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Introduction
➡ Decays governed by b➝sll transitions are sensitive 

probes for new physics 
➡ Well studied for meson decays 
➡ Baryon decays provide complementary information 
❖ Different spin structure 
❖ Differences in hadronic structure 

➡ Decays Λb➝Λμμ well studied 
(JHEP 01 (2015) 155, JHEP 11 (2017) 138 and 
many others)  

➡ Decays Λb➝Λ*μμ with spin 1/2 and 3/2 Λ* studied 
previously (1903.10553, JHEP 07 (2020) 002, 
JHEP 06 (2019) 136, Eur. Phys. J. Plus 136 (2021) 
614)
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Angular distributions
➡ With polarised production, 5 angles to describe kinematics 
➡ Without polarisation, one is sensitive only to φl+φb 

➡ Angle θ should correspond 
to production polarisation  
axis 

❖ Figure shows case for pp 
collisions with transverse  
polarisation 

❖ For Z decays one has to 
take relevant polarisation  
axis
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Figure 1: Illustration of the different angles appearing in the expression for the differential decay rate

when considering transverse polarisation. Three different rest-frames are used, that of the ⇤
0
b , the ⇤ and

the `
+
`
�

system. A common axis (in blue), given by the normal to the plane containing the ⇤
0
b direction

and the beam direction, is used to define the coordinate systems.

helicity frame, the amplitude for the ⇤ decay is
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A spin-dependent factor is introduced to compensate for the normalisation of the Wigner D-matrix
elements.

The lepton system amplitude, h̃, is calculated in the helicity frame of the positively charged
lepton. After the rotation of the quantization axis from the lepton system helicity frame to the
`
+ helicity frame, the amplitude is

MV!`+`�

�V ,Oi
= h̃

Oi,�V
�1,�2

(q2)DJV
�V ,�1��2

(�`, ✓`, ��`)
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. (16)

Note, that the spin of the virtual vector boson, JV , is implicitly contained in its polarization
�V = t, 0, ±.

Combining equations 14–16, with the results of Section 2,
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where ~⌦ = (cos ✓b, cos ✓p, �p, cos ✓`, �`). It is convenient to replace the sum over the ⇤
0
b helicities,

�b, by the spin-density matrix
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5



Angular distribution
➡ The full angular distribution with several interfering spin states can be easily 

written in the helicity formalism 
➡ Full decay rate 
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Figure 1: Illustration of the different angles appearing in the expression for the differential decay rate

when considering transverse polarisation. Three different rest-frames are used, that of the ⇤
0
b , the ⇤ and

the `
+
`
�

system. A common axis (in blue), given by the normal to the plane containing the ⇤
0
b direction

and the beam direction, is used to define the coordinate systems.
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A spin-dependent factor is introduced to compensate for the normalisation of the Wigner D-matrix
elements.

The lepton system amplitude, h̃, is calculated in the helicity frame of the positively charged
lepton. After the rotation of the quantization axis from the lepton system helicity frame to the
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Note, that the spin of the virtual vector boson, JV , is implicitly contained in its polarization
�V = t, 0, ±.

Combining equations 14–16, with the results of Section 2,
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where ~⌦ = (cos ✓b, cos ✓p, �p, cos ✓`, �`). It is convenient to replace the sum over the ⇤
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b helicities,
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Λb decay amplitudes
dimuon system amplitudes

Λ* decay amplitudes

spin statesoperators

➡ Several terms will have same angular term, so want to group them

Wigner d-functions



Angular distribution structure

➡ Set of terms without any dependence on polarisation 
➡ Set of terms proportional to Pb cos θ with same amplitude structure as 

unpolarised terms 
➡ Set of terms proportional to Pb sin θ where amplitude structure is different
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system. A common axis (in blue), given by the normal to the plane containing the ⇤
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b direction

and the beam direction, is used to define the coordinate systems.
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A spin-dependent factor is introduced to compensate for the normalisation of the Wigner D-matrix
elements.

The lepton system amplitude, h̃, is calculated in the helicity frame of the positively charged
lepton. After the rotation of the quantization axis from the lepton system helicity frame to the
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Note, that the spin of the virtual vector boson, JV , is implicitly contained in its polarization
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b direction

and the beam direction, is used to define the coordinate systems.

helicity frame, the amplitude for the ⇤ decay is
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A spin-dependent factor is introduced to compensate for the normalisation of the Wigner D-matrix
elements.

The lepton system amplitude, h̃, is calculated in the helicity frame of the positively charged
lepton. After the rotation of the quantization axis from the lepton system helicity frame to the
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Note, that the spin of the virtual vector boson, JV , is implicitly contained in its polarization
�V = t, 0, ±.

Combining equations 14–16, with the results of Section 2,

d7�

dq2 dmpKd~⌦
=

1

m
2
⇤b

N
2
1

26(2⇡)7
|~k||~k1||~q1|p

q2

X

�b

P�b

X

�1,�2,�p

���
X

Oi

X

⇤

r
J⇤ +

1

2

X

�⇤

g�V �V

⇥ H⇤,Oi
�⇤,�V

(q2
, mpK) d

1/2
�b,�⇤��V

(✓b)

⇥ h̃
Oi,�V
�1,�2

(q2)DJV
�V ,�1��2

(�`, ✓`, ��`)
⇤

⇥ h
⇤
�⇤,�p

(mpK)DJ⇤
�⇤,�p

(�p, ✓p, ��p)
⇤

���
2
,

(17)

where ~⌦ = (cos ✓b, cos ✓p, �p, cos ✓`, �`). It is convenient to replace the sum over the ⇤
0
b helicities,

�b, by the spin-density matrix

⇢�⇤��V ,�0

⇤��0

V
=
X

�b

P�b
d

1/2
�b,�⇤��V

(✓b)d
1/2
�b,�0

⇤��0

V
(✓b)

=
1

2

 
1 + P⇤0

b
cos ✓b P⇤0

b
sin ✓b

P⇤0
b
sin ✓b 1 � P⇤0

b
cos ✓b

!
,

(18)

5

Spin-density matrix



Angular basis
➡ No unique option how to group terms, pick one based on associated Legendre 

polynomials (Λb➝pKμμ) 
❖ Related to angular momentum and makes it easy to keep track of terms 
❖ Resulting functions are orthogonal (own weights for the method of moments) 
❖ For Λb➝Λμμ bases we chose was slightly suboptimal, but relates to Legendre polynomials 

➡ Final basis:

6

helicity combinations are constrained by |�⇤ � �V | = J⇤0
b

= 1
2 . As a result, only helicities of ±1

2

and ±3
2 are allowed for the ⇤ resonance, regardless of its spin.

There is no unique choice of basis for the functions fi(~⌦). In this paper, we choose to group
terms using orthogonal functions. The expansion of the differential decay rate involves products
of Wigner-D matrices,

D
JV
�V ,�1��2

(�`, ✓`, ��`)
⇤
D

J 0

V
�0

V ,�1��2
(�`, ✓`, ��`)D

J⇤
�⇤,�p

(�p, ✓p, ��p)
⇤
D

J 0

⇤
�0

⇤,�p
(�p, ✓p, ��p) , (48)

which can be written in terms of products of associated Legendre polynomials [61,62].
In the unpolarised case our angular basis functions are

f(~⌦; llep, lhad, |m|) =

r
8

3
n
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m
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|m|
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8
><
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sin(|m|(�` + �p)) m < 0
1
p

2
m = 0

cos(|m|(�` + �p)) m > 0

,

(49)

where P
m
l (cos ✓) are the associated Legendre polynomials with the normalisation

n
m
l =

s
(2l + 1)(l � m)!

2(l + m)!
, (50)

llep is in the range 0 to 2JV (i.e. 0 to 2), lhad is in the range 0 to 2J⇤, |m|  lhad and |m|  llep.
This results in 46 different angular basis functions that are independent of the angle ✓b and
are either independent of �` and �p or depend only on the angle between the ⇤-resonance and
dilepton-system decay-planes, � = �` + �p. The angular functions arising in the unpolarised
case are given in Table 1. In order to reduce the number of arguments, the basis functions are
labelled fi(~⌦) with an index ranging from i =1–46.

In the polarised case, there are 46 additional terms that are proportional to cos ✓b but
otherwise have the same dependence on the remaining angles as the 46 terms appearing in
the unpolarised case. The cos ✓b dependent basis functions can be obtained by multiplying the
unpolarised ones in Eq. (49) with

p
3 cos ✓b and the corresponding observables by 1

p
3
P⇤0

b
. An

additional 86 terms also arise proportional to sin ✓b. The dependence on ✓b is evident from the
structure of the ⇤

0
b spin-density matrix, see Equation (18), arising from the rotation from the

initial frame to the ⇤ helicity frame. The sin ✓b dependent terms are accompanied by basis
functions

f(~⌦; llep, lhad, mlep, mhad) = 2n
mlep
llep

n
mhad
lhad

P
|mlep|
llep

(cos ✓`)P
|mhad|
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(cos ✓p)

⇥
(

sin(|mlep|�` + |mhad|�p) mlep  0 and mhad  0

cos(|mlep|�` + |mhad|�p) mlep � 0 and mhad � 0
,

(51)

where |mlep � mhad| = 1. The angular terms proportional to sin ✓b are given in Table 2. The
origin of the numerical factors appearing in Eq. (49), Eq. (51) and the

p
3 in front of the cos ✓b

terms is discussed in Sec. 5.
The lepton and hadron sides of the decay are fully independent of each other and can generally
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➡ The angular distribution takes form

The momentum ~k
⇤
1 is not defined for resonances with a pole mass below the pK

� threshold.
A common solution is to replace the Breit-Wigner shape by a Flatté model (see for example
the description of the ⇤(1405) state by the LHCb collaboration in Refs. [59, 60]). In the Flatté
model, the total width is expressed as the sum of partial widths for the decays ⇤ ! ⌃+

⇡
� and

⇤ ! pK
�. Identical widths are assumed for both decays, up-to phase-space factors. When

evaluating the partial widths, ~k
⇤
1 is replaced by the momentum of the ⇡

� at the pole-mass of the
resonance. Equation 42 only includes the contribution from the decay to pK

� in �partial. This
approach is also used for the ⇤(1405) state in this work.

The amplitude with the opposite proton helicity, h
⇤
�⇤,�1/2(mpK), is given by parity conserva-

tion
h

⇤
�⇤,�1/2(mpK) = P⇤(�1)l+1

h
⇤
�⇤,1/2(mpK) , (43)

where P⇤ is the parity of the ⇤ resonance.

3.3 Helicity amplitudes for the leptonic current

The lepton amplitudes are the projections of the lepton currents onto polarization vectors "µ

and have the general form

h̃
JV
�1,�2

= "µ(�1 � �2)ū(q2, �2)�
µ
v(q1, �1) , (44)

where �1 � �2 = 0 with JV = 0 (JV = 1) corresponds to the time-like (longitudinal) polarization.
Explicit expressions for the polarisation vectors are given in Appendix B. The lepton amplitudes
are calculated in the positively-charged lepton helicity-frame. There are two relevant Lorentz
structures, corresponding to vector (�µ = �

µ) and axialvector (�µ = �
µ
�5) currents. The vector

current appears with Wilson coefficients C7(0) and C9(0) and the axialvector current with C10(0) .
Inserting the Lorentz structures into the amplitudes yields

h̃
V,0
+1/2,+1/2 = 0 , h̃

A,0
+1/2,+1/2 = 2m` ,

h̃
V,1
+1/2,+1/2 = 2m` , h̃

A,1
+1/2,+1/2 = 0 ,

h̃
V,1
+1/2,�1/2 = �

p
2q2 , h̃

A,1
+1/2,�1/2 =

p
2q2�` ,

h̃
V,JV
��1,��2

= �h̃
V,JV
+�1,+�2

, h̃
A,JV
��1,��2

= h̃
A,JV
+�1,+�2

,

(45)

where V and A refer to (axial)vector and �` is the lepton velocity in the dilepton rest frame, i.e.

�` =
|~q1|
q
0
1

=

s

1 �
4m

2
`

q2
. (46)

4 Angular distribution

Expanding the expression for the differential decay rate and performing sums over all of the
relevant helicities and ⇤ resonances up-to J⇤ = 5

2 yields

32⇡
2

3

d7�

dq2 dmpK d~⌦
=

178X

i=1

Ki(q
2
, mpK)fi(~⌦) . (47)

The Ki are bilinear combinations of products of the amplitudes for the ⇤
0
b and ⇤ decays and will

be examined in more detail in Sec. 6. We simplify the expansion of the differential decay rate by
noting that the helicity of the ⇤ resonance can take any value within |�⇤|  J⇤ and that the

9

Ki(q2,mpK) are bilinear 
combinations of 
products of amplitudes 



Anatomy of angular distribution
➡ There are 178 terms when 

polarisation is allowed to be non-
zero 
❖ 46 of these present also with zero 

polarisation and have no θb 
dependence (mlep=mhad) 

❖ For polarised case, 46 terms have 
cos θb dependence while rest of the 
angles are same as unpolarised case 

❖ Remaining terms have sin θb 
dependence with basis functions 
where mlep≠mhad

7

Table 3: Amplitude combinations appearing in the coefficient Ki. The parity combination and allowed

spins indicate which states interfere. Checkmarks in the three columns labelled single states indicate

whether the coefficient appears in the single resonance case for spin J⇤ = 1
2 ,

3
2 , or

5
2 . Some coefficients

take the real part (Re) others the imaginary part (Im) of the amplitude products. A checkmark in the

column V/A shows that a coefficient arises from vector-axialvector interference. The right-most column

indicates the equation defining the observable Ki.

i
parity

J⇤ + J
0
⇤

single states
Re/Im V/A helicity combinations Eq.

combination 1/2 3/2 5/2

1 same � 1 X X X Re J⇤ = J
0
⇤, (�⇤, �V ) = (�⇤, �V )0

(62)

2 same � 1 X X X Re X J⇤ = J
0
⇤, �V 6= 0, (�⇤, �V ) = (�⇤, �V )0

(63)

3 same � 1 X X X Re J⇤ = J
0
⇤, (�⇤, �V ) = (�⇤, �V )0

(64)

4 opposite � 1 Re (�⇤, �V ) = (�⇤, �V )0
(66)

5 opposite � 1 Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(117)

6 opposite � 1 Re (�⇤, �V ) = (�⇤, �V )0
(118)

7 same � 2 X X Re (�⇤, �V ) = (�⇤, �V )0
(119)

8 same � 2 X X Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(120)

9 same � 2 X X Re (�⇤, �V ) = (�⇤, �V )0
(121)

10 opposite � 3 Re (�⇤, �V ) = (�⇤, �V )0
(122)

11 opposite � 3 Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(123)

12 opposite � 3 Re (�⇤, �V ) = (�⇤, �V )0
(124)

13 same � 4 X Re (�⇤, �V ) = (�⇤, �V )0
(125)

14 same � 4 X Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(126)

15 same � 4 X Re (�⇤, �V ) = (�⇤, �V )0
(127)

16 opposite � 5 Re (�⇤, �V ) = (�⇤, �V )0
(128)

17 opposite � 5 Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(129)

18 opposite � 5 Re (�⇤, �V ) = (�⇤, �V )0
(130)

19 opposite � 1 Re

�V = 0, |�0
V | = 1 (all possible �

(0)
⇤ )

(131)

20 opposite � 1 Re X (132)

21 same � 2 X X Re (133)

22 same � 2 X X Re X (134)

23 opposite � 3 Re (135)

24 opposite � 3 Re X (136)

25 same � 4 X Re (137)

26 same � 4 X Re X (138)

27 opposite � 5 Re (139)

28 opposite � 5 Re X (140)

29 opposite � 1 Im

�V = 0, |�0
V | = 1 (all possible �

(0)
⇤ )

(141)

30 opposite � 1 Im X (142)

31 same � 2 X X Im (143)

32 same � 2 X X Im X (67)

33 opposite � 3 Im (144)

34 opposite � 3 Im X (145)

35 same � 4 X Im (146)

36 same � 4 X Im X (147)

37 opposite � 5 Im (148)

38 opposite � 5 Im X (149)

39 same � 2 X X Re

|�(0)
V | = 1, �⇤ = ±1/2, �

0
⇤ = ⌥3/2

(150)

40 opposite � 3 Re (151)

41 same � 4 X Re (152)

42 opposite � 5 Re (153)

43 same � 2 X X Im (154)

44 opposite � 3 Im (155)

45 same � 4 X Im (156)

46 opposite � 5 Im (157)
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Sensitivity to physics
➡ For Λb➝Λμμ we investigated in greater details what can be extracted 
➡ At low-hadronic recoil amplitudes depend on combinations of Wilson 

coefficients  

➡ Im(ρ2) only accessible with non-zero polarisation 
➡ One can construct relationships which depend only on short distance 

physics

8

large contributions from hard spectator scattering [34] and soft gluon emission [35] are
neglected. The form-factors for the ⇤b ! ⇤ transition are taken from a recent Lattice
QCD calculation in Ref. [27]. These form-factors enable the observables to be computed
with high-precision. The form-factors at large hadronic recoil have also been calculated
in the framework of light-cone-sum-rules, see for example Refs. [36] and [37]. The SM
Wilson coe�cients are computed in EOS to NNLO in QCD. The ⇤b lifetime and CKM
matrix elements are taken from the latest experimental values [26]. The quark masses
are taken in the MS scheme.

Tables 2 and 3 in Appendix B also provide 68% confidence level intervals for the
SM predictions. To evaluate these intervals: the form-factors from Ref. [27] have been
varied within their full covariance matrix; the ⇤b lifetime, the ⇤ asymmetry parameter
and CKM matrix elements are varied within their experimental precision [26, 38]; the
scale dependence of Wilson coe�cients Ci(µ) is explored by varying the scale, µ, in the
range mb/2 < µ < 2mb; and in keeping with Ref. [39] a 3% correction to the amplitudes
from hadronic matrix elements is considered (see also Ref. [40]).

7.1 Low-hadronic recoil

At low hadronic recoil the observables are precisely predicted in the SM. The uncertain-
ties on the predictions are worse at large recoil, where a large extrapolation in q

2 of the
form-factors is needed. Figures 2–9 in Appendix C demonstrate how the observables
depend on NP contributions to the Wilson coe�cients. In the large-recoil region there
is sensitivity to C

NP
9 from both the polarised and unpolarised observables. Interestingly,

the observables M23 and M27 can also distinguish between two of the possibilities that
are favoured by global fits to b ! s`

+
`
� processes: where C

NP
9 ' �1 with C

NP
10 = 0

and where C
NP
9 = �C

NP
10 ' �1 [41–43]. In the low-recoil range the sensitivity to C

NP
9 is

reduced.
In Ref. [2], the authors point out that the observables at low hadronic recoil place

constraints on six combinations of Wilson coe�cients

⇢
±
1 = |CV ± C

0
V|

2 + |C10 ± C
0
10|

2

⇢2 = Re
�
CVC

⇤
10 � C

0
VC

0⇤
10

�
� iIm

�
CVC

0⇤
V + C10C

0⇤
10

�

⇢
±
3 = 2Re

�
(CV ± C

0
V)(C10 ± C

0
10)

⇤�

⇢4 = |CV|
2
� |C

0
V|

2 + |C10|
2
� |C

0
10|

2
� iIm

�
CVC

⇤
10 � C

0
VC

0⇤
10

�
,

(24)

where CV contains contributions from C7 and C9. The primed coe�cients correspond
to right-handed currents whose contribution is vanishingly small in the SM. The short-
distance dependence of K1–K34 on ⇢

±
1 , ⇢

±
3 , ⇢2 and ⇢4 is provided for completeness in

Appendix D.
If the ⇤b is unpolarised, the decay rate is insensitive to the short-distance contribution

Im(⇢2) but provides sensitivity to ⇢
±
1 , Re(⇢2), ⇢

±
3 , Re(⇢4) and Im(⇢4). The polarised

observables also depend on these short-distance contributions but have di↵erent form-
factor dependencies. This permits a new set of checks of the OPE and the form-factors.
The short-distance combination Im(⇢2) can also be determined from M19, M25, M30 and
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M34. Furthermore, in K1–K10 the short-distance contributions ⇢
+
1 and ⇢

�
1 always appear

together as a sum. Using the polarised observables , ⇢
+
1 and ⇢

�
1 can be separated, e.g.

by using

K2 +
2

↵⇤P⇤b

K33 = 16s�|f
V
? |

2
⇢
+
1 ,

K2 �
2

↵⇤P⇤b

K33 = 16s+|f
A
? |

2
⇢
�
1 ,

(25)

where f
V
? and f

A
? are helicity form-factors (see for example Ref. [44]). A similar trick

can be used to separate ⇢
+
3 and ⇢

�
3 using K24 and K8. It is also possible to form new

short-distance relationships, in which the form-factors cancel by taking ratios of the Ki,

K16

K34
= 2

Re(⇢2)

Im(⇢2)
,

K25

K22
= �

Im(⇢2)

Im(⇢4)
,

K23

K10
= �

Re(⇢4)

Im(⇢4)
P⇤b . (26)

The short-distance combinations ⇢2 and ⇢4 can then be determined up-to their overall
normalisation, independent of the hadronic form-factors, using Eq. 26 and the relation-
ship

K3

K5
= �

1

↵⇤

Re(⇢2)

Re(⇢4)
(27)

from Ref. [2]. Similarly, one can form short-distance relationships that depend only on
⇢
±
1 and ⇢

±
3

P⇤bK8 + ↵⇤K24

K27 � K17
= �

⇢
�
3

⇢
�
1

,
P⇤bK8 � ↵⇤K24

K27 + K17
=

⇢
+
3

⇢
+
1

. (28)

Alternatively, it is possible to form ratios that depend only on the form-factors and not
on the short-distance physics. For example,

K7

K5
=

1

2

 
(m⇤b + m⇤)p

q2

f
V
0

f
V
?

�
(m⇤b � m⇤)p

q2

f
A
0

f
A
?

!
,

K23

K5
=

1

2

 
(m⇤b + m⇤)p

q2

f
V
0

f
V
?

+
(m⇤b � m⇤)p

q2

f
A
0

f
A
?

!
P⇤b

(29)

allow the ratios f
V
0 /f

V
? and f

A
0 /f

A
? to be determined independent of the ⇢i.

7.2 Photon-polarisation at large hadronic-recoil

At very large hadronic recoil (q2 ⌧ 1 GeV2
/c

4), the angular distribution of the ⇤b !

⇤µ
+
µ
� decay is sensitive primarily to the Wilson coe�cients C7 and C

0
7 due to a pole-like

enhancement of the amplitudes. The observable K33 is proportional to Re(C7C
0
7) and

can therefore provide a null test of the size of C
0
7 (in the same way as the S3 observable

in the B
0
! K

⇤0
µ
+
µ
� decay). In this case, however, the observable is suppressed by

the size of P⇤b .
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SM prediction

9

Table 2: Predictions from EOS for the angular observables of the ⇤b ! ⇤µ
+
µ
� decay

with P⇤b = 1 in the range 1 < q
2

< 6 GeV2
/c

4. The SM calculation is described
in the text. The observables M31 and M34 vanish due to the small size of the muon
mass. Observables that depend on the imaginary part of the product of two transversity
amplitudes also tend to be vanishingly small, due to the small strong phase di↵erence
between pairs of amplitudes in the SM.

Obs. Value 68% interval Obs. Value 68% interval
M1 0.459 [0.453, 0.465] M6 0.000 [�0.005, 0.006]
M2 0.081 [0.071, 0.094] M7 �0.025 [�0.034, �0.014]
M3 �0.005 [�0.014, �0.001] M8 �0.003 [�0.016, 0.012]
M4 �0.280 [�0.290, �0.262] M9 0.002 [0.001, 0.002]
M5 �0.045 [�0.053, �0.037] M10 0.002 [0.001, 0.002]
M11 �0.366 [�0.383, �0.338] M23 �0.147 [�0.162, �0.133]
M12 0.071 [0.058, 0.081] M24 0.132 [0.120, 0.150]
M13 0.001 [�0.010, 0.007] M25 �0.001 [�0.001, �0.000]
M14 0.243 [0.230, 0.254] M26 0.004 [0.003, 0.005]
M15 �0.052 [�0.060, �0.045] M27 0.089 [0.081, 0.099]
M16 0.003 [0.001, 0.009] M28 �0.089 [�0.100, �0.080]
M17 0.004 [�0.012, 0.018] M29 0.000 [0.000, 0.000]
M18 0.029 [0.018, 0.037] M30 0.000 [0.000, 0.000]
M19 �0.001 [�0.002, �0.001] M31 0.000 [0.000, 0.000]
M20 �0.003 [�0.003, 0.002] M32 0.075 [0.035, 0.118]
M21 0.002 [0.001, 0.003] M33 0.007 [0.001, 0.012]
M22 �0.005 [�0.006, �0.003] M34 0.000 [�0.000, 0.000]
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Table 3: Predictions from EOS for the angular observables of the ⇤b ! ⇤µ
+
µ
� decay

with P⇤b = 1 in the range 15 < q
2

< 20 GeV2
/c

4. The SM calculation is described
in the text. The observables M31 and M34 vanish due to the small size of the muon
mass. Observables that depend on the imaginary part of the product of two transversity
amplitudes also tend to be vanishingly small, due to the small strong phase di↵erence
between pairs of amplitudes in the SM.

Obs. Value 68% interval Obs. Value 68% interval
M1 0.351 [0.349, 0.353] M6 0.187 [0.183, 0.192]
M2 0.298 [0.294, 0.301] M7 �0.022 [�0.025, �0.019]
M3 �0.236 [�0.240, �0.230] M8 �0.100 [�0.105, �0.095]
M4 �0.195 [�0.200, �0.190] M9 0.000 [0.000, 0.001]
M5 �0.154 [�0.159, �0.149] M10 �0.001 [�0.001, �0.000]
M11 �0.064 [�0.069, �0.058] M23 �0.299 [�0.303, �0.295]
M12 0.240 [0.235, 0.245] M24 0.337 [0.335, 0.338]
M13 �0.292 [�0.295, �0.288] M25 �0.001 [�0.001, �0.000]
M14 0.034 [0.031, 0.038] M26 0.001 [0.000, 0.001]
M15 �0.191 [�0.196, �0.186] M27 0.221 [0.216, 0.226]
M16 0.151 [0.146, 0.156] M28 �0.187 [�0.191, �0.183]
M17 0.102 [0.096, 0.107] M29 0.000 [0.000, 0.000]
M18 0.021 [0.018, 0.024] M30 �0.001 [�0.001, �0.000]
M19 0.000 [0.000, 0.000] M31 0.000 [0.000, 0.000]
M20 �0.001 [�0.001, �0.001] M32 �0.046 [�0.050, �0.043]
M21 0.000 [0.000, 0.001] M33 �0.053 [�0.056, �0.050]
M22 �0.002 [�0.002, �0.001] M34 0.000 [0.000, 0.000]
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1 < q2 < 6 GeV2 
PΛ = 1

15 < q2 < 20 GeV2 
PΛ = 1

For polarisation PΛ≠1, scale M11 — M34 by PΛ



Latest measurement

➡ Well compatible with the SM 
➡ Remaining observables compatible with zero
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Figure 3: Angular observables combining the results for the moments obtained from Run 1
and Run 2 data, as well as candidates reconstructed in the long- and downstream-track p⇡�

categories. The blue line represents the SM predictions obtained using the EOS software. The
thickness of the light-blue band represents the uncertainty on the SM predictions.

Table 2: Sources of systematic uncertainty on the Ki angular observables, together with the
mean and the range of uncertainty values assigned to the 34 Ki parameters in each case. The
variation of each source of systematic uncertainty between the di↵erent observables depends on
the structure of the weighting functions used to extract the observable and its correlation with
the angular e�ciency.

Source Uncertainty [10�3]
Range among Ki Mean

Simulated sample size 3–22 9
E�ciency parameterisation 1–13 4
Data-simulation di↵erences 2–16 6
Angular resolution 1–11 4
Beam crossing angle 1–8 4
Signal mass model 1–4 2

forward-backward asymmetries of the decay are determined to be

A`
FB = �0.39± 0.04 (stat) ± 0.01 (syst) ,

Ah
FB = �0.30± 0.05 (stat) ± 0.02 (syst) ,

A`h
FB = +0.25± 0.04 (stat) ± 0.01 (syst) .

The results presented here supersede the results for angular observables in Ref. [10] (see
discussion in Sec. 7). The measured angular observables are compatible with the SM
predictions obtained using the EOS software [37], where the ⇤0

b production polarisation is
set to the value obtained by the LHCb collaboration in pp collisions at a centre-of-mass
energy of 7TeV [33].
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Global fit
➡ Uses just Λb ➝ Λμμ observables and Bs ➝ μμ branching fraction 
➡ Interestingly it constrains production polarisation and Λ decay asymmetry 

as well as dedicated measurement with Λb ➝ J/ψΛ

11
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IV. RESULTS

We use EOS [31] to carry out 12 fits for the three data
sets and four fit scenarios. Summaries of the goodness
of fit in their respective best-fit points are collected in
table II. Our findings are summarized as follows:

1. The ⇤b ! ⇤(! p⇡�)µ+µ� angular distribution
is compatible with the SM prediction, with accept-
able p values larger than 11% for all three data sets.

2. The ⇤b polarization is compatible with zero in all
four fit scenarios. We find P⇤b

= (0 ± 5)% at 68%
probability, and an upper limit for the magnitude of
the polarization of |P⇤b

|  11% at 95% probability
(see fig. 2); these results are independent of the
choice of fit scenario. We show the two-dimensional
marginalized posterior for the polarization and the
decay parameter ↵ in figure 3.

3. In the (9) scenario, the p values decrease slightly for
all three data sets, with the minimal value of 10%
still acceptable. The best-fit point in our nominal
fit using data set 2 is:

C9 = 4.8± 0.8 . (6)

4. In the (9, 10) scenario, the p values of all three data
sets are slightly higher than in the SM. The best-fit
point in our nominal fit using data set 2 is:

C9 = +4.4± 0.8 , C10 = �3.8± 0.3 .

We find compatibility with the best-fit point ob-
tained in rare semileptonic B meson decays [32] at
' 1.2�, and compatibility with the SM point at
' 1�. We show the two-dimensional marginalized
posterior in figure 3.
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FIG. 2. Contours for the joint 2D posterior for the asym-
metry parameter, ↵, and the ⇤b production polarisation at
LHCb, P⇤b

. We show 68% probability contours for data sets
2 and 3, and the 95% contour for data set 2.
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FIG. 3. Contours of the joint 2D posterior for the parameters
C9 and C10 in scenario (9, 10). All three data sets are used for
both plots. We show 68% probability contours for all data
sets, and in addition 95% and 99% contours for our nominal
data set 2.

5. In the (9, 10, 90, 100) scenario, the p values of all
three data sets are lower than in the SM, with a
minimal value of 8%. The best-fit point in our nom-
inal fit using data set 2 is:

C9 = +4.3± 0.9 , C10 = �3.3± 0.7 ,

C
9
0 = +0.8± 0.8 , C

10
0 = +0.5± 0.7 .

We find compatibility with the best-fit point ob-
tained in rare semileptonic B meson decays at
' 1.5�, and compatibility with the SM point at less
than 1�. We show the two-dimensional marginal-
ized posteriors in figure 4.

6. We compute the model evidence for all combina-
tions of data sets and fit scenarios. Our results are
listed in table II. From these results we compute
the Bayes factors:

log
10

P (data set 2 | (9))
P (data set 2 | SM(⌫-only))

= �0.48 ,

log
10

P (data set 2 | (9, 10))
P (data set 2 | SM(⌫-only))

= �1.15 ,

log
10

P (data set 2 | (9, 10, 90, 100))
P (data set 2 | SM(⌫-only))

= �2.97 .

According to Je↵rey’s interpretation of the Bayes
factor [33], we find the degree to which the scenario
SM(⌫-only) is favoured over scenarios (9), (9, 10),
and (9, 10, 90, 100) to be barely worth mentioning,
strong, and decisive, respectively.
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�

decay
asymmetryparameterbytheBESIIIcollaboration,westudytheimpactoftheseresultsonsearches
fornon-standarde↵ectsinexclusiveb!sµ

+
µ
�

decays.Tothisend,weconstraintheWilson
coe�cientsC9andC10ofthenumericallyleadingdimension-sixoperatorsintheweake↵ective
Hamiltonian,inadditiontotherelevantnuisanceparameters.Instarkcontrasttopreviousanalyses
ofthisdecaymode,thechangesintheupdatedexperimentalresultsleadustofindverygood
compatibilitywithboththeStandardModelandwiththeb!sµ

+
µ
�

anomaliesobservedinrare
B-mesondecays.Weprovideadetailedanalysisoftheimpactofthepartialangulardistribution,
thefullangulardistribution,andthe⇤b!⇤µ

+
µ
�
branchingfractionontheWilsoncoe�cients.In

thisprocess,wearealsoabletoconstrainthesizeoftheproductionpolarizationofthe⇤bbaryon
atLHCb.

I.INTRODUCTION

Thepersistentanomaliesintherareflavor-changing
decaysofBmesons,whichariseinanalysesofbranch-
ingfractions,angulardistributionsandleptonflavour
universalitytests,havesparkedconsiderableinterestin
constructingcandidatetheoriestoreplacetheStandard
Model(SM)ofparticlephysics;seeforexampleref.[1]
foracomprehensiveguide.Iftheseanomaliesarein-
deedahintofphysicsBeyondtheSM(BSM),then
weshouldseesignsofsimilardeviationsinthebary-
onicpartnersoftheserareBmesondecays,e.g.in
⇤b!⇤(!p⇡�)µ+

µ�.
Thedecaymode⇤b!⇤(!p⇡�)µ+

µ�isquiteap-
pealingfromatheoreticalpointofview.LiketheB!
K⇤(!K⇡)µ

+
µ�decay,itprovidesalargenumberofan-

gularobservablesandissensitivetoallDiracstructures
inthee↵ectiveweakHamiltonian[2–5].Atthesame
time,becausethe⇤baryonisstableunderthestrongin-
teractions,latticeQCDcalculationsofthe⇤b!⇤form
factors[6]donotrequireacomplicatedfinite-volume
treatmentofmulti-hadronstates,aswouldbenecessary
forarigorouscalculationofB!K⇤(!K⇡)formfac-
tors[7]
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1
ThelatticedeterminationoftheB!K

⇤
formfactorsinref.[8]

andLight-ConeSumRule(LCSR)estimatesinrefs.[9–11]treat

p⇡�)µ+
µ�ontheb!sµ

+
µ�Wilsoncoe�cients[13]

using—bynow—outdatedexperimentalinputsfound
acentralvalueofC9shiftedintheoppositedirectionfrom
theSMpointcomparedtotheB-mesonfindings.Inthis
paperweconfrontthispreviousanalysiswithnew,up-
dated,andreinterpretedexperimentalresults,andcon-
strainBSMe↵ectsinb!sµ

+
µ�operators.

II.FRAMEWORK

Weusethestandardweake↵ectivefieldtheorythat
describesflavour-changingneutralb!s{µ

+
µ�,�,qq̄}

transitionsuptomass-dimensionsix[14].Followingthe
conventionsinref.[15],thee↵ectiveHamiltoniancanbe
expressedas

He↵=�
4GF
p
2

VtbV⇤
ts

↵e

4⇡

X

i

Ci(µ)Oi

+O
�
VubV⇤

us

�
+h.c.,

(1)

whereGFdenotestheFermiconstantasextractedfrom
muondecays,VijareCKMmatrixelements,and↵eisthe
electromagneticcouplingatthescaleoftheb-quarkmass,
mb.Wewritetheshort-distance(Wilson)coe�cientsas
Ci(µ),takenatarenormalizationscaleµ'mb,andlong-
distancephysicsisexpressedthroughmatrixelementsof

theK
⇤
asifitisstable,leadingtosystematicuncertaintiesthat

aredi�culttoquantify;seeref.[12]forafirststudyofthefinite
widthe↵ectsinLCSRs.
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Production polarisation
➡ Measure angular moments 

in Λb ➝ J/ψΛ and then 
perform Bayesian analysis 

➡ Uses same dataset as rare 
decays 

➡ Polarisation consistent 
with zero without visible 
energy dependence
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Figure 4: Posterior probability distributions of |a±|, arg(a±), |b�|, arg(b�) and the transverse
production polarisation of the ⇤0

b baryons, Pb, at centre-of-mass energies of 7, 8 and 13TeV
assuming uniform priors. The shaded regions indicate the 68% and 95% credibility intervals.
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Figure 5: Measured transverse production polarisation of the ⇤0
b baryons, Pb, as a function of

the centre-of-mass energy,
p
s, of the data set. The points indicate the most probable value and

the shaded regions the 68% and 95% credibility level intervals.

the posterior distribution of Pb determined at
p
s of 13TeV, leading to an asymmetric

distribution. Due to the small size of polarisation, there is little sensitivity to the phases
of the amplitudes. The magnitudes of the amplitudes a+ and b� are consistent with zero
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Future for Λb ➝ Λμμ
➡ When we did work on full 

distribution, we made crude 
estimate of precision at LHCb 

➡ 15 < q2 < 20 GeV2 
➡ Pure signal toys without any 

background 
➡ Just scale yields from published 

numbers 
➡ Will be able to measure 

precisely, but many observables 
give only small effect at LHC
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8 Expected experimental precision

Table 1 indicates the typical precision on the angular moments that could be achieved
at the LHCb experiment. The experimental precision has been estimated using pseudo-
experiments corresponding approximately to the expected signal yield in the current and
in a future LHCb dataset. Experimental backgrounds and non-uniform angular accep-
tance have been neglected in this estimate. However, these are expected to have only a
small impact on the experiments sensitivity. The sensitivity that can be achieved with
the large datasets that will be available at an upgraded LHCb experiment is interesting
event for modest values of P⇤b .

Table 1: Expected experimental precision on the angular moments of the ⇤b! ⇤µ
+
µ
�

decay at the LHCb experiment. The four columns correspond to: the observed yield of
300 ⇤b! ⇤µ

+
µ
� candidates with 15 < q

2
< 20 GeV2

/c
4 in the LHC run 1 dataset [23];

an expected yield of ⇠1000 candidates at the end of run 2 of the LHC; an expected
yield of ⇠8 000 candidates in 50 fb�1 of integrated luminosity with an upgraded LHCb
experiment; and an expected yield of ⇠50 000 candidates in 300 fb�1 with the proposed
LHCb phase II upgrade.
Obs. Run 1 Run 2 Upgrade Phase II Obs. Run 1 Run 2 Upgrade Phase II
M1 0.021 0.011 0.004 0.002 M18 0.071 0.038 0.014 0.006
M2 0.042 0.023 0.008 0.003 M19 0.156 0.084 0.030 0.012
M3 0.030 0.016 0.006 0.002 M20 0.071 0.038 0.014 0.006
M4 0.050 0.026 0.010 0.004 M21 0.090 0.048 0.017 0.007
M5 0.078 0.042 0.015 0.006 M22 0.041 0.022 0.008 0.003
M6 0.055 0.030 0.011 0.004 M23 0.089 0.047 0.017 0.007
M7 0.090 0.048 0.017 0.007 M24 0.036 0.019 0.007 0.003
M8 0.041 0.022 0.008 0.003 M25 0.156 0.083 0.030 0.012
M9 0.090 0.048 0.017 0.007 M26 0.071 0.038 0.014 0.006
M10 0.041 0.022 0.008 0.003 M27 0.156 0.083 0.030 0.012
M11 0.051 0.027 0.010 0.004 M28 0.071 0.038 0.014 0.005
M12 0.078 0.041 0.015 0.006 M29 0.097 0.052 0.019 0.008
M13 0.054 0.029 0.010 0.004 M30 0.062 0.033 0.012 0.005
M14 0.088 0.047 0.017 0.007 M31 0.097 0.052 0.019 0.008
M15 0.136 0.073 0.026 0.011 M32 0.062 0.033 0.012 0.005
M16 0.097 0.052 0.019 0.008 M33 0.061 0.033 0.012 0.005
M17 0.156 0.084 0.030 0.012 M34 0.061 0.033 0.012 0.005

9 Conclusion

In this paper we have derived an expression for the angular distribution of the ⇤b !

⇤µ
+
µ
� in the case of non-zero production polarisation. This extends the number of

observables in the decay from 10 to 34. These observables can be determined from

15

➡ LHCb Phase II corresponds to 
about 50k reconstructed events



Λb➝pKμμ details
➡ 1D distribution in θl has usual 

form, K2 generates lepton AFB 
❖ Usual contributions, just adds Λ* 

helicity 3/2 in addition to 1/2 
➡ 1D distribution in θp gets larger 

number of terms 
❖ Includes odd terms in cos θp which 

vanish for single resonance 
❖ With interference, AFB generated also 

on hadron side with K4, K10 and K16 
contributing

14

Table 1: Orthogonal basis functions f93(⌦)–f135(⌦) necessary to describe the angular distribution

of polarised ⇤
0
b decays with cos(|mhad|�p + |mlep|�`) dependence, where P

m
l (cos ✓) are associated

Legendre polynomials. The remaining functions, numbered 136–178 can be obtained by replacing

cos(|mhad|�p + |mlep|�`) with sin(|mhad|�p + |mlep|�`).

i fi(~⌦) i fi(~⌦)

93
q

3
2 sin ✓bP

1
1 (cos ✓p)P 0

0 (cos ✓`) cos(�p) 115
q

21
2 sin ✓bP

0
3 (cos ✓p)P 1

1 (cos ✓`) cos(�`)

94 3
p

2
sin ✓bP

1
1 (cos ✓p)P 0

1 (cos ✓`) cos(�p) 116
q

15
2 sin ✓bP

0
4 (cos ✓p)P 1

2 (cos ✓`) cos(�`)

95
q

15
2 sin ✓bP

1
1 (cos ✓p)P 0

2 (cos ✓`) cos(�p) 117 3
q

3
2 sin ✓bP

0
4 (cos ✓p)P 1

1 (cos ✓`) cos(�`)

96
q

5
6 sin ✓bP

1
2 (cos ✓p)P 0

0 (cos ✓`) cos(�p) 118
q

55
6 sin ✓bP

0
5 (cos ✓p)P 1

2 (cos ✓`) cos(�`)

97
q

5
2 sin ✓bP

1
2 (cos ✓p)P 0

1 (cos ✓`) cos(�p) 119
q

33
2 sin ✓bP

0
5 (cos ✓p)P 1

1 (cos ✓`) cos(�`)

98 5
p

6
sin ✓bP

1
2 (cos ✓p)P 0

2 (cos ✓`) cos(�p) 120 5
12 sin ✓bP

2
2 (cos ✓p)P 1

2 (cos ✓`) cos(2�p + �`)

99 1
2

q
7
3 sin ✓bP

1
3 (cos ✓p)P 0

0 (cos ✓`) cos(�p) 121 1
4

p
5 sin ✓bP

2
2 (cos ✓p)P 1

1 (cos ✓`) cos(2�p + �`)

100 1
2

p
7 sin ✓bP

1
3 (cos ✓p)P 0

1 (cos ✓`) cos(�p) 122 1
12

p
7 sin ✓bP

2
3 (cos ✓p)P 1

2 (cos ✓`) cos(2�p + �`)

101 1
2

q
35
3 sin ✓bP

1
3 (cos ✓p)P 0

2 (cos ✓`) cos(�p) 123 1
4

q
7
5 sin ✓bP

2
3 (cos ✓p)P 1

1 (cos ✓`) cos(2�p + �`)

102 3
2
p

5
sin ✓bP

1
4 (cos ✓p)P 0

0 (cos ✓`) cos(�p) 124 1
4
p

3
sin ✓bP

2
4 (cos ✓p)P 1

2 (cos ✓`) cos(2�p + �`)

103 3
2

q
3
5 sin ✓bP

1
4 (cos ✓p)P 0

1 (cos ✓`) cos(�p) 125 1
4

q
3
5 sin ✓bP

2
4 (cos ✓p)P 1

1 (cos ✓`) cos(2�p + �`)
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2 sin ✓bP

1
4 (cos ✓p)P 0

2 (cos ✓`) cos(�p) 126 1
12

q
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7 sin ✓bP

2
5 (cos ✓p)P 1

2 (cos ✓`) cos(2�p + �`)

105
q

11
30 sin ✓bP

1
5 (cos ✓p)P 0

0 (cos ✓`) cos(�p) 127 1
4

q
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35 sin ✓bP

2
5 (cos ✓p)P 1

1 (cos ✓`) cos(2�p + �`)

106
q

11
10 sin ✓bP

1
5 (cos ✓p)P 0

1 (cos ✓`) cos(�p) 128 1
4

p
5 sin ✓bP

1
1 (cos ✓p)P 2

2 (cos ✓`) cos(�p + 2�`)

107
q

11
6 sin ✓bP

1
5 (cos ✓p)P 0

2 (cos ✓`) cos(�p) 129 5
12 sin ✓bP

1
2 (cos ✓p)P 2

2 (cos ✓`) cos(�p + 2�`)

108
q

5
6 sin ✓bP

0
0 (cos ✓p)P 1

2 (cos ✓`) cos(�`) 130 1
12

q
35
2 sin ✓bP

1
3 (cos ✓p)P 2

2 (cos ✓`) cos(�p + 2�`)
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q

3
2 sin ✓bP

0
0 (cos ✓p)P 1

1 (cos ✓`) cos(�`) 131 1
4

q
3
2 sin ✓bP

1
4 (cos ✓p)P 2

2 (cos ✓`) cos(�p + 2�`)

110
q

5
2 sin ✓bP

0
1 (cos ✓p)P 1

2 (cos ✓`) cos(�`) 132 1
12

p
11 sin ✓bP

1
5 (cos ✓p)P 2

2 (cos ✓`) cos(�p + 2�`)

111 3
p

2
sin ✓bP

0
1 (cos ✓p)P 1

1 (cos ✓`) cos(�`) 133 1
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q
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6 sin ✓bP

3
3 (cos ✓p)P 2

2 (cos ✓`) cos(3�p + 2�`)
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sin ✓bP
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8
p

42
sin ✓bP
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4 (cos ✓p)P 2

2 (cos ✓`) cos(3�p + 2�`)
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2 sin ✓bP
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1 (cos ✓`) cos(�`) 135 1
48

q
11
42 sin ✓bP

3
5 (cos ✓p)P 2
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2 (cos ✓`) cos(�`)

be considered separately. Integrating over all of the angles except for ✓p yields

d3�

dq2 dmpK dcos ✓p
=

p
3

2
K1 �

p
15

4
K7 + 9

p
3

16
K13

+

 
3

2
K4 � 3

p
21

4
K10 + 15

p
33

16
K16

!
cos ✓p

+

 
3

p
15

4
K7 � 45

p
3
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!
cos2 ✓p

+

 
5

p
21

4
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p
33

8
K16

!
cos3 ✓p

+
105

p
3

16
K13 cos4 ✓p +

63
p

33

16
K16 cos5 ✓p .

(52)
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Table 2: Orthogonal basis functions f93(⌦)–f135(⌦) necessary to describe the angular distribution

of polarised ⇤
0
b decays with cos(|mhad|�p + |mlep|�`) dependence, where P

m
l (cos ✓) are associated

Legendre polynomials. The remaining functions, numbered 136–178 can be obtained by replacing

cos(|mhad|�p + |mlep|�`) with sin(|mhad|�p + |mlep|�`).
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The higher powers of cos ✓p are associated with higher spin combinations. Each state individually
contributes to powers of cos ✓p up-to 2J⇤. If interfering resonances have spins J⇤ and J

0

⇤, their
interference can contribute to powers up-to J⇤ + J

0

⇤. The odd powers of cos ✓p result from
interference between states with different parities. Integrating over all of the angles except ✓`

instead yields

d3�

dq2 dmpK dcos ✓`
=

p
3

2
K1 +

3

2
K2 cos ✓` +

p
15

4
K3(3 cos2 ✓` � 1) . (53)

The observable K2 generates the lepton-side forward-backward asymmetry that is a feature of
b! s`

+
`
� transitions that arises from interference between the vector and axialvector leptonic

currents [63].
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Numerical studies
➡ Use SM Wilson coefficients used in JHEP 05 (2013) 137 
➡ Use all well established states for which prediction for form-factors exists 
❖ Form-factors based on quark-model from Int. J. Mod. Phys. A 30 (2015) 1550172
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Table 4: Resonance parameters used in the predictions presented in this paper. The parameters of the

resonances are taken from Ref. [65]. The branching fraction of the ⇤ resonance to pK
�

is calculated

from the centre of the range and scaled according to isospin considerations. The branching fraction of

⇤(1405) ! NK assumes equal partial widths for ⇤(1405) ! NK and ⇤(1405) ! ⌃⇡.

resonance m⇤ [ GeV/c2 ] �⇤ [ GeV/c2 ] 2J⇤ P⇤ B(⇤ ! NK)

⇤(1405) 1.405 0.051 1 � 0.50
⇤(1520) 1.519 0.016 3 � 0.45
⇤(1600) 1.600 0.200 1 + 0.15 – 0.30
⇤(1670) 1.674 0.030 1 � 0.20 – 0.30
⇤(1690) 1.690 0.070 3 � 0.20 – 0.30
⇤(1800) 1.800 0.200 1 � 0.25 – 0.40
⇤(1810) 1.790 0.110 1 + 0.05 – 0.35
⇤(1820) 1.820 0.080 5 + 0.55 – 0.65
⇤(1890) 1.890 0.120 3 + 0.24 – 0.36
⇤(2110) 2.090 0.250 5 + 0.05 – 0.25

yield identical predictions for the differential branching fraction as its value only depends on
|C10|2. The gray band in Fig. 2 represents an estimate of the theoretical uncertainty on the SM
prediction. This is determined by varying the magnitude of each form factor, X�i , according to
a normal distribution with a width of 10%. Moreover, there can be non-factorisable corrections
to the decay amplitudes (which cannot be expressed in terms of local form-factors and Wilson
coefficients). Such contributions can introduce relative phases between the amplitudes for a single
decay. This can make observables that depend on the imaginary part of bilinear combinations
of amplitudes, like K32, non-zero. To estimate the uncertainty due to these non-factorisable
corrections, each amplitude is varied according to

H ! (1 + a)H , (74)

where a is uniformly distributed inside a circle of radius 0.1 in the complex plane. This is similar
to the approach used for B

0 ! K
⇤0

`
+
`
� decays in Ref. [66]. To propagate these variations to the

observables, 200 different SM ensembles are produced and the moments extracted. The standard
deviation of the resulting moments is taken as the uncertainty on the prediction.

Figure 2: Differential branching fraction in mpK and q
2

for a single ⇤(1820) resonance assuming the SM

(black line) and different NP scenarios (coloured lines). The SM and C10 = �CSM
10 scenarios yield identical

predictions for the differential branching fraction. The uncertainty on the SM prediction is represented

by the gray band.

Figure 3 shows the angular observables as defined in Equation (57) that are accompanied by
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➡ Most of the resonances modelled 
by relativistic Breit-Wigner 

➡ Λ(1405) uses Flattè model 
➡ Investigated scenarios: 
➡ Flip C9/C10 or add right C9’/C10’  

➡ Global fit in Eur. Phys. J. C 82 
(2022) 326

https://doi.org/10.1007/JHEP05(2013)137
https://doi.org/10.1142/S0217751X15501729
http://Eur.%20Phys.%20J.%20C%2082%20(2022)%20326
http://Eur.%20Phys.%20J.%20C%2082%20(2022)%20326


Ensemble of resonances
➡ Investigate sensitivity of observables with ensemble of different Λ resonances 
➡ Strong phases of all Λ resonances set to 0 (π/2 at the pole) 
➡ Additional uncertainty from strong phases by varying them between -π and π
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Figure 5: Differential branching fraction as a function of mpK and q
2

for an ensemble of ⇤ resonances

in the SM (black line) and different non-SM scenarios (coloured lines). The possible values given the

unknown phases, �⇤, is represented by the lighter gray band and the other uncertainties by the darker gray

band. For q
2 >⇠ 12.4 GeV

2
/c

4
, the available phase-space suppresses the contribution from higher-mass ⇤

resonances.

Figure 6: Observables K2,3,4,32 as a function of q
2

for an ensemble of ⇤ resonances in the SM (black line)

and different non-SM scenarios (coloured lines using the same colour code as in Fig. 5.). The possible

values given the unknown phase, �⇤, is represented by the lighter gray band and the theory uncertainty

by the darker gray band. For q
2 >⇠ 12.4GeV

2
/c

4
, the available phase-space suppresses the contribution

from higher-mass ⇤ resonances.

appear due to interference between states with different spins. If the phases can be measured K32

exhibits interesting sensitivity to the different non-SM scenarios. Interestingly, different choices
of QCD phase give different sensitivities to the different non-SM scenarios. This is illustrated
in Fig. 7, which shows the observables K4 and K32 after changing the phase of all resonances
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values given the unknown phase, �⇤, is represented by the lighter gray band and the theory uncertainty

by the darker gray band. For q
2 >⇠ 12.4GeV

2
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4
, the available phase-space suppresses the contribution

from higher-mass ⇤ resonances.

appear due to interference between states with different spins. If the phases can be measured K32

exhibits interesting sensitivity to the different non-SM scenarios. Interestingly, different choices
of QCD phase give different sensitivities to the different non-SM scenarios. This is illustrated
in Fig. 7, which shows the observables K4 and K32 after changing the phase of all resonances
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Ensemble of resonances
➡ Some cases give good 

sensitivity to new physics 
without effects from strong 
phases 

➡ Some observables like K4 has 
little sensitivity to new physics, 
but large effect from strong 
phases 

➡ Several observables like K32 
sensitive to new physics but 
require knowledge of strong 
phases

17

Figure 5: Differential branching fraction as a function of mpK and q
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in the SM (black line) and different non-SM scenarios (coloured lines). The possible values given the

unknown phases, �⇤, is represented by the lighter gray band and the other uncertainties by the darker gray
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2
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values given the unknown phase, �⇤, is represented by the lighter gray band and the theory uncertainty

by the darker gray band. For q
2 >⇠ 12.4GeV

2
/c

4
, the available phase-space suppresses the contribution

from higher-mass ⇤ resonances.

appear due to interference between states with different spins. If the phases can be measured K32

exhibits interesting sensitivity to the different non-SM scenarios. Interestingly, different choices
of QCD phase give different sensitivities to the different non-SM scenarios. This is illustrated
in Fig. 7, which shows the observables K4 and K32 after changing the phase of all resonances
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Ensemble of resonances
➡ Particular example of effect of 

strong phases 
➡ Set strong phase of spin-3/2 

resonances to π while keeping 
rest to 0 

➡ Very large effects on K4 and 
K32 
❖ K32 shows significantly different 

behaviour 
➡ We have all ingredients but as 

polarisation at LHCb is small, 
we never looked into details 
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and different non-SM scenarios (coloured lines using the same colour code as in Fig. 5.). The possible

values given the unknown phase, �⇤, is represented by the lighter gray band and the theory uncertainty

by the darker gray band. For q
2 >⇠ 12.4GeV

2
/c

4
, the available phase-space suppresses the contribution

from higher-mass ⇤ resonances.

appear due to interference between states with different spins. If the phases can be measured K32

exhibits interesting sensitivity to the different non-SM scenarios. Interestingly, different choices
of QCD phase give different sensitivities to the different non-SM scenarios. This is illustrated
in Fig. 7, which shows the observables K4 and K32 after changing the phase of all resonances
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with spin-3
2 to ⇡, �1520 = �1690 = �1890 = ⇡, but leaving the others at zero. With �⇤ = 0, the

global-fit values for the Wilson coefficients give rise to observables that are compatible with the
SM (Fig. 6). However, after modifying the phases larger differences are seen in K32 between the
two scenarios (Fig. 7).
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Figure 7: Phase-dependent observables K4 and K32 as a function of q
2

when setting the phases of the

spin-
3
2 resonances to ⇡, �1520 = �1690 = �1890 = ⇡, while keeping all other phases at zero. The lines and

bands carry the same meaning as in previous figures. For q
2 >⇠ 12.4GeV

2
/c

4
, the available phase space

suppresses the contribution from higher-mass ⇤ resonances.

9 Conclusion

This paper presents a first expression for the angular distribution of ⇤
0
b ! pK

�
`
+
`
� decays

comprising a mixture of ⇤ resonances with spin  5
2 . Considering interference terms gives rise

to a complex angular structure and a large number of observables. The resulting distribution
contains 46 (178) angular terms for unpolarised (polarised) ⇤

0
b baryons that can be measured. In

this paper, we explore the form of the angular observables and their sensitivity to modifications of
the Wilson coefficients. A focus is given to observables appearing in the unpolarised case, as the
⇤

0
b baryon polarisation at existing experiments is known to be small. A particular challenge in

interpreting the experimental data on ⇤
0
b ! pK

�
`
+
`
� decays will be the unknown QCD phases

between the different resonances. Some of the observables explored in this paper only provide
useful sensitivity to non-SM scenarios once the phases have been measured. Others, including
the well known lepton forward-backward asymmetry are almost independent of the choice of
phase and offer excellent sensitivity to different scenarios. There is also a set of observables that
arise purely due to interference of different ⇤ resonances. These are virtually independent of the
values of the Wilson coefficients and can be used to measure the phases and to give valuable
input into the validity of form-factor predictions. The choice of orthogonal basis functions for
the angular distribution made in this paper is such that all of the angular observable can be
readily extracted from data using a moment analysis using the same set of functions at existing
or future experiments.
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Λb➝pKμμ measurement
➡ Unpolarised observables measured at LHCb with Runs 1 and 2 data 
➡ Interpretation is not trivial without detailed understanding of hadronic 

contributions 
➡ But interference of various resonances introduces more observables
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Summary
➡ There is interesting physics to be extracted from rare Λb decays 
➡ With 1012 Z bosons we expect about 15k decays for BF 10-6 

➡ Size of the sample will likely be smaller than ultimate LHCb sample 
➡ But with polarisation possibly being about 0.5 (10 times of that at LHCb), 

there is possibility to complement LHCb measurements 
❖ Larger uncertainty, but also on 10 times larger effect 
❖ Assumes that the polarisation axis does not align to make relevant terms zero 

➡ There might be other interesting options with higher BF decays, but 
generally there are not many studies done 

❖ People interested will likely need to do work to understand whether polarisation 
brings benefits
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Summary
➡ Tom Blake and myself would be interested to look into question what can 

be gained by 1012 Z decays, but currently do not have enough bandwidth 
to do study on our own 

❖ Anja Beck who did lot on Λb➝pKμμ is still in physics and she might do some work 
on this, but again, not as a main work 

➡ One should work out how well one can do measurement at Z pole and also 
look what impact such measurement would have 

➡ If somebody is interested, get in touch we can discuss some collaboration 
to look into these questions
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Backup
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Why Λb ➝ Λμμ
➡ Provides rich angular structure thanks to non-zero spin of initial state 
➡ Λ baryon is very long lived and can be easily treated as stable particle in 

calculations 
➡ Both experimentally and theoretically very clean from any interference and 

backgrounds 
➡ If produced polarised, it offers access to information not available with 

mesons 
➡ Con: Long Λ lifetime decreases detection efficiency, so statistics is usually 

smaller than similar meson decays 

23



Differential branching fraction
➡ Measured at LHCb with Run 1 

data 
➡ Theory prediction is currently 

more precise than experiment 
➡ Experimentally measured relative 

to Λb ➝ J/ψΛ for which we do 
not have good BF 

➡ No significant signal below J/ψ 
yet

24
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FIG. 8. ⇤b ! ⇤ µ
+

µ
� di↵erential branching fraction calculated in the Standard Model, compared to experimental data from

LHCb [28] (black points; error bars are shown both including and excluding the uncertainty from the normalization mode
⇤b ! J/ ⇤ [85]).

hdB/dq
2i hFLi hA`

FBi hA⇤
FBi hA`⇤

FBi hK̂2ssi hK̂2cci hK̂4si hK̂4sci
[0.1, 2] 0.25(23) 0.517(81) 0.095(15) �0.310(18) �0.0302(51) �0.233(19) �0.154(26) �0.009(22) 0.022(22)

[2, 4] 0.18(12) 0.856(27) 0.057(31) �0.306(24) �0.0169(99) �0.284(23) �0.0444(87) 0.031(36) 0.013(31)

[4, 6] 0.23(11) 0.813(42) �0.062(39) �0.311(17) 0.021(13) �0.282(15) �0.059(13) 0.038(44) 0.001(31)

[6, 8] 0.307(94) 0.730(48) �0.163(40) �0.316(11) 0.053(13) �0.273(10) �0.086(15) 0.030(39) �0.007(27)

[1.1, 6] 0.20(12) 0.820(32) 0.012(31) �0.309(21) �0.0027(99) �0.280(20) �0.056(10) 0.030(35) 0.009(30)

[15, 16] 0.796(75) 0.455(20) �0.374(14) �0.3069(83) 0.1286(55) �0.2253(69) �0.1633(69) �0.060(13) �0.0211(80)

[16, 18] 0.827(76) 0.418(15) �0.372(13) �0.2891(90) 0.1377(46) �0.2080(69) �0.1621(66) �0.090(10) �0.0209(60)

[18, 20] 0.665(68) 0.3714(79) �0.309(15) �0.227(10) 0.1492(37) �0.1598(71) �0.1344(70) �0.1457(74) �0.0172(40)

[15, 20] 0.756(70) 0.410(13) �0.350(13) �0.2710(92) 0.1398(43) �0.1947(68) �0.1526(65) �0.1031(97) �0.0196(55)

TABLE VII. Standard-Model predictions for the binned ⇤b ! ⇤ µ
+

µ
� di↵erential branching fraction (in units of 10�7 GeV�2)

and for the binned ⇤b ! ⇤(! p
+
⇡
�)µ+

µ
� angular observables (with unpolarized ⇤b). The first column specifies the bin ranges

[q2min, q
2
max] in units of GeV2.

The uncertainties given for the Standard-Model predictions are the total uncertainties, which include the statistical
and systematic uncertainties from the form factors (propagated to the observables using the procedure explained in
Sec. IV), the perturbative uncertainties, an estimate of quark-hadron duality violations (discussed further below),
and the parametric uncertainties from Eqs. (64), (69), and (70). For all observables considered here (but not for K̂3s

and K̂3sc), the uncertainties associated with the subleading contributions from the OPE (at high q2) are negligible
compared to the other uncertainties. The central values of the observables were computed at the renormalization
scale µ = 4.2 GeV; to estimate the perturbative uncertainties, we varied the renormalization scale from µ = 2.1 GeV
to µ = 8.4 GeV. When doing this scale variation, we also included the renormalization-group running of the tensor
form factors from the nominal scale µ0 = 4.2 GeV to the scale µ, by multiplying these form factors with

✓
↵s(µ)

↵s(µ0)

◆��
(0)
T /(2�0)

(72)

(as in Ref. [8]), where �(0)
T

= 2 CF = 8/3 is the anomalous dimension of the tensor current [98], and �0 = (11 Nc �

2 Nf )/3 = 23/3 is the leading-order QCD beta function [99] for 5 active flavors. Even though we did not perform
a one-loop calculation of the residual lattice-to-continuum matching factors for the tensor currents, our estimates of
the renormalization uncertainties in the tensor form factors as discussed in Sec. IV are specific for µ = 4.2 GeV, and
doing the RG running avoids a double-counting of these uncertainties. Note that the contributions of the tensor form
factors to the observables are proportional to 1/q2 (because of the photon propagator connecting O7 to the lepton
current), and are suppressed relative to those from the vector and axial vector form factors at high q2. At low q2,
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Experimental normalisation
➡ Measurements for Λb ➝ J/ψΛ come from 

Tevatron which measured  

➡ Best number comes from D0 
➡ One needs also fragmentation fraction, in past 

one would average LEP and Tevatron 
➡ But there is pT dependence, which means that 

averaging LEP and Tevatron is not good 
➡ Needs measurement of both ingredients from 

same experiment ⇒ ongoing at LHCb
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FIG. 1. Comparison of the predicted di↵erential branching
fraction for the ⇤b ! ⇤µ+µ� decay in the SM with the mea-
sured result by LHCb in the bin 15GeV2  q2  20GeV2,
alongside our reinterpreted result. The central curve and
band show the median and 68% probability envelope of the
prior predictions of the branching fraction. Note that while
the OPE prediction cannot reproduce the resonant structures
arising in the di↵erential distributions, it is expected to rea-
sonably describe the charm e↵ects in q2-integrated observ-
ables, up to small duality-violating e↵ects.

A`
FB was misattributed. In e↵ect LHCb had acci-

dentally reported the value of the CP -asymmetry
of this observable, rather than its CP -average.

3. The ATLAS, CMS, and LHCb collaborations have
each measured [24–26] the time-integrated branch-
ing ratio of the decay Bs ! µ+µ�, denoted here
as B(B̄s ! µ+µ�) [27]. Within our fit scenarios,
the combination |C10�C

10
0 | is constrained by these

measurements.

4. The LHCb measurement of the ⇤b ! ⇤µ+µ�

branching fraction is normalized to the ⇤b ! ⇤J/ 
fraction. In converting this relative ratio to an
absolute branching fraction, LHCb used the PDG
world average for the product [23]

f(b ! ⇤b)⇥ B(⇤b ! ⇤J/ ) ,

where f(b ! ⇤b) is the ⇤b fragmentation frac-
tion. The LHCb measurement used an old av-
erage of f(b ! ⇤b) that included measurements
from the LEP and TeVatron experiments. The
fragmentation fraction as a function of the b-quark
transverse momentum has since been measured by
the LHCb collaboration [28]. Given the strong
dependence on the b-quark production processes
and the b-quark transverse momentum, combin-
ing the LEP and TeVatron results appears unwise.
Hence, we remove the LEP results from the av-
erage, and calculate the branching fraction of the

⇤b ! ⇤µ+µ� decay anew, using only the average of
the TeVatron results. This calculation follows the
approach by the Heavy Flavour Averaging group
in Ref. [29]. The ⇤b production fraction is derived
from f(b ! baryon) = 0.218 ± 0.047, assuming
isospin symmetry in ⌅0

b and ⌅�
b production, i.e.

f(b ! baryon) =

f(b ! ⇤b) + 2f(b ! ⌅�
b ) + f(b ! ⌦�

b ) .
(4)

An updated value for f(b ! ⇤b) is determined
using the ratios f(b ! ⌅�

b )/f(b ! ⇤b) and
f(b ! ⌦�

b )/f(b ! ⇤b) from ref. [30], assum-
ing equal partial widths for the ⇤b ! J/ ⇤,
⌅�
b ! J/ ⌅� and ⌦�

b ! J/ ⌦� decays. The
updated value of f(b ! ⇤b) results in an up-
dated branching fraction for the ⇤b ! J/ ⇤
decay of B(⇤b ! J/ ⇤) = (3.7 ± 1.0) ⇥ 10�4.
Using this branching fraction value we ob-
tain, for the bin 15GeV2  q2  20GeV2,

B(⇤b !⇤µ+µ�)[15,20] =

(3.49± 0.26± 0.92)⇥ 10�7 .
(5)

This is significantly smaller than the branching
fraction reported by LHCb in ref. [23]. This re-
sult, alongside the original, unmodified, LHCb re-
sult for the branching ratio and the SM predictions
for the di↵erential branching ratio is juxtaposed in
figure 1.

5. The fits of ref. [13] include data on the inclusive
B ! Xs`

+`� branching fraction. Given the im-
proved precision of the ⇤b ! ⇤µ+µ� results and
the B̄s ! µ+µ� branching fraction, this is no
longer necessary.

For the following fits we define three data sets entering
the likelihood:

data set 1: includes the three measurements of B(B̄s !
µ+µ�) and the LHCb measurement of the nine in-
dependent angular observables in the ⇤b ! ⇤(!
p⇡�)µ+µ� angular distribution for an unpolarized
⇤b baryon;

data set 2: includes the three measurements of B(B̄s !
µ+µ�) and the he LHCb measurement of the 33
independent angular observables in the ⇤b ! ⇤(!
p⇡�)µ+µ� angular distribution for a polarized ⇤b

baryon;

data set 3: contains data set 2, but also includes the
reinterpreted branching ratio of ⇤b ! ⇤µ+µ� de-
cays.

Our nominal data set, which we use for our main results
and conclusions, is data set 2.
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Angular distributions
➡ Up to some constants, angular distribution in unpolarised case is 

➡ Specific features : 
❖ We can still define fraction of longitudinally polarised dilepton system 
❖ There is non-zero hadron side forward-backward asymmetry thanks to weak decay 

of Λ with significant differences between two amplitudes αΛ=…  
❖ One can also construct combined forward-backward asymmetry

26

3.3 Angular Observables

The angular distribution for the 4-body decay can be written as a 4-fold di↵erential decay

width,

K(q2, cos ✓`, cos ✓⇤,�) ⌘
8⇡

3

d4�

dq2 d cos ✓` d cos ✓⇤ d�
, (3.27)

which can be decomposed in terms of a set of trigonometric functions,

K(q2, cos ✓`, cos ✓⇤,�) =
�
K1ss sin

2 ✓` + K1cc cos
2 ✓` +K1c cos ✓`

�

+
�
K2ss sin

2 ✓` + K2cc cos
2 ✓` +K2c cos ✓`

�
cos ✓⇤

+
�
K3sc sin ✓` cos ✓` +K3s sin ✓`

�
sin ✓⇤ sin�

+
�
K4sc sin ✓` cos ✓` +K4s sin ✓`

�
sin ✓⇤ cos� .

(3.28)

Here the first line corresponds to a relative angular momentum (L,M) between the N⇡

system and the dilepton system of (L,M) = (0, 0). The lines two to four correspond

to L = 1, with the third component M = 0 in the second line, and |M | = 1 in lines

three and four. This implies that each line of eq. (3.28) can be decomposed in terms

of associated Legendre polynomials P |M |
l

(cos ✓`), where 0  l  2 holds for the dilepton

angular momentum l on the basis of angular momentum conservation. This agrees exactly

with our results eq. (3.28). In particular,

(a) there are no terms / sin ✓`(cos ✓`) or / sin ✓`(cos ✓`) cos ✓⇤,

(b) there are no terms / sin2 ✓` sin ✓⇤, / cos ✓` sin ✓⇤ or / cos2 ✓` sin ✓⇤, and

(c) no further terms can arise from dimension-six operators which are absent in our

calculation; i.e., scalar and tensor operators.

The coe�cients in the decomposition eq. (3.28) are refered to as angular observables and

depend on the dilepton invariant mass. In our notation, they are denoted as Kn� ⌘
Kn�(q2), with n = 1, . . . , 4, and � = s, c, ss, cc, sc. In terms of the transversity amplitudes

for ⇤b ! ⇤ transitions and the decay parameter ↵ in ⇤ ! N⇡ defined above, we find
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and
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Angular distributions
➡ One can take ratios of observables to construct quantities which in first 

order are sensitive only to: 
❖ Form factors 

❖ Short-scale physics

27

For the simple observables introduced in the previous subsection we then obtain

d�

dq2
= 4 |N |2

⇢
⇢+
1
s�


2 |fV

? |2 + (m⇤b +m⇤)2

q2
|fV

0 |2
�
+

⇢�
1
s+


2 |fA

? |2 + (m⇤b �m⇤)2

q2
|fA

0 |2
��

, (4.17)

and

F0 = 4 |N |2
⇢
⇢+
1
s�

(m⇤b +m⇤)2

q2
|fV

0 |2

+⇢�
1
s+

(m⇤b �m⇤)2

q2
|fA

0 |2
�✓

d�

dq2

◆�1

, (4.18)

and

d�

dq2
A`

FB = 24 |N |2Re {⇢2}
p
s+s� fV

? fA

? ,

d�

dq2
A⇤

FB = �8 |N |2 ↵Re {⇢4}
p
s+s�

(
2 fV

? fA

? +
m2

⇤b
�m2

⇤

q2
fV

0 fA

0

)
,

d�

dq2
A`⇤

FB = �3 |N |2 ↵
�
⇢+
3
s� |fV

? |2 + ⇢�
3
s+ |fA

? |2
 
. (4.19)

We will present numerical estimates for these observables in the SM (integrated over q2 in

the low-recoil region) in section 4.4.

Future experimental data will also allow to simultaneously test the short-distance structure

of the SM against NP, and to extract information on form-factor ratios. In the presence

of both SM-like and chirality-flipped operators, we find one ratio of angular observables

where the form factors cancel in the given approximation,

X1 ⌘
K1c

K2cc

= � Re {⇢2}
↵Re {⇢4}

, (4.20)

and two ratios of angular observables which only depend on form factors,

2K2ss

K2cc

= 1 +
m2

⇤b
�m2

⇤

q2
fV

0
fA

0

fV

? fA

?
,

2K4sc

K2cc

=
m⇤b +m⇤p

q2
fV

0

fV

?
� m⇤b �m⇤p

q2
fA

0

fA

?
. (4.21)

We also find ratios that are only functions of the Wilson coe�cients and a single ratio of

form factors, fV

? /fA

? ,

4K1cc

K1c

=

r
s�
s+

⇢+
1

Re {⇢2}
fV

?
fA

?
+

r
s+
s�

⇢�
1

Re {⇢2}
fA

?
fV

?
,

4K2c

K2cc

=

r
s�
s+

⇢+
3

Re {⇢4}
fV

?
fA

?
+

r
s+
s�

⇢�
3

Re {⇢4}
fA

?
fV

?
. (4.22)
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Future experimental data will also allow to simultaneously test the short-distance structure

of the SM against NP, and to extract information on form-factor ratios. In the presence

of both SM-like and chirality-flipped operators, we find one ratio of angular observables

where the form factors cancel in the given approximation,

X1 ⌘
K1c

K2cc

= � Re {⇢2}
↵Re {⇢4}

, (4.20)
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Predictions
➡ Predictions are generally reasonably precise 
➡ Measurements on these plots come from very 

early analysis when we were figuring out what 
we should be actually doing 

➡ With Tom Blake we extended work to polarised 
case, which adds another 24 observables 

❖ 10 have same structure as unpolarised case, just 
being multiplied by production polarisation 

❖ 14 are proportional to production polarisation and 
give access to more information
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Latest measurement
➡ Uses Run 1 and part of 

Run 2 data from LHCb 
➡ Measured only 15 < q2 < 20 

GeV2 bin as this is the only 
one having significant yield 

➡ About 610 signal decays 
➡ Used method of moments 
❖ Luckily, otherwise would run 

to troubles with value of αΛ
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Figure 1: Distribution of p⇡�µ+µ� invariant mass for (left) long- and (right) downstream-track
p⇡� categories in the (top) Run 1 data and (bottom) Run 2 data. The result of the fit to each
sample of data is indicated by the solid blue line. The signal and background components are
illustrated by the dotted green and dashed red lines, respectively.

are determined from fits to ⇤0
b ! J/ ⇤ candidates in the data. A small correction is

applied to the width parameter to account for a q2 dependence of the resolution seen in
the simulation. Combinatorial background is described by an exponential function, with
a slope parameter that is determined from data. The parameters describing the signal
and the background are determined separately for each data-taking period and for the
long- and the downstream-track p⇡� categories.

The fits result in yields of 120 ± 13 (175 ± 15) and 126 ± 13 (189 ± 16 ) decays in
the long (downstream) p⇡� category of the Run 1 and Run 2 data, respectively. These
fits are used to the determine the weights needed to subtract the background in the
moment analysis. The yields are consistent with those expected based on the estimated
signal e�ciency, the recorded integrated luminosity and the scaling of the ⇤0

b production
cross-section with centre-of-mass energy.

6 Angular e�ciency

The trigger, reconstruction and the selection process distort the measured angular distri-
bution of the ⇤0

b! ⇤µ+µ� decays. The largest distortions are found to be the result of
kinematic requirements in the reconstruction, most notably due to an implicit momentum
threshold applied by requiring that the muons traverse the detector and reach the muon

5
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Figure 2: One-dimensional projections of the angular distributions of the candidates (black
points), combining Run 1 and Run 2 data, as well as candidates reconstructed in the long- and
downstream-track p⇡� categories. The background is subtracted from the data but no e�ciency
correction is applied. The projection of each angular distribution obtained from the moment
analysis multiplied by the e�ciency distribution is superimposed. The large variation in �` is
primarily due to the angular acceptance.

9 Summary

An analysis of the angular distribution of the decay ⇤0
b! ⇤µ+µ� in the dimuon invariant

mass squared range 15 < q2 < 20GeV2/c4 is reported. Using data collected with the
LHCb detector between 2011 and 2016, the full basis of angular observables is measured for
the first time. From the measured observables, the lepton-side, hadron-side and combined

9

lθcos 
1− 0.5− 0 0.5 1

En
tri

es
 / 

(0
.2

5)

0

50

100

150
LHCb

bθcos 
1− 0.5− 0 0.5 1

En
tri

es
 / 

(0
.2

5)

0

50

100

150
LHCb

θcos 
1− 0.5− 0 0.5 1

En
tri

es
 / 

(0
.2

5)

0

50

100

150
LHCb

l
φ

2− 0 2

)π
En

tri
es

 / 
(0

.2
5

0

50

100

150
LHCb

b
φ

2− 0 2

)π
En

tri
es

 / 
(0

.2
5

0

50

100

150
LHCb

Figure 2: One-dimensional projections of the angular distributions of the candidates (black
points), combining Run 1 and Run 2 data, as well as candidates reconstructed in the long- and
downstream-track p⇡� categories. The background is subtracted from the data but no e�ciency
correction is applied. The projection of each angular distribution obtained from the moment
analysis multiplied by the e�ciency distribution is superimposed. The large variation in �` is
primarily due to the angular acceptance.

9 Summary

An analysis of the angular distribution of the decay ⇤0
b! ⇤µ+µ� in the dimuon invariant

mass squared range 15 < q2 < 20GeV2/c4 is reported. Using data collected with the
LHCb detector between 2011 and 2016, the full basis of angular observables is measured for
the first time. From the measured observables, the lepton-side, hadron-side and combined
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Figure 3: Angular observables combining the results for the moments obtained from Run 1
and Run 2 data, as well as candidates reconstructed in the long- and downstream-track p⇡�

categories. The blue line represents the SM predictions obtained using the EOS software. The
thickness of the light-blue band represents the uncertainty on the SM predictions.

Table 2: Sources of systematic uncertainty on the Ki angular observables, together with the
mean and the range of uncertainty values assigned to the 34 Ki parameters in each case. The
variation of each source of systematic uncertainty between the di↵erent observables depends on
the structure of the weighting functions used to extract the observable and its correlation with
the angular e�ciency.

Source Uncertainty [10�3]
Range among Ki Mean

Simulated sample size 3–22 9
E�ciency parameterisation 1–13 4
Data-simulation di↵erences 2–16 6
Angular resolution 1–11 4
Beam crossing angle 1–8 4
Signal mass model 1–4 2

forward-backward asymmetries of the decay are determined to be

A`
FB = �0.39± 0.04 (stat) ± 0.01 (syst) ,

Ah
FB = �0.30± 0.05 (stat) ± 0.02 (syst) ,

A`h
FB = +0.25± 0.04 (stat) ± 0.01 (syst) .

The results presented here supersede the results for angular observables in Ref. [10] (see
discussion in Sec. 7). The measured angular observables are compatible with the SM
predictions obtained using the EOS software [37], where the ⇤0

b production polarisation is
set to the value obtained by the LHCb collaboration in pp collisions at a centre-of-mass
energy of 7TeV [33].

10



How to get polarised sample
➡ If there is enough interest in observables accessible only with polarisation, 

we can try to play some tricks 
❖ We measured polarisation only integrated over large η-pT region, but it does not 

have to be constant 
❖ One can look for Λb coming from decays which itself could introduce polarisation 
✦ Obvious choice for LHCb would be Σb* but my intuition is that it will not help 
✦ Top quark decays might be interesting, W in such case is polarised and so would be b-quark, 

this would be more suitable for ATLAS and CMS 
➡ Each idea would need dedicated study whether it would work 
➡ Each idea would mean lower statistics, on the other hand, one does not 

need to do all observables

32



What to expect
➡ LHCb is working on update of Λb ➝ Λμμ branching fraction with Run 1+2 

data 
➡ Good chance to see signal in more q2 bins, 

we have about 4 times more data in Run 2 
➡ Not yet clear what we can do with angular 

observables below J/ψ 
➡ Want to look back to polarisation  

measurement to see whether there is at  
least some indication of non-zero  
polarisation somewhere
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FIG. 8. ⇤b ! ⇤ µ
+

µ
� di↵erential branching fraction calculated in the Standard Model, compared to experimental data from

LHCb [28] (black points; error bars are shown both including and excluding the uncertainty from the normalization mode
⇤b ! J/ ⇤ [85]).

hdB/dq
2i hFLi hA`

FBi hA⇤
FBi hA`⇤

FBi hK̂2ssi hK̂2cci hK̂4si hK̂4sci
[0.1, 2] 0.25(23) 0.517(81) 0.095(15) �0.310(18) �0.0302(51) �0.233(19) �0.154(26) �0.009(22) 0.022(22)

[2, 4] 0.18(12) 0.856(27) 0.057(31) �0.306(24) �0.0169(99) �0.284(23) �0.0444(87) 0.031(36) 0.013(31)

[4, 6] 0.23(11) 0.813(42) �0.062(39) �0.311(17) 0.021(13) �0.282(15) �0.059(13) 0.038(44) 0.001(31)

[6, 8] 0.307(94) 0.730(48) �0.163(40) �0.316(11) 0.053(13) �0.273(10) �0.086(15) 0.030(39) �0.007(27)

[1.1, 6] 0.20(12) 0.820(32) 0.012(31) �0.309(21) �0.0027(99) �0.280(20) �0.056(10) 0.030(35) 0.009(30)

[15, 16] 0.796(75) 0.455(20) �0.374(14) �0.3069(83) 0.1286(55) �0.2253(69) �0.1633(69) �0.060(13) �0.0211(80)

[16, 18] 0.827(76) 0.418(15) �0.372(13) �0.2891(90) 0.1377(46) �0.2080(69) �0.1621(66) �0.090(10) �0.0209(60)

[18, 20] 0.665(68) 0.3714(79) �0.309(15) �0.227(10) 0.1492(37) �0.1598(71) �0.1344(70) �0.1457(74) �0.0172(40)

[15, 20] 0.756(70) 0.410(13) �0.350(13) �0.2710(92) 0.1398(43) �0.1947(68) �0.1526(65) �0.1031(97) �0.0196(55)

TABLE VII. Standard-Model predictions for the binned ⇤b ! ⇤ µ
+

µ
� di↵erential branching fraction (in units of 10�7 GeV�2)

and for the binned ⇤b ! ⇤(! p
+
⇡
�)µ+

µ
� angular observables (with unpolarized ⇤b). The first column specifies the bin ranges

[q2min, q
2
max] in units of GeV2.

The uncertainties given for the Standard-Model predictions are the total uncertainties, which include the statistical
and systematic uncertainties from the form factors (propagated to the observables using the procedure explained in
Sec. IV), the perturbative uncertainties, an estimate of quark-hadron duality violations (discussed further below),
and the parametric uncertainties from Eqs. (64), (69), and (70). For all observables considered here (but not for K̂3s

and K̂3sc), the uncertainties associated with the subleading contributions from the OPE (at high q2) are negligible
compared to the other uncertainties. The central values of the observables were computed at the renormalization
scale µ = 4.2 GeV; to estimate the perturbative uncertainties, we varied the renormalization scale from µ = 2.1 GeV
to µ = 8.4 GeV. When doing this scale variation, we also included the renormalization-group running of the tensor
form factors from the nominal scale µ0 = 4.2 GeV to the scale µ, by multiplying these form factors with

✓
↵s(µ)

↵s(µ0)

◆��
(0)
T /(2�0)

(72)

(as in Ref. [8]), where �(0)
T

= 2 CF = 8/3 is the anomalous dimension of the tensor current [98], and �0 = (11 Nc �

2 Nf )/3 = 23/3 is the leading-order QCD beta function [99] for 5 active flavors. Even though we did not perform
a one-loop calculation of the residual lattice-to-continuum matching factors for the tensor currents, our estimates of
the renormalization uncertainties in the tensor form factors as discussed in Sec. IV are specific for µ = 4.2 GeV, and
doing the RG running avoids a double-counting of these uncertainties. Note that the contributions of the tensor form
factors to the observables are proportional to 1/q2 (because of the photon propagator connecting O7 to the lepton
current), and are suppressed relative to those from the vector and axial vector form factors at high q2. At low q2,



Isolated spin 5/2 resonance
➡ Only isolated Λ(1820) 
➡ Grey band shows 

uncertainty from: 
❖ Form-factor 
❖ Widths etc. 
❖ Non-factorisable corrections 

➡ Often need rather large 
change in Wilson 
coefficients for effects 
larger than uncertainties
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basis functions that are independent of �. In order to obtain continuous curves for the predictions,
the values of the moments are evaluated in fine bins of q

2 and their values are smoothed using
Gaussian kernels. Some residual numerical variation can be seen in the figures when the values
of the observables are small, for example in the high q

2 region of K14,15. The increase in the SM
uncertainty band at high q

2 is due to the reduced phase-space, and resulting small sample size,
in this region. The q

2 range in the figures is restricted to the allowed range at the pole mass
mpK = 1.82GeV/c2. The observables associated with the angular function P

0
1 (cos ✓`), K2,8,14,

are highly sensitive to modifications of the Wilson coefficients in particular to changes in the
left-handed currents. This is similar to what is seen in the forward-backward asymmetry of other
b! s`

+
`
� decays. The observables accompanying the basis function P

0
2 (cos ✓`), K3,9,15, only

differ from the SM for changes in the left-handed vector currents. The differences here are largest
for small q

2, where C9–C7 interference is important. Finally, due to the very similar structures of
K1,7,13, as discussed Section 6, the values of K7,13 are almost identical for the different scenarios
considered in this section. In the single resonance case, these observables serve as a useful check
of the form-factor description. In general, as the order of the ✓p basis function increases (0, 2, 4
for the top, mid, and bottom row of Fig. 3) the magnitude of the corresponding observable
decreases.
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Figure 3: Angular observables K2�15, as a function of q
2

for the spin-
5
2 ⇤(1820) resonance assuming the

SM (black line) and different non-SM scenarios (using the same colour code as in Fig. 2). The uncertainty

on the SM prediction is represented by the gray band.

Figure 4 shows the angular observables that accompany the basis functions with cos � or
cos 2� dependency. Mathematically, these observables depend on the real part of products of
different ⇤ helicity amplitudes. The observables K21 and K39 are sensitive to the introduction of
right-handed currents. The observable K21 is also sensitive to changes in the left-handed vector
current. Even in these extreme scenarios, the changes from the SM prediction only exceed the

21

Table 4: Resonance parameters used in the predictions presented in this paper. The parameters of the

resonances are taken from Ref. [65]. The branching fraction of the ⇤ resonance to pK
�

is calculated

from the centre of the range and scaled according to isospin considerations. The branching fraction of

⇤(1405) ! NK assumes equal partial widths for ⇤(1405) ! NK and ⇤(1405) ! ⌃⇡.

resonance m⇤ [ GeV/c2 ] �⇤ [ GeV/c2 ] 2J⇤ P⇤ B(⇤ ! NK)

⇤(1405) 1.405 0.051 1 � 0.50
⇤(1520) 1.519 0.016 3 � 0.45
⇤(1600) 1.600 0.200 1 + 0.15 – 0.30
⇤(1670) 1.674 0.030 1 � 0.20 – 0.30
⇤(1690) 1.690 0.070 3 � 0.20 – 0.30
⇤(1800) 1.800 0.200 1 � 0.25 – 0.40
⇤(1810) 1.790 0.110 1 + 0.05 – 0.35
⇤(1820) 1.820 0.080 5 + 0.55 – 0.65
⇤(1890) 1.890 0.120 3 + 0.24 – 0.36
⇤(2110) 2.090 0.250 5 + 0.05 – 0.25

yield identical predictions for the differential branching fraction as its value only depends on
|C10|2. The gray band in Fig. 2 represents an estimate of the theoretical uncertainty on the SM
prediction. This is determined by varying the magnitude of each form factor, X�i , according to
a normal distribution with a width of 10%. Moreover, there can be non-factorisable corrections
to the decay amplitudes (which cannot be expressed in terms of local form-factors and Wilson
coefficients). Such contributions can introduce relative phases between the amplitudes for a single
decay. This can make observables that depend on the imaginary part of bilinear combinations
of amplitudes, like K32, non-zero. To estimate the uncertainty due to these non-factorisable
corrections, each amplitude is varied according to

H ! (1 + a)H , (74)

where a is uniformly distributed inside a circle of radius 0.1 in the complex plane. This is similar
to the approach used for B

0 ! K
⇤0

`
+
`
� decays in Ref. [66]. To propagate these variations to the

observables, 200 different SM ensembles are produced and the moments extracted. The standard
deviation of the resulting moments is taken as the uncertainty on the prediction.
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Figure 2: Differential branching fraction in mpK and q
2

for a single ⇤(1820) resonance assuming the SM

(black line) and different NP scenarios (coloured lines). The SM and C10 = �CSM
10 scenarios yield identical

predictions for the differential branching fraction. The uncertainty on the SM prediction is represented

by the gray band.

Figure 3 shows the angular observables as defined in Equation (57) that are accompanied by
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Helicity amplitudes
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where P⇤0
b

is the ⇤
0
b polarisation defined in Equation (12) and the upper-left (lower-right) element

corresponds to ⇢+1/2,+1/2(⇢�1/2,�1/2) and the off-diagonal elements correspond to ⇢±1/2,⌥1/2.

3.1 Helicity amplitudes for the ⇤0
b ! ⇤V decay

Separate amplitudes need to be considered for hadronic operators with different Lorentz structures,
Oµ

had.,i = s̄�µ
i PL,Rb. The relevant amplitudes for this paper are
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The labels V , A, T and T5 refer to vector, axialvector, tensor and axialtensor currents with the
Lorentz structures �µ = �

µ, �
µ
�5, i�

µ⌫
q⌫ and i�

µ⌫
�5q⌫ , respectively. A common complex phase,

�⇤, arises from QCD separately for each ⇤ resonance. The amplitudes, H
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�⇤,�V
, are
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Note, the polarization vectors for the vector-boson used in this paper are defined in the opposite
direction to those of Ref. [50].

The current h⇤|s̄�µ
b|⇤0

bi can be decomposed in terms of its underlying Lorentz structure.
One choice is to expand the currents in terms of �

µ and the ⇤
0
b and ⇤ 4-velocities, vp and vk.

This approach is taken in Ref. [46], where the currents for J⇤ = 1
2 are
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In the notation of Ref. [46, 47], the form-factors X�i are XV i = Fi, XAi = Gi, XT i = F
T
i and

XT5i = G
T
i . Reference [46] provides predictions for these form factors for most ⇤

0
b ! ⇤ transitions

in a quark model. Predictions for some of the states are available from lattice QCD [33,41]. The
lattice predictions use an alternative expansion of the currents. A translation between the two
expansions is provided in Appendix D. For ⇤ states with J⇤ = 1

2 , the ⇤ spinors u(k, �⇤) are the
standard Dirac spinors. For ⇤ states with higher spin, the ⇤ spinors u↵(k, �⇤) and u↵�(k, �⇤)
are Rarita-Schwinger objects constructed from coupling an integer-spin tensor-object of order
J⇤ � 1

2 and a standard Dirac spinor [55]. This is described further in Appendix B.
The amplitudes in Equation 20 are calculated by evaluating the spinor products in Equa-

tions 21-23. The time-like (JV = 0 and �V = t) helicity amplitudes for natural parity states,
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Note, the polarization vectors for the vector-boson used in this paper are defined in the opposite
direction to those of Ref. [50].
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In the notation of Ref. [46, 47], the form-factors X�i are XV i = Fi, XAi = Gi, XT i = F
T
i and

XT5i = G
T
i . Reference [46] provides predictions for these form factors for most ⇤

0
b ! ⇤ transitions

in a quark model. Predictions for some of the states are available from lattice QCD [33,41]. The
lattice predictions use an alternative expansion of the currents. A translation between the two
expansions is provided in Appendix D. For ⇤ states with J⇤ = 1

2 , the ⇤ spinors u(k, �⇤) are the
standard Dirac spinors. For ⇤ states with higher spin, the ⇤ spinors u↵(k, �⇤) and u↵�(k, �⇤)
are Rarita-Schwinger objects constructed from coupling an integer-spin tensor-object of order
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2 and a standard Dirac spinor [55]. This is described further in Appendix B.
The amplitudes in Equation 20 are calculated by evaluating the spinor products in Equa-
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bi = ū↵�(k, �⇤)v↵
p

h
v

�
p

�
X�1(q

2)�µ +X�2(q
2)vµ

p + X�3(q
2)vµ

k

�

+X�4(q
2)g�µ

i
u(p, �b) .

(23)

In the notation of Ref. [46, 47], the form-factors X�i are XV i = Fi, XAi = Gi, XT i = F
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i and

XT5i = G
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i . Reference [46] provides predictions for these form factors for most ⇤
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in a quark model. Predictions for some of the states are available from lattice QCD [33,41]. The
lattice predictions use an alternative expansion of the currents. A translation between the two
expansions is provided in Appendix D. For ⇤ states with J⇤ = 1

2 , the ⇤ spinors u(k, �⇤) are the
standard Dirac spinors. For ⇤ states with higher spin, the ⇤ spinors u↵(k, �⇤) and u↵�(k, �⇤)
are Rarita-Schwinger objects constructed from coupling an integer-spin tensor-object of order
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2 and a standard Dirac spinor [55]. This is described further in Appendix B.
The amplitudes in Equation 20 are calculated by evaluating the spinor products in Equa-
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0
b ! ⇤ transitions
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expansions is provided in Appendix D. For ⇤ states with J⇤ = 1
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Table 2: Amplitude combinations appearing in the coefficient Ki. The parity combination and allowed

spins indicate which states interfere. Checkmarks in the three columns labelled single states indicate

whether the coefficient appears in the single resonance case for spin J⇤ = 1
2 ,

3
2 , or

5
2 . Some coefficients

take the real part (Re) others the imaginary part (Im) of the amplitude products. A checkmark in the

column V/A shows that a coefficient arises from vector-axialvector interference. The right-most column

indicates the equation defining the observable Ki.

i
parity

J⇤ + J
0
⇤

single states
Re/Im V/A helicity combinations Eq.

combination 1/2 3/2 5/2

1 same � 1 X X X Re J⇤ = J
0
⇤, (�⇤, �V ) = (�⇤, �V )0

(62)

2 same � 1 X X X Re X J⇤ = J
0
⇤, �V 6= 0, (�⇤, �V ) = (�⇤, �V )0

(63)

3 same � 1 X X X Re J⇤ = J
0
⇤, (�⇤, �V ) = (�⇤, �V )0

(64)

4 opposite � 1 Re (�⇤, �V ) = (�⇤, �V )0
(66)

5 opposite � 1 Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(117)

6 opposite � 1 Re (�⇤, �V ) = (�⇤, �V )0
(118)

7 same � 2 X X Re (�⇤, �V ) = (�⇤, �V )0
(119)

8 same � 2 X X Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(120)

9 same � 2 X X Re (�⇤, �V ) = (�⇤, �V )0
(121)

10 opposite � 3 Re (�⇤, �V ) = (�⇤, �V )0
(122)

11 opposite � 3 Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(123)

12 opposite � 3 Re (�⇤, �V ) = (�⇤, �V )0
(124)

13 same � 4 X Re (�⇤, �V ) = (�⇤, �V )0
(125)

14 same � 4 X Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(126)

15 same � 4 X Re (�⇤, �V ) = (�⇤, �V )0
(127)

16 opposite � 5 Re (�⇤, �V ) = (�⇤, �V )0
(128)

17 opposite � 5 Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(129)

18 opposite � 5 Re (�⇤, �V ) = (�⇤, �V )0
(130)

19 opposite � 1 Re

�V = 0, |�0
V | = 1 (all possible �

(0)
⇤ )

(131)

20 opposite � 1 Re X (132)

21 same � 2 X X Re (133)

22 same � 2 X X Re X (134)

23 opposite � 3 Re (135)

24 opposite � 3 Re X (136)

25 same � 4 X Re (137)

26 same � 4 X Re X (138)

27 opposite � 5 Re (139)

28 opposite � 5 Re X (140)

29 opposite � 1 Im

�V = 0, |�0
V | = 1 (all possible �

(0)
⇤ )

(141)

30 opposite � 1 Im X (142)

31 same � 2 X X Im (143)

32 same � 2 X X Im X (67)

33 opposite � 3 Im (144)

34 opposite � 3 Im X (145)

35 same � 4 X Im (146)

36 same � 4 X Im X (147)

37 opposite � 5 Im (148)

38 opposite � 5 Im X (149)

39 same � 2 X X Re

|�(0)
V | = 1, �⇤ = ±1/2, �

0
⇤ = ⌥3/2

(150)

40 opposite � 3 Re (151)

41 same � 4 X Re (152)

42 opposite � 5 Re (153)

43 same � 2 X X Im (154)

44 opposite � 3 Im (155)

45 same � 4 X Im (156)

46 opposite � 5 Im (157)
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6 Explicit expressions for the angular coefficients

The angular coefficients, Ki, involve bilinear combinations of amplitudes that arise from taking
the product of M and its complex conjugate. In what follows below, we label the indices
appearing in M† with primes. Allowing for even and odd parity as well as spins up to 5

2 results in
complex and long expressions. The structure of the different coefficients is summarised in Table 2.
The left-most columns of the table summarise the appearing state combinations, the right-most
columns give details about the structure of the coefficients and the interfering amplitudes. The
fifth column indicates whether the coefficient takes the real or imaginary part of the amplitude
product. A check mark in the sixth column indicates that the coefficient arises due to vector
and axialvector interference of the leptonic currents. The last column explains which helicity
combinations contribute to the coefficient. When a basis function is independent of �, the two
amplitudes in a product have the same helicity combination (�V = �

0

V , �⇤ = �
0

⇤). Basis functions
that depend on cos � or cos 2� (sin � or sin 2�) appear with the real (imaginary) part of a bilinear
combination of amplitudes.

In order to have a compact notation for the coefficients, the lepton-side helicity amplitudes,
h̃

JV
�1,�2

, are inserted under the assumption that 4m
2
` ⌧ q

2. The hadron-side helicity amplitudes
with negative proton helicity, h

⇤
�⇤,�1/2, are replaced using the parity conservation requirement

given in Equation (43). To further simplify the expressions we introduce the symbols

AQ,V
�⇤,�V

= N

X

⇤

X

i=7(0),9(0)

H⇤,Oi
�⇤,�V

h
⇤
�⇤,1/2 ,

AQ,A
�⇤,�V

= N

X

⇤

X

i=10(0)

H⇤,Oi
�⇤,�V

h
⇤
�⇤,1/2 ,

(60)

where the sum runs over resonances with the quantum numbers Q. The reader is reminded that
the indices need to satisfy |�V � �⇤| = |�0

V � �
0

⇤| = 1
2 to conserve helicity. The normalisation

coefficient

N =

s
N

2
1

m
2
⇤b

26(2⇡)7
|~k||~k1||~q1|p

q2
2q2 (61)

contains the phase-space factors, the normalisation of the weak b! s transition and a common
factor of 2q

2 stemming from the lepton-side amplitudes, h̃
JV
�1,�2

.
The coefficient K1 is proportional to the total decay rate and equals the sum of all helicity

amplitudes squared

K1 =
1p
3

X

Q

X

�⇤,�V

✓���AQ,V
�⇤,�V

���
2
+ V  ! A

◆
. (62)

The coefficient

K2 = �
X

Q

X

�=±1

� · Re

AQ,A⇤

3
2�,�

AQ,V
3
2�,�

+ AQ,A⇤

1
2�,�

AQ,V
1
2�,�

�
(63)

generates the lepton-side forward-backward asymmetry, A
`
FB = 3

2K2. The coefficient K3 is the
asymmetry in the amplitudes squared between the amplitudes with |�V | = 1 and �V = 0

K3 =
1

2
p

15

X

Q

X

�=±1

 ����A
Q,V
3
2�,�

����
2

+

����A
Q,V
1
2�,�

����
2

� 2

����A
Q,V
1
2�,0

����
2
!

+ V  ! A . (64)

A unique feature of K1–K3 is that they arise purely due to self-interaction terms and interference
between states with the same quantum numbers. As such, the first three coefficients are non-zero
even for single resonances regardless of their spin.

13

6 Explicit expressions for the angular coefficients

The angular coefficients, Ki, involve bilinear combinations of amplitudes that arise from taking
the product of M and its complex conjugate. In what follows below, we label the indices
appearing in M† with primes. Allowing for even and odd parity as well as spins up to 5

2 results in
complex and long expressions. The structure of the different coefficients is summarised in Table 2.
The left-most columns of the table summarise the appearing state combinations, the right-most
columns give details about the structure of the coefficients and the interfering amplitudes. The
fifth column indicates whether the coefficient takes the real or imaginary part of the amplitude
product. A check mark in the sixth column indicates that the coefficient arises due to vector
and axialvector interference of the leptonic currents. The last column explains which helicity
combinations contribute to the coefficient. When a basis function is independent of �, the two
amplitudes in a product have the same helicity combination (�V = �

0

V , �⇤ = �
0

⇤). Basis functions
that depend on cos � or cos 2� (sin � or sin 2�) appear with the real (imaginary) part of a bilinear
combination of amplitudes.

In order to have a compact notation for the coefficients, the lepton-side helicity amplitudes,
h̃

JV
�1,�2

, are inserted under the assumption that 4m
2
` ⌧ q

2. The hadron-side helicity amplitudes
with negative proton helicity, h

⇤
�⇤,�1/2, are replaced using the parity conservation requirement

given in Equation (43). To further simplify the expressions we introduce the symbols

AQ,V
�⇤,�V

= N

X

⇤

X

i=7(0),9(0)

H⇤,Oi
�⇤,�V

h
⇤
�⇤,1/2 ,

AQ,A
�⇤,�V

= N

X

⇤

X

i=10(0)

H⇤,Oi
�⇤,�V

h
⇤
�⇤,1/2 ,

(60)

where the sum runs over resonances with the quantum numbers Q. The reader is reminded that
the indices need to satisfy |�V � �⇤| = |�0

V � �
0

⇤| = 1
2 to conserve helicity. The normalisation

coefficient

N =

s
N

2
1

m
2
⇤b

26(2⇡)7
|~k||~k1||~q1|p

q2
2q2 (61)

contains the phase-space factors, the normalisation of the weak b! s transition and a common
factor of 2q

2 stemming from the lepton-side amplitudes, h̃
JV
�1,�2

.
The coefficient K1 is proportional to the total decay rate and equals the sum of all helicity

amplitudes squared

K1 =
1p
3

X

Q

X

�⇤,�V

✓���AQ,V
�⇤,�V

���
2
+ V  ! A

◆
. (62)

The coefficient

K2 = �
X

Q

X

�=±1

� · Re

AQ,A⇤

3
2�,�

AQ,V
3
2�,�

+ AQ,A⇤

1
2�,�

AQ,V
1
2�,�

�
(63)

generates the lepton-side forward-backward asymmetry, A
`
FB = 3

2K2. The coefficient K3 is the
asymmetry in the amplitudes squared between the amplitudes with |�V | = 1 and �V = 0

K3 =
1

2
p

15

X

Q

X

�=±1

 ����A
Q,V
3
2�,�

����
2

+

����A
Q,V
1
2�,�

����
2

� 2

����A
Q,V
1
2�,0

����
2
!

+ V  ! A . (64)

A unique feature of K1–K3 is that they arise purely due to self-interaction terms and interference
between states with the same quantum numbers. As such, the first three coefficients are non-zero
even for single resonances regardless of their spin.

13

6 Explicit expressions for the angular coefficients

The angular coefficients, Ki, involve bilinear combinations of amplitudes that arise from taking
the product of M and its complex conjugate. In what follows below, we label the indices
appearing in M† with primes. Allowing for even and odd parity as well as spins up to 5

2 results in
complex and long expressions. The structure of the different coefficients is summarised in Table 2.
The left-most columns of the table summarise the appearing state combinations, the right-most
columns give details about the structure of the coefficients and the interfering amplitudes. The
fifth column indicates whether the coefficient takes the real or imaginary part of the amplitude
product. A check mark in the sixth column indicates that the coefficient arises due to vector
and axialvector interference of the leptonic currents. The last column explains which helicity
combinations contribute to the coefficient. When a basis function is independent of �, the two
amplitudes in a product have the same helicity combination (�V = �

0

V , �⇤ = �
0

⇤). Basis functions
that depend on cos � or cos 2� (sin � or sin 2�) appear with the real (imaginary) part of a bilinear
combination of amplitudes.

In order to have a compact notation for the coefficients, the lepton-side helicity amplitudes,
h̃

JV
�1,�2

, are inserted under the assumption that 4m
2
` ⌧ q

2. The hadron-side helicity amplitudes
with negative proton helicity, h

⇤
�⇤,�1/2, are replaced using the parity conservation requirement

given in Equation (43). To further simplify the expressions we introduce the symbols

AQ,V
�⇤,�V

= N

X

⇤

X

i=7(0),9(0)

H⇤,Oi
�⇤,�V

h
⇤
�⇤,1/2 ,

AQ,A
�⇤,�V

= N

X

⇤

X

i=10(0)

H⇤,Oi
�⇤,�V

h
⇤
�⇤,1/2 ,

(60)

where the sum runs over resonances with the quantum numbers Q. The reader is reminded that
the indices need to satisfy |�V � �⇤| = |�0

V � �
0

⇤| = 1
2 to conserve helicity. The normalisation

coefficient

N =

s
N

2
1

m
2
⇤b

26(2⇡)7
|~k||~k1||~q1|p

q2
2q2 (61)

contains the phase-space factors, the normalisation of the weak b! s transition and a common
factor of 2q

2 stemming from the lepton-side amplitudes, h̃
JV
�1,�2

.
The coefficient K1 is proportional to the total decay rate and equals the sum of all helicity

amplitudes squared

K1 =
1p
3

X

Q

X

�⇤,�V

✓���AQ,V
�⇤,�V

���
2
+ V  ! A

◆
. (62)

The coefficient

K2 = �
X

Q

X

�=±1

� · Re

AQ,A⇤

3
2�,�

AQ,V
3
2�,�

+ AQ,A⇤

1
2�,�

AQ,V
1
2�,�

�
(63)

generates the lepton-side forward-backward asymmetry, A
`
FB = 3

2K2. The coefficient K3 is the
asymmetry in the amplitudes squared between the amplitudes with |�V | = 1 and �V = 0

K3 =
1

2
p

15

X

Q

X

�=±1

 ����A
Q,V
3
2�,�

����
2

+

����A
Q,V
1
2�,�

����
2

� 2

����A
Q,V
1
2�,0

����
2
!

+ V  ! A . (64)

A unique feature of K1–K3 is that they arise purely due to self-interaction terms and interference
between states with the same quantum numbers. As such, the first three coefficients are non-zero
even for single resonances regardless of their spin.

13

6 Explicit expressions for the angular coefficients

The angular coefficients, Ki, involve bilinear combinations of amplitudes that arise from taking
the product of M and its complex conjugate. In what follows below, we label the indices
appearing in M† with primes. Allowing for even and odd parity as well as spins up to 5

2 results in
complex and long expressions. The structure of the different coefficients is summarised in Table 2.
The left-most columns of the table summarise the appearing state combinations, the right-most
columns give details about the structure of the coefficients and the interfering amplitudes. The
fifth column indicates whether the coefficient takes the real or imaginary part of the amplitude
product. A check mark in the sixth column indicates that the coefficient arises due to vector
and axialvector interference of the leptonic currents. The last column explains which helicity
combinations contribute to the coefficient. When a basis function is independent of �, the two
amplitudes in a product have the same helicity combination (�V = �

0

V , �⇤ = �
0

⇤). Basis functions
that depend on cos � or cos 2� (sin � or sin 2�) appear with the real (imaginary) part of a bilinear
combination of amplitudes.

In order to have a compact notation for the coefficients, the lepton-side helicity amplitudes,
h̃

JV
�1,�2

, are inserted under the assumption that 4m
2
` ⌧ q

2. The hadron-side helicity amplitudes
with negative proton helicity, h

⇤
�⇤,�1/2, are replaced using the parity conservation requirement

given in Equation (43). To further simplify the expressions we introduce the symbols
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(60)

where the sum runs over resonances with the quantum numbers Q. The reader is reminded that
the indices need to satisfy |�V � �⇤| = |�0

V � �
0

⇤| = 1
2 to conserve helicity. The normalisation

coefficient
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q2
2q2 (61)

contains the phase-space factors, the normalisation of the weak b! s transition and a common
factor of 2q

2 stemming from the lepton-side amplitudes, h̃
JV
�1,�2

.
The coefficient K1 is proportional to the total decay rate and equals the sum of all helicity

amplitudes squared
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The coefficient
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generates the lepton-side forward-backward asymmetry, A
`
FB = 3

2K2. The coefficient K3 is the
asymmetry in the amplitudes squared between the amplitudes with |�V | = 1 and �V = 0

K3 =
1

2
p
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A unique feature of K1–K3 is that they arise purely due to self-interaction terms and interference
between states with the same quantum numbers. As such, the first three coefficients are non-zero
even for single resonances regardless of their spin.
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Due to parity conservation in the strong decay of the ⇤ resonance, the cos ✓p distribution
must be symmetric for spectra where all states have the same parity. Once states with different
parities can interfere, a hadron system forward-backward asymmetry is introduced with

A
p
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8
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K16 . (65)

One of the three contributing coefficients is
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(66)

which accompanies the basis function f4(~⌦) = cos ✓p. Note that interference between 1
2 and

5
2 states does not contribute to K4 and many other observables (see Appendix F). Another
illustrative coefficient is
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(67)

This coefficient contains terms arising from interference between states with identical quantum
numbers and hence exists in the single-state case for J⇤ � 3

2 . However, unless the different
helicity amplitudes of the ⇤ have independent complex phases, the product of two amplitudes
of the same state is always real and K32 is zero. This is the case in naïve factorisation. Even
allowing for large phase differences, the magnitude of K32 will remain small for a single state due
to the relative suppression of the amplitudes with helicity |�⇤| = 3

2 compared to amplitudes with
|�⇤| = 1

2 . In a spectrum with several interfering resonances, the global QCD phase difference
between the states can lead to sizeable imaginary terms. Moreover, if there is interference
between states with different spins, terms with |�(0)

⇤ | = 1
2 appear, resulting in large values of

K32. The remaining angular coefficients in the unpolarised case are summarised in Appendix F.
The additional coefficients appearing in the polarised case are provided in a note book as
supplementary material.
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This coefficient contains terms arising from interference between states with identical quantum
numbers and hence exists in the single-state case for J⇤ � 3

2 . However, unless the different
helicity amplitudes of the ⇤ have independent complex phases, the product of two amplitudes
of the same state is always real and K32 is zero. This is the case in naïve factorisation. Even
allowing for large phase differences, the magnitude of K32 will remain small for a single state due
to the relative suppression of the amplitudes with helicity |�⇤| = 3

2 compared to amplitudes with
|�⇤| = 1

2 . In a spectrum with several interfering resonances, the global QCD phase difference
between the states can lead to sizeable imaginary terms. Moreover, if there is interference
between states with different spins, terms with |�(0)

⇤ | = 1
2 appear, resulting in large values of

K32. The remaining angular coefficients in the unpolarised case are summarised in Appendix F.
The additional coefficients appearing in the polarised case are provided in a note book as
supplementary material.
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Wilson coefficients
➡ SM Wilson coefficients used in JHEP 05 

(2013) 137 
➡ Global fit from Eur. Phys. J. C 82 (2022) 326 
❖ Consistent with existing measurements in b➝sll 

40

Table 5: Wilson coefficients used in the generator assuming the SM [64] and a global fit to mesonic

b! s`
+
`
�

measurements [20].

Standard Model global fit

C1 �0.2632
C2 1.0111
C3 �0.0055
C4 �0.0806
C5 0.0004
C6 0.0009

C7 �0.3120 �0.3120
C9 4.0749 2.9949
C10 �4.3085 �4.1585

C70 0.0000 0.0000
C90 0.0000 0.1600
C100 0.0000 �0.1800

The spin-3
2 Rarita-Schwinger objects are constructed from the Dirac spinors, u(k, ±1

2), and spin-1
polarisation vectors for a massive particle as described in Ref. [55]. For J⇤ = 3

2 ,
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and for J⇤ = 5
2 ,
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, (82)

where �⇤ is the ⇤ helicity and the spin-2 tensor is constructed from polarisation vectors as

e
↵�(�i) =

1X

�1=�1

1X
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D
1 �1, 1 �2

���2 �i
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. (83)

The Rarita-Schwinger objects satisfy

k
↵
u↵� = 0 , g

↵�
u↵� = 0 , (�µ

kµ � m)u↵� = 0 ,

�
↵
u↵� = 0 , u↵� = u�↵ .

(84)

In the ⇤
0
b rest frame, the four-momenta of the ⇤

0
b , the ⇤ resonance and the dilepton system are

p
µ = (m⇤b , 0, 0, 0) , k

µ =
⇣
m⇤b � q

0
, 0, 0, |~k|

⌘
, q

µ =
⇣
q
0
, 0, 0, �|~k|

⌘
. (85)

The polarisation vectors used to construct the Rarita-Schwinger objects for the ⇤ resonances are
given by

e
↵(0) =

1

mpK

�
|~q |, 0, 0, m⇤b � q

0
�

, e
↵(±1) =

1p
2
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