Analysis of the beam background for TPC at the high luminosity Z-pole on CEPC

JinXian Zhang

Huirong Qi, Xin She, Yue Chang, Guang Zhao, Linhui Wu, Haoyu Shi, Quan Ji, Gang Li, Chengdong Fu, Yifang Wang

2024/10/25, International CEPC workshop, Hangzhou, China

CONTENTS

1 / Motivation and Physics Requirement

2/ Beam Background in CEPC Z-pole Mode

3 / Background Simulation Results

4 Conclusion

TPC: CEPC Gaseous Tracker

• In the latest design of the Circular Electron-Positron Collider (CEPC) detector, the time projection chamber (TPC) is chosen as the main tracker detector.

- TPC features:
 - Simple geometry
 - Computable process
 - Working stability
 - 3-D tracking (precision: ~ 100μm)
 - PID based on dN/dx & dE/dx

Fig: Detector Geometry & TPC Geometry in CEPC TDR

Fig: A sketch of TPC working process

Physics Requirements

- CEPC operation stages in the TDR:
- 10-years Higgs \rightarrow 2-years Z-pole \rightarrow 1-year W
- Physics requirements of the tracker
 - High momentum resolution for Higgs and Z
 - PID for the flavor physics and jet substructure

Technical Challenges of TPC at Tera-Z

- TPC's main challenge is space charge and additional electrical field in high event rate environment.
 - Caused by the ionization process and positive ion backflow.
- Which is, in CEPC, the high luminosity Z-pole mode.
 - CEPC TDR is considering running lowluminosity Z-pole mode intermittently in Higgs-mode for short periods of time.
- Serving for the CEPC detector TDR, our study investigated part of the background in CEPC Z-pole mode affecting TPC, giving a preliminary estimation.

Table: Operating parameters for different modes of CEPC

Mode	Higgs	Ζ	W	tt
Energy (GeV)	120	45.5	80	180
Bunch number	446	13104	2162	58
Bunch spacing (ns)	355	23	154	2714
Bunch population (10 ¹¹)	1.3	2.14	1.35	2.0
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	8.3	192	26.7	0.8

Fig: A sketch of TPC working process

Investigating Beam Backgrounds in CEPC

- Beam backgrounds we need to deal with:
 - Single beam background (beam loss):
 - Touschek scattering
 - Beam-gas scattering
 - Beam thermal photon scattering
 - Synchrotron radiation
 - ...
 - Pair production (beamstrahlung, luminosity related)
 - Injection background
 - Not considered yet

Fig: Different kinds of background

Table: Simulation software of backgrounds

Background	Generation	Tracking	Detector Simulation	
Synchrotron Radiation	BDSim	BDSim/Geant4		
Beamstrahlung/Pair Production	Guinea-Pig++			
Beam-Thermal Photon	PyBTH	_	CEPCSW/FLUKA	
Beam-Gas Bremsstrahlung	PyBGB	SAD		
Beam-Gas Coulomb	BGC in SAD	SAD		
Radiative Bhabha	Radiative Bhabha BBBREM			
Touschek	TSC in SAD	-		

Simulation: TPC Parameters

Table: TPC parameters in CEPC TDR

Inner radius	63.5 cm		
Outer radius	175.0 cm		
Maximum drift length	275.0 cm		
Pixel size	500 μm × 500 μm		
Data sampling rate	40 MHz		
Working gas	T2K gas, Ar : CF_4 : $iC_4H_{10} = 95$: 3 : 2, 1 atm		

Fig: A sketch of TPC geometry

- Mode: Z-pole
- Pair production + Single Beam, 3700BX
- Software: CEPCSW (2024/8/12)

Fig: A typical track in pixel TPC

Simulation: Tracking and Energy Deposition

- Background introduces a large number of $low-p_T$ particles in the chamber, which cause the most of the energy deposition.
- $E_{dep} \propto Ionization$

Fig: Background hit map on x-y and r-z plane

Simulation: Voxel Occupancy and Hit Rate

Fig: Background voxel occupancy and hit rate

- Background voxel occupancy and hit rate: whether TPC can work and detect physical events in the working environment.
- VO = hit rate per pixel × time window × sampling rate
 - Pixel size: 500μm × 500μm
 - Sampling rate: 40MHz (25ns/sampling)
 - Time window for a hit: 20 sampling
- TPC can function properly in the environment.

Table: Background voxel occupancy and hit rate

	Inner layer	Outer layer
Voxel occupancy	0.05%	0.005%
Hit rate (/s/pixel)	10000	1000

Calculating Electrical Field and Distortion

Fig: Distortion of particle tracks

- Electrical field caused by background can be solved analytically based on Green's function:
- $\Delta G(\mathbf{x}, \mathbf{x}') = -4\pi\delta(\mathbf{x}, \mathbf{x}')$
- $\phi_{\text{ion}}(\mathbf{x}) = \int_D d^3 x G(\mathbf{x}, \mathbf{x}') \rho_{\text{ion}}(\mathbf{x}')$
- And the distortion is given by:
- $\Delta_{r\varphi} = \int_0^L \frac{\omega \tau}{1 + \omega^2 \tau^2} \times \frac{E_r}{E_z} dz$ (azimuthal)
- $\Delta_r = \int_0^L \frac{1}{1+\omega^2 \tau^2} \times \frac{E_r}{E_z} dz$ (radial, negligible)
- Therefore, giving a distribution of spacial charge density, distortion is predictable.

Calculating Electrical Field and Distortion

- As a tentative estimate, only pair-production part is considered, while single beam part remains under discussion.
- Assume a steady spatial charge distribution uniform in z direction. The spatial charge density is calculated by:

•
$$\rho_{\rm ion}(\mathbf{x}) = \rho_{\rm ion}(r) = \frac{dE_{\rm dep}/dV}{I_{\rm T2K}} \times \frac{L_{\rm max\,dirft\,length}}{v_{\rm ion}}$$

• And fitted with:

•
$$\rho_{\text{ion}}(\mathbf{x}) = \rho_{\text{ion}}(r) = \frac{A}{r^B} + C$$

- For pair-production background, the maximum $\Delta_{r\varphi}$ is ~ 120 μ m.
- Estimate: single beam background is $\sim 5 \times pair-production$.
 - Further investigation and optimization is needed.

Fig: Spatial charge density and azimutial distortion

Calculating electrical field and distortion

- More estimation:
 - Maximum distortion with e^+e^- to qq at Z-pole (physics events only)
 - Maximum distortion under the different beamstrahlung background $(\times 10, \times 50, \times 100$ times physics events)
- MDI design at Z need to be carefully optimized with MDI group in CEPC.

Fig: Calculating distortion for different levels of background

Conclusion

- The pixelated TPC is the baseline gaseous track detector with good performance of 3-D track reconstruction and PID resolution. The voxel occupancy is acceptable when TPC operate at the high luminosity Z-pole.
- Beam induced background has significant impact on TPC, especially at high luminosity Z-pole on CEPC. The results of the simulation and analysis gave the hit rate in the TPC chamber.
- With the calculating electrical field and distortion, the results showed that MDI design at Tera-Z need to be carefully optimized with MDI group in CEPC.

THANKS

BGC_rTDR_Z

BGB_rTDR_Z

TSC_rTDR_Z

Beam Lost Particle Distribution

Backup

Fig: Vertex and endpoint distribution

-6

-4

-2

0

Position in Interaction Region/meter

2

Backup

Fig: Background energy deposition and dE/dx