vertex reconstruction is critical for background suppression.

Thank you for your attention!