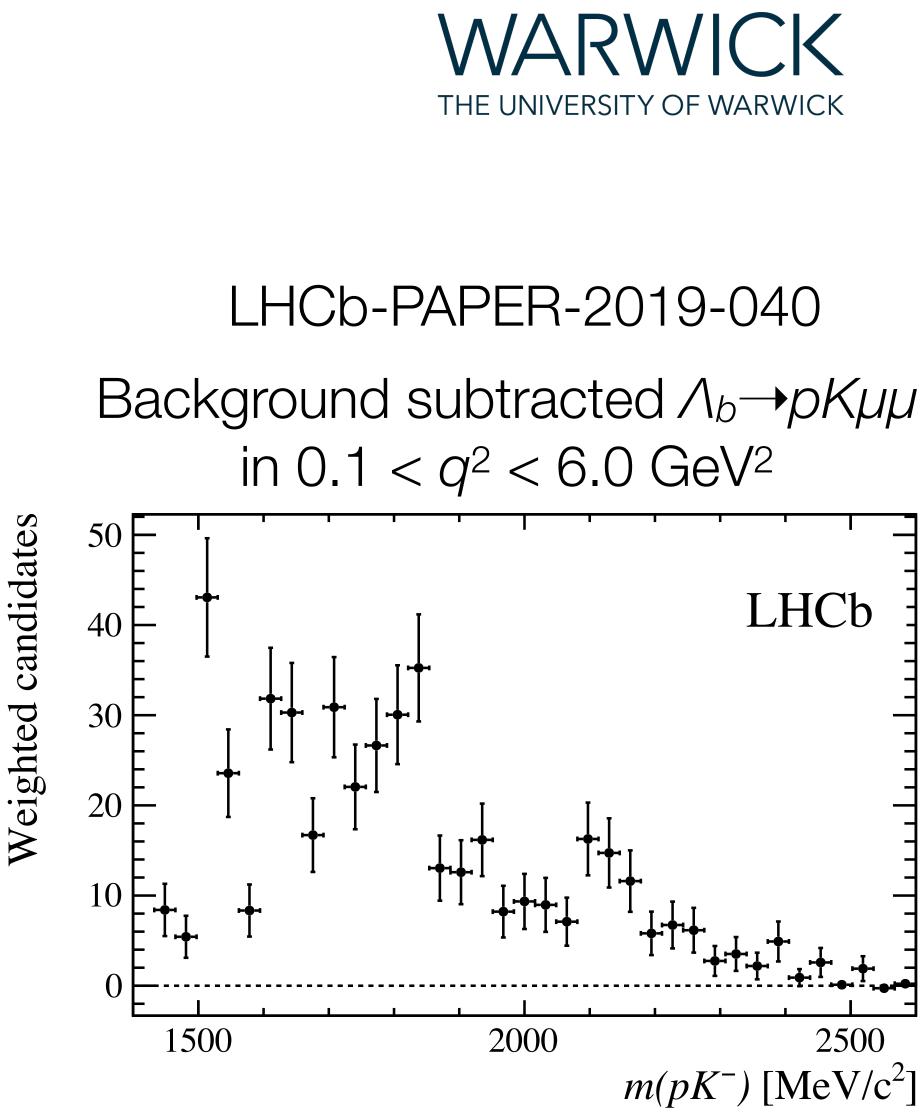
Rare decays with polarised Ab Michal Kreps

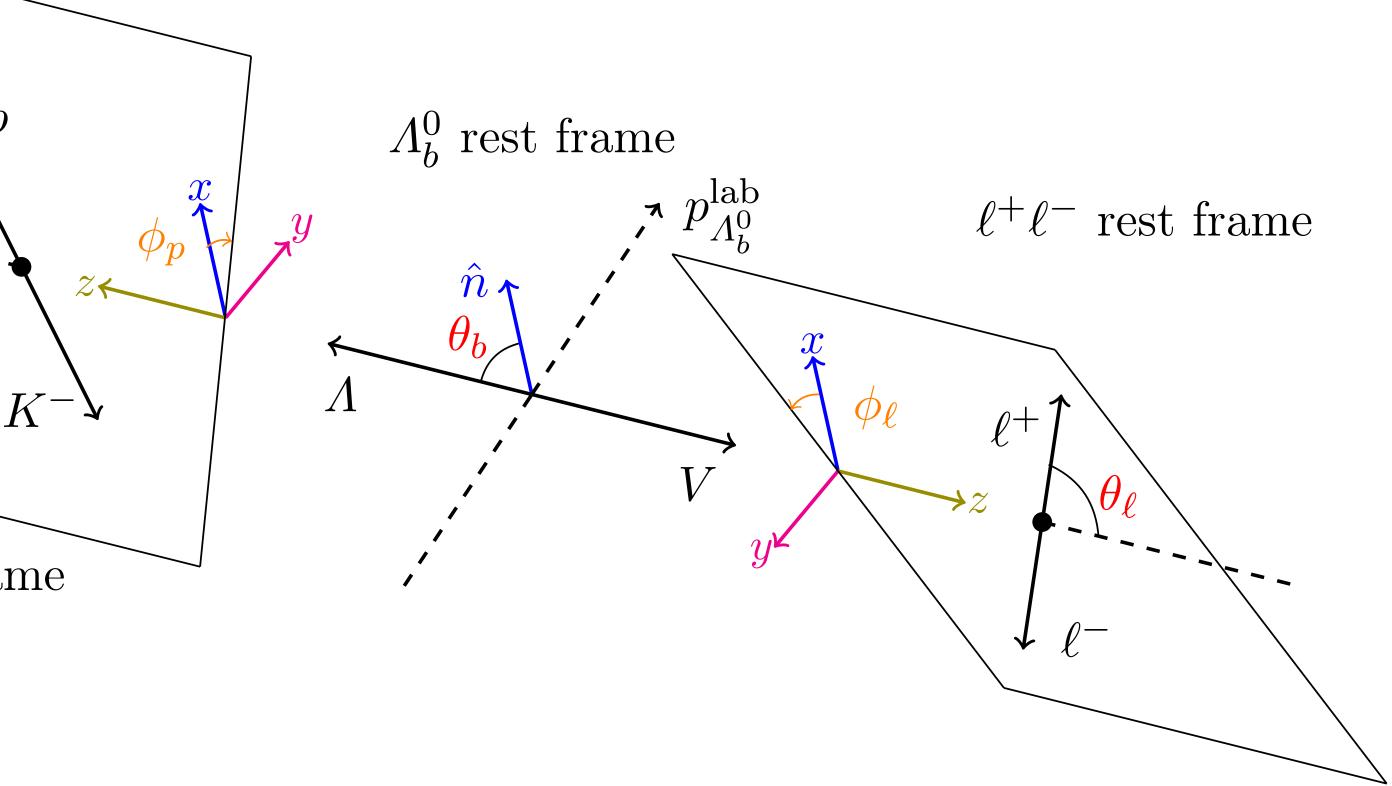
CEPC 2024 workshop, Hangzhou, 23-27. Oct. 2024


Introduction

- \rightarrow Decays governed by $b \rightarrow s/l$ transitions are sensitive probes for new physics
- Well studied for meson decays
- Baryon decays provide complementary information
 - Different spin structure
 - Differences in hadronic structure
- \rightarrow Decays $\Lambda_b \rightarrow \Lambda \mu \mu$ well studied (JHEP 01 (2015) 155, JHEP 11 (2017) 138 and many others)

 \rightarrow Decays $\Lambda_b \rightarrow \Lambda^* \mu \mu$ with spin 1/2 and 3/2 Λ^* studied previously (1903.10553, JHEP 07 (2020) 002, JHEP 06 (2019) 136, Eur. Phys. J. Plus 136 (2021) <u>614</u>)

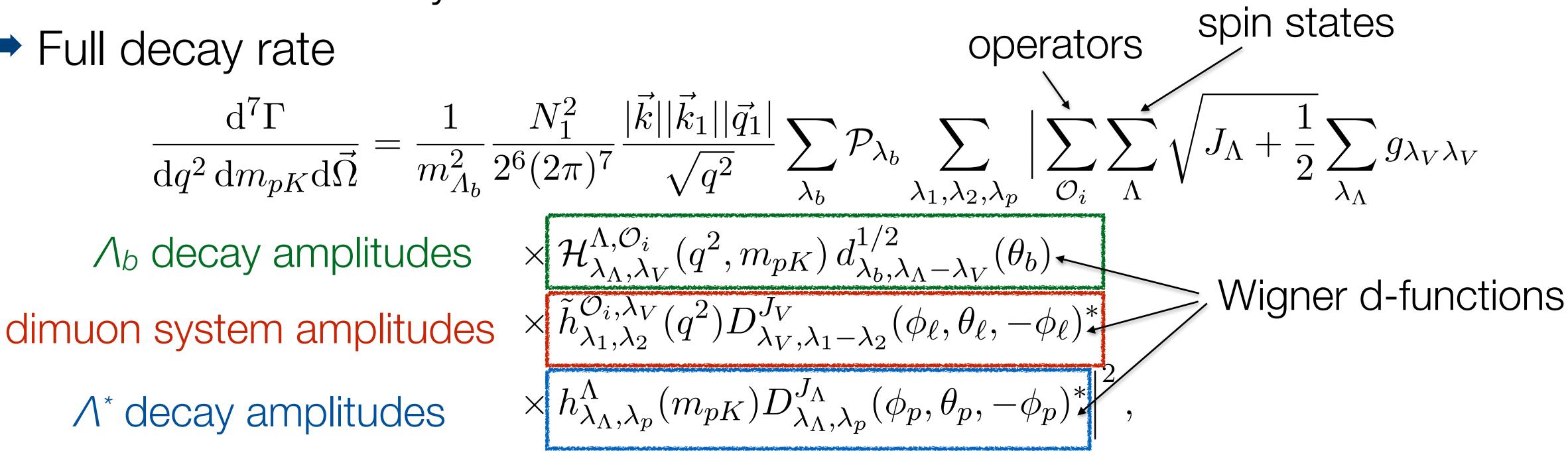
in 0.1 < q^2 < 6.0 GeV²


Angular distributions

- With polarised production, 5 angles to describe kinematics
- \blacktriangleright Without polarisation, one is sensitive only to $\phi_l + \phi_b$
- Angle θ should correspond to production polarisation axis
 - Figure shows case for pp collisions with transverse polarisation
 - For Z decays one has to take relevant polarisation axis

 Λ rest frame

es to describe kinematics ve only to $\phi_{l}+\phi_{b}$

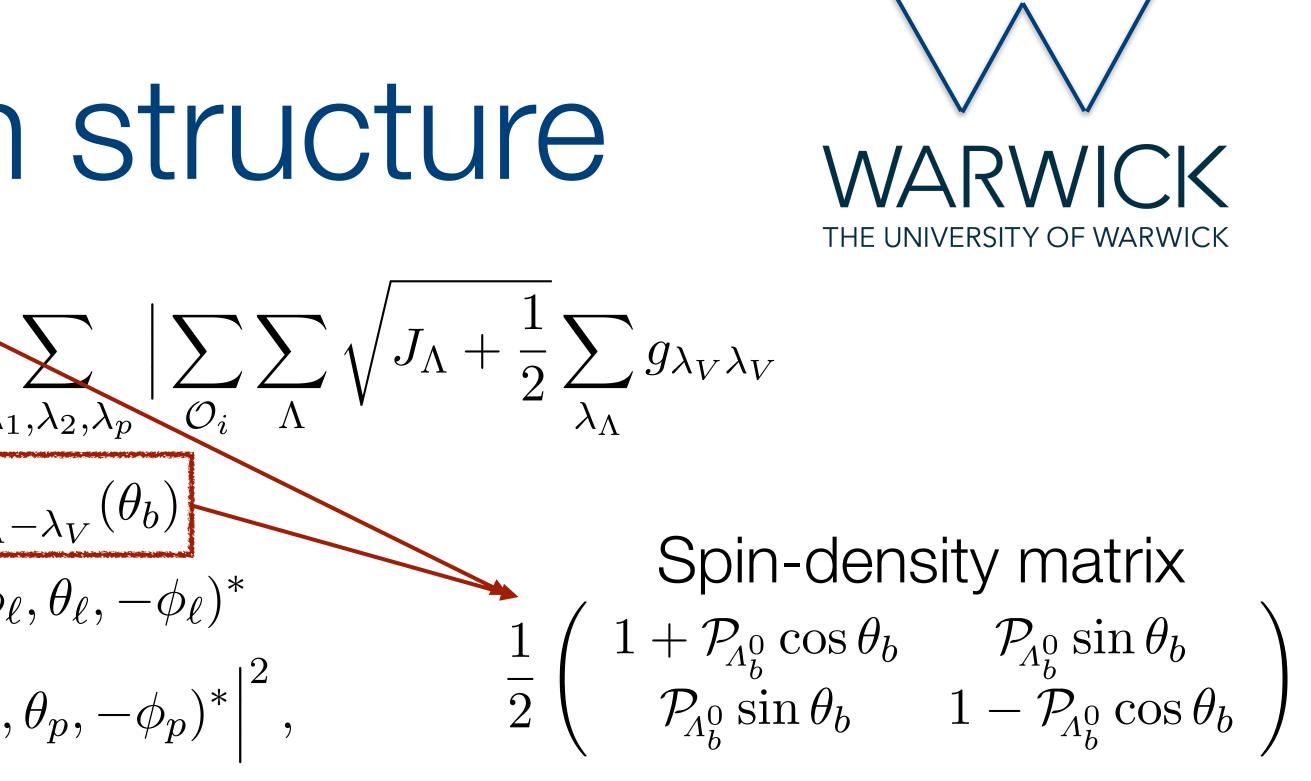


Angular distribution

The full angular distribution with several interfering spin states can be easily written in the helicity formalism

Full decay rate

Several terms will have same angular term, so want to group them



Angular distribution structure

 $\frac{\mathrm{d}^{7}\Gamma}{\mathrm{d}q^{2}\,\mathrm{d}m_{pK}\mathrm{d}\vec{\Omega}} = \frac{1}{m_{A_{b}}^{2}} \frac{N_{1}^{2}}{2^{6}(2\pi)^{7}} \frac{|\vec{k}||\vec{k}_{1}||\vec{q}_{1}|}{\sqrt{q^{2}}} \sum_{\lambda_{i}} \mathcal{P}_{\lambda_{b}} \sum_{\lambda_{i}} \sum_{\lambda_{i}} \left|\sum_{\lambda_{i}}\sum_{\lambda_{i}}\sqrt{J_{\Lambda}} + \frac{1}{2}\sum_{\lambda_{i}}g_{\lambda_{V}\lambda_{V}}\right|$ $\times \mathcal{H}^{\Lambda,\mathcal{O}_i}_{\lambda_\Lambda,\lambda_V}(q^2,m_{pK}) d^{1/2}_{\lambda_b,\lambda_\Lambda-\lambda_V}(\theta_b)$ $\times \tilde{h}_{\lambda_1,\lambda_2}^{\mathcal{O}_i,\lambda_V}(q^2) D_{\lambda_V,\lambda_1-\lambda_2}^{J_V}(\phi_\ell,\theta_\ell,-\phi_\ell)^*$ $\times h^{\Lambda}_{\lambda_{\Lambda},\lambda_{p}}(m_{pK})D^{J_{\Lambda}}_{\lambda_{\Lambda},\lambda_{p}}(\phi_{p},\theta_{p},-\phi_{p})^{*}\Big|^{2},$

Set of terms without any dependence on polarisation

- unpolarised terms

 \rightarrow Set of terms proportional to $P_b \cos \theta$ with same amplitude structure as

 \blacktriangleright Set of terms proportional to $P_b \sin \theta$ where amplitude structure is different

Angular basis

polynomials ($\Lambda_b \rightarrow p K \mu \mu$)

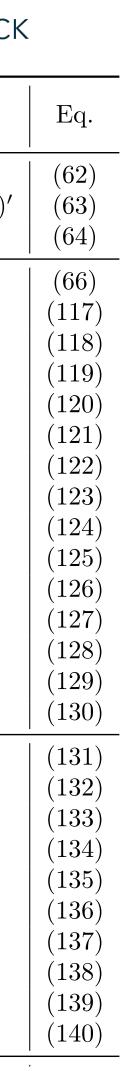
Related to angular momentum and makes it easy to keep track of terms Resulting functions are orthogonal (own weights for the method of moments) • For $\Lambda_b \rightarrow \Lambda_{\mu\mu}$ bases we chose was slightly suboptimal, but relates to Legendre polynomials $\Rightarrow \text{Final basis:} \quad f(\vec{\Omega}; l_{\text{lep}}, l_{\text{had}}, m_{\text{lep}}, m_{\text{had}}) = 2n_{l_{\text{lep}}}^{m_{\text{lep}}} n_{l_{\text{had}}}^{m_{\text{had}}} P_{l_{\text{lep}}}^{|m_{\text{lep}}|} (\cos \theta_{\ell}) P_{l_{\text{had}}}^{|m_{\text{had}}|} (\cos \theta_{\ell})$ $\times \begin{cases} \sin(|m_{\rm lep}|\phi_{\ell} + |m_{\rm had}|\phi_p) & m_{\rm lep} \leq 0 \text{ and } m_{\rm had} \leq 0 \\ \cos(|m_{\rm lep}|\phi_{\ell} + |m_{\rm had}|\phi_p) & m_{\rm lep} \geq 0 \text{ and } m_{\rm had} \geq 0 \end{cases}$

The angular distribution takes form

178 $32\pi^2$ d⁷ Γ $\frac{\mathbf{d} \mathbf{d}}{\mathbf{d}} \frac{\mathbf{d} \mathbf{d}}{\mathbf{d}} \mathbf{d}}{\mathbf{d}} \frac{\mathbf{d} \mathbf{d}}{\mathbf{d}} \mathbf{d}}{\mathbf{d}} = \sum_{i=1}^{\mathbf{d}} K_i(q^2, m_{pK}) f_i(\vec{\Omega})$

No unique option how to group terms, pick one based on associated Legendre

 $K_i(q^2, m_{pK})$ are bilinear combinations of products of amplitudes


Anatomy of angular distribution $\Lambda_b \rightarrow \rho K \mu \mu$

- There are 178 terms when polarisation is allowed to be nonzero
 - ✤ 46 of these present also with zero polarisation and have no θ_b dependence ($m_{lep}=m_{had}$)

 - For polarised case, 46 terms have $\cos \theta_b$ dependence while rest of the angles are same as unpolarised case
 - Remaining terms have sin θ_b dependence with basis functions where $m_{\text{lep}} \neq m_{\text{had}}$

		-	N					
i	parity combination	$J_{\Lambda} + J'_{\Lambda}$	$\sin 1/2$	gle sta $3/2$	ates $5/2$	Re/Im	V/A	helicity combinations
1	same	≥ 1	\checkmark	\checkmark	\checkmark	Re		$J_{\Lambda} = J'_{\Lambda}, (\lambda_{\Lambda}, \lambda_{V}) = (\lambda_{\Lambda}, \lambda_{V})'$
2	same	≥ 1	\checkmark	\checkmark	\checkmark	Re	\checkmark	$J_{\Lambda} = J'_{\Lambda}, \lambda_V \neq 0, \ (\lambda_{\Lambda}, \lambda_V) = (\lambda_{\Lambda}, \lambda_V)'$
3	same	≥ 1	\checkmark	\checkmark	\checkmark	Re		$J_{\Lambda} = J'_{\Lambda}, (\lambda_{\Lambda}, \lambda_{V}) = (\lambda_{\Lambda}, \lambda_{V})'$
4	opposite	≥ 1				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$
5	opposite	≥ 1				Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$
6	opposite	≥ 1				Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$
7	same	≥ 2		\checkmark	\checkmark	Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$
8	same	≥ 2		\checkmark	\checkmark	Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$
9	same	≥ 2		\checkmark	\checkmark	Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$
10	opposite	≥ 3				Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$
11	opposite	≥ 3				Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$
12	opposite	≥ 3				Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$
13	same	≥ 4			\checkmark	Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$
14	same	≥ 4			\checkmark	Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$
15	same	≥ 4			\checkmark	Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$
16	opposite	≥ 5				Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$
17	opposite	≥ 5				Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$
18	opposite	≥ 5				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$
19	opposite	≥ 1				Re		
20	opposite	≥ 1				Re	\checkmark	
21	same	≥ 2		\checkmark	\checkmark	Re		
22	same	≥ 2		\checkmark	\checkmark	Re	\checkmark	
23	opposite	≥ 3				Re		$\lambda = 0 + \lambda (1 + 1 + 1) + \lambda (1)$
24	opposite	≥ 3				Re	\checkmark	$\lambda_V = 0, \lambda'_V = 1 \text{ (all possible } \lambda_{\Lambda}^{(\prime)})$
25	same	≥ 4			\checkmark	Re		
26	same	≥ 4			\checkmark	Re	\checkmark	
27	opposite	≥ 5				Re		
28	opposite	≥ 5				Re	\checkmark	

7

Sensitivity to physics

\rightarrow For $\Lambda_b \rightarrow \Lambda_{\mu\mu}$ we investigated in greater details what can be extracted

At low-hadronic recoil amplitudes depend on combinations of Wilson **Coefficients** $\rho_1^{\pm} = |C_V \pm C'_V|^2 + |C_{10} \pm C'_{10}|^2$

$$\rho_2 = \operatorname{Re} \left(C_V C_{10}^* - C_V' C_{10}'^* \right) - \rho_3^{\pm} = 2\operatorname{Re} \left((C_V \pm C_V') (C_{10} \pm$$

$$\rho_4 = |C_V|^2 - |C_V'|^2 + |C_{10}|^2$$

- \rightarrow Im(ρ_2) only accessible with non-zero polarisation One can construct relationships which depend only on short distance
 - physics

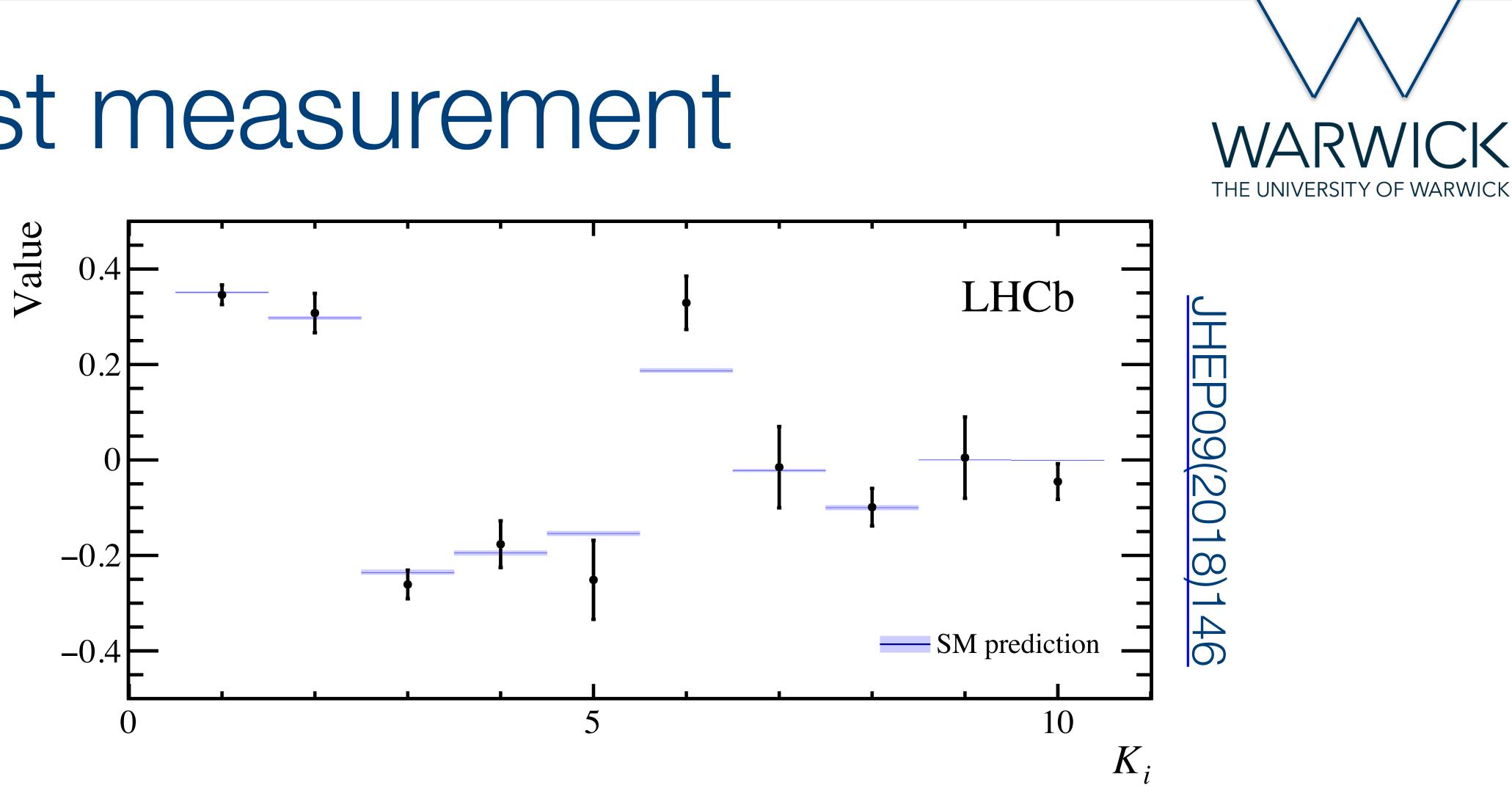
- $-i \operatorname{Im} \left(C_{\rm V} C_{\rm V}^{\prime *} + C_{10} C_{10}^{\prime *} \right)$
- $(C'_{10})^*)$
- $-|C'_{10}|^2 i \operatorname{Im} \left(C_V C_{10}^* C'_V C_{10}^{\prime *} \right)$

 $\frac{K_{16}}{K_{34}} = 2\frac{\operatorname{Re}(\rho_2)}{\operatorname{Im}(\rho_2)} , \quad \frac{K_{25}}{K_{22}} = -\frac{\operatorname{Im}(\rho_2)}{\operatorname{Im}(\rho_4)} , \quad \frac{K_{23}}{K_{10}} = -\frac{\operatorname{Re}(\rho_4)}{\operatorname{Im}(\rho_4)}P_{A_b}$

SM prediction

Obs.	Value	68% interval	Obs.	Value	68% interval
M_1	0.459	[0.453, 0.465]	M_6	0.000	[-0.005, 0.006]
M_2	0.081	[0.071, 0.094]	M_7	-0.025	[-0.034, -0.014]
M_3	-0.005	[-0.014, -0.001]	M_8	-0.003	$\left[-0.016, 0.012 ight]$
M_4	-0.280	[-0.290, -0.262]	M_9	0.002	[0.001, 0.002]
M_5	-0.045	$\left[-0.053, -0.037 ight]$	M_{10}	0.002	[0.001, 0.002]
M_{11}	-0.366	[-0.383, -0.338]	M_{23}	-0.147	[-0.162, -0.133]
M_{12}	0.071	[0.058, 0.081]	M_{24}	0.132	[0.120, 0.150]
M_{13}	0.001	$\left[-0.010, 0.007 ight]$	M_{25}	-0.001	$\left[-0.001, -0.000 ight]$
M_{14}	0.243	[0.230, 0.254]	M_{26}	0.004	$\left[0.003, 0.005 ight]$
M_{15}	-0.052	[-0.060, -0.045]	M_{27}	0.089	$\left[0.081, 0.099 ight]$
M_{16}	0.003	[0.001, 0.009]	M_{28}	-0.089	[-0.100, -0.080]
M_{17}	0.004	$\left[-0.012, 0.018 ight]$	M_{29}	0.000	[0.000, 0.000]
M_{18}	0.029	$\left[0.018, 0.037 ight]$	M_{30}	0.000	[0.000, 0.000]
M_{19}	-0.001	$\left[-0.002, -0.001 ight]$	M_{31}	0.000	[0.000, 0.000]
M_{20}	-0.003	$\left[-0.003, 0.002 ight]$	M_{32}	0.075	[0.035, 0.118]
M_{21}	0.002	[0.001, 0.003]	M_{33}	0.007	[0.001, 0.012]
M_{22}	-0.005	[-0.006, -0.003]	M_{34}	0.000	[-0.000, 0.000]

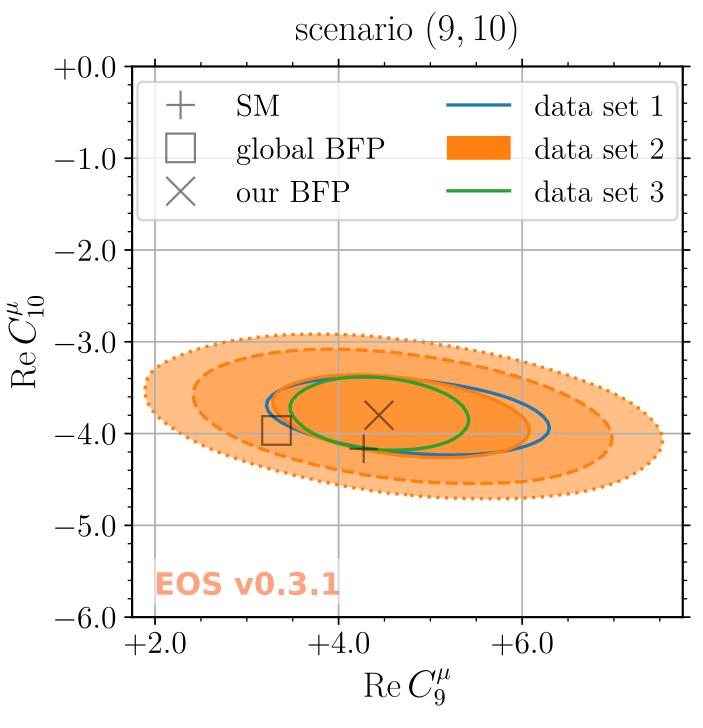
 $1 < q^2 < 6 \text{ GeV}^2$ $15 < P_A = 1$ $P_A = 1$ $P_A \neq 1$, scale $M_{11} - M_{34}$ by P_A



Obs.	Value	68% interval	Obs.	Value	68% interval
M_1	0.351	[0.349, 0.353]	M_6	0.187	[0.183, 0.192]
M_2	0.298	$\left[0.294, 0.301 ight]$	M_7	-0.022	[-0.025, -0.019]
M_3	-0.236	$\left[-0.240, -0.230 ight]$	M_8	-0.100	$\left[-0.105, -0.095 ight]$
M_4	-0.195	[-0.200, -0.190]	M_9	0.000	[0.000, 0.001]
M_5	-0.154	[-0.159, -0.149]	M_{10}	-0.001	$\left[-0.001, -0.000 ight]$
M_{11}	-0.064	[-0.069, -0.058]	M_{23}	-0.299	[-0.303, -0.295]
M_{12}	0.240	$\left[0.235, 0.245\right]$	M_{24}	0.337	$\left[0.335, 0.338\right]$
M_{13}	-0.292	$\left[-0.295, -0.288 ight]$	M_{25}	-0.001	[-0.001, -0.000]
M_{14}	0.034	$\left[0.031, 0.038\right]$	M_{26}	0.001	[0.000, 0.001]
M_{15}	-0.191	[-0.196, -0.186]	M_{27}	0.221	$\left[0.216, 0.226\right]$
M_{16}	0.151	[0.146, 0.156]	M_{28}	-0.187	[-0.191, -0.183]
M_{17}	0.102	[0.096, 0.107]	M_{29}	0.000	[0.000, 0.000]
M_{18}	0.021	[0.018, 0.024]	M_{30}	-0.001	[-0.001, -0.000]
M_{19}	0.000	[0.000, 0.000]	M_{31}	0.000	[0.000, 0.000]
M_{20}	-0.001	$\left[-0.001, -0.001 ight]$	M_{32}	-0.046	[-0.050, -0.043]
M_{21}	0.000	[0.000, 0.001]	M_{33}	-0.053	$\left[-0.056, -0.050 ight]$
M_{22}	-0.002	[-0.002, -0.001]	M_{34}	0.000	[0.000, 0.000]

 $15 < q^2 < 20 \text{ GeV}^2$ $P_A = 1$ 34 by P_A

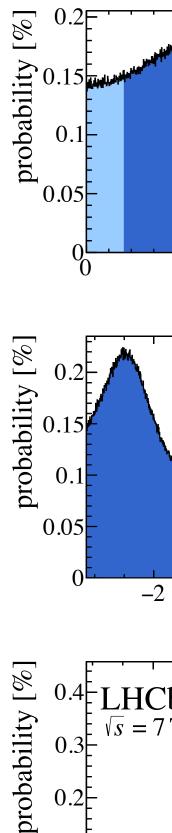
Latest measurement

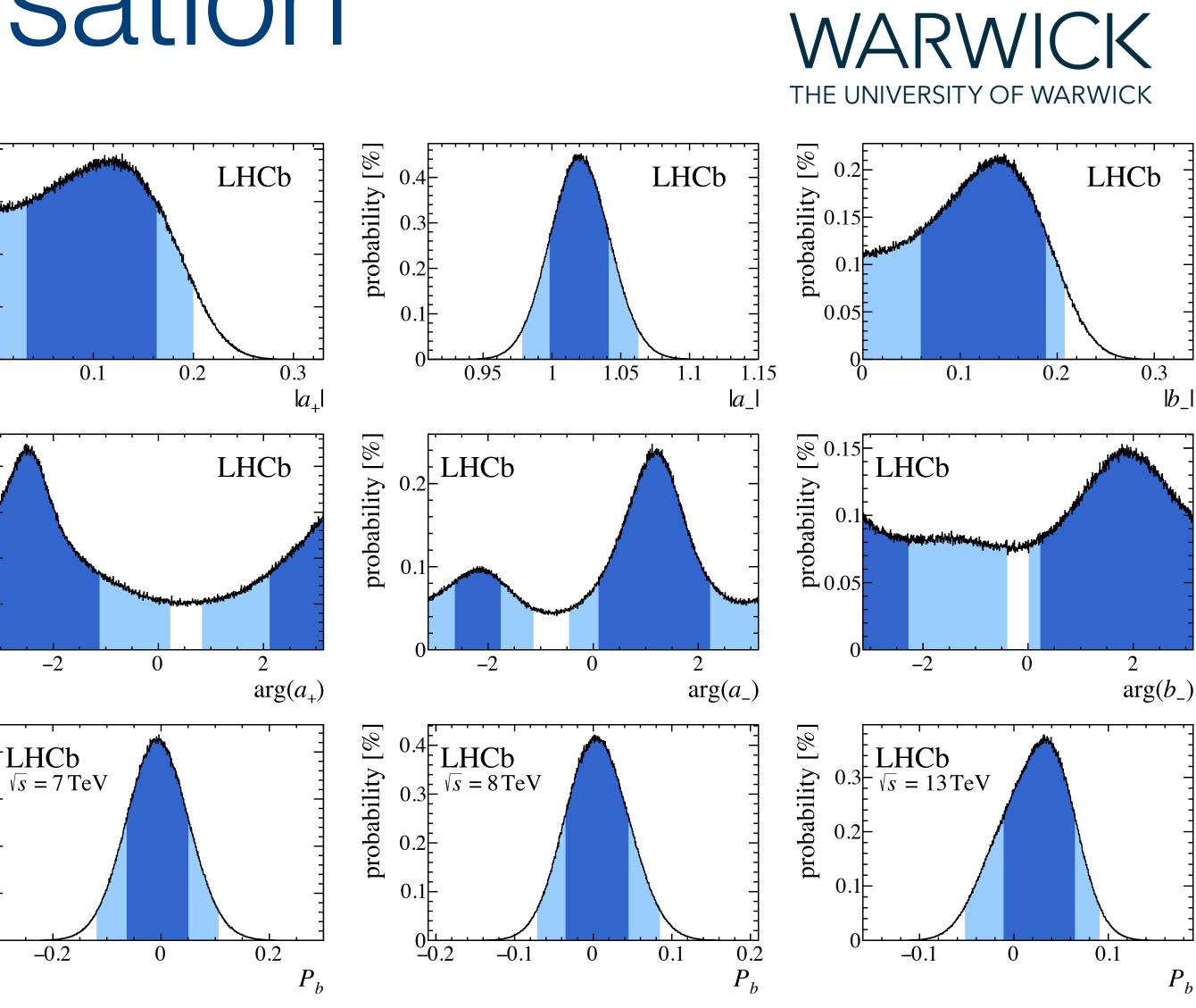

Well compatible with the SM Remaining observables compatible with zero


Global fit

- \blacktriangleright Uses just $\Lambda_b \rightarrow \Lambda \mu \mu$ observables and $B_s \rightarrow \mu \mu$ branching fraction
- as well as dedicated measurement with $\Lambda_b \rightarrow J/\psi \Lambda$

\rightarrow Interestingly it constrains production polarisation and Λ decay asymmetry

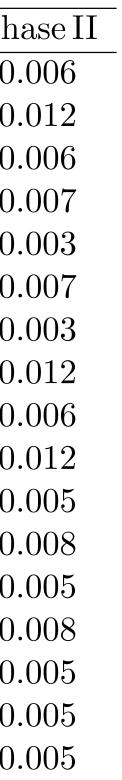



Production polarisation

- Measure angular moments in $\Lambda_b \rightarrow J/\psi \Lambda$ and then perform Bayesian analysis
- Uses same dataset as rare decays
- Polarisation consistent with zero without visible energy dependence

0.2

JHEP06(2020)110



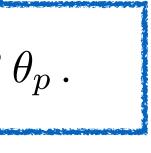
Future for $\Lambda_b \rightarrow \Lambda_{\mu\mu}$ When we did work on full $\frac{Ob}{M_1}$ distribution, we made crude M_2 estimate of precision at LHCb M_3 M_4 M_5 → $15 < q^2 < 20 \text{ GeV}^2$ M_6 M_7 Pure signal toys without any M_8 M_9 background M^{-} MM➡ Just scale yields from published M M^{-} numbers MM→ Will be able to measure Mprecisely, but many observables LHCb Phase II corresponds to give only small effect at LHC about 50k reconstructed events

CK THE UNIVERSITY OF WARWICK

-	_								
bs.	Run 1	$\operatorname{Run} 2$	Upgrade	PhaseII	Obs.	Run 1	$\operatorname{Run} 2$	Upgrade	Pha
l_1	0.021	0.011	0.004	0.002	M_{18}	0.071	0.038	0.014	0.
l_2	0.042	0.023	0.008	0.003	M_{19}	0.156	0.084	0.030	0.
l_3	0.030	0.016	0.006	0.002	M_{20}	0.071	0.038	0.014	0.
l_4	0.050	0.026	0.010	0.004	M_{21}	0.090	0.048	0.017	0.
l_5	0.078	0.042	0.015	0.006	M_{22}	0.041	0.022	0.008	0.
l_6	0.055	0.030	0.011	0.004	M_{23}	0.089	0.047	0.017	0.
l_7	0.090	0.048	0.017	0.007	M_{24}	0.036	0.019	0.007	0.
l_8	0.041	0.022	0.008	0.003	M_{25}	0.156	0.083	0.030	0.
l_9	0.090	0.048	0.017	0.007	M_{26}	0.071	0.038	0.014	0.
l_{10}	0.041	0.022	0.008	0.003	M_{27}	0.156	0.083	0.030	0.
l_{11}	0.051	0.027	0.010	0.004	M_{28}	0.071	0.038	0.014	0.
I_{12}	0.078	0.041	0.015	0.006	M_{29}	0.097	0.052	0.019	0.
I_{13}	0.054	0.029	0.010	0.004	M_{30}	0.062	0.033	0.012	0.
l_{14}	0.088	0.047	0.017	0.007	M_{31}	0.097	0.052	0.019	0.
l_{15}	0.136	0.073	0.026	0.011	M_{32}	0.062	0.033	0.012	0.
I_{16}	0.097	0.052	0.019	0.008	M_{33}	0.061	0.033	0.012	0.
I_{17}	0.156	0.084	0.030	0.012	M_{34}	0.061	0.033	0.012	0.

$\Lambda_b \rightarrow p K \mu \mu details$

- → 1D distribution in θ_1 has usual form, K_2 generates lepton A_{FB}
 - Usual contributions, just adds //* helicity 3/2 in addition to 1/2
- → 1D distribution in θ_p gets larger number of terms
 - Includes odd terms in cos θ_p which vanish for single resonance
 - With interference, A_{FB} generated also on hadron side with K_4 , K_{10} and K_{16} contributing


$$\frac{\mathrm{d}^3\Gamma}{\mathrm{d}q^2\,\mathrm{d}m_{pK}\,\mathrm{d}\cos\theta_\ell} = \frac{\sqrt{3}}{2}K_1 + \frac{3}{2}K_2\cos\theta_\ell + \frac{\sqrt{15}}{4}K_3(3\cos^2\theta_\ell)$$

$$\frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}q^{2}\,\mathrm{d}m_{pK}\,\mathrm{d}\cos\theta_{p}} = \frac{\sqrt{3}}{2}K_{1} - \frac{\sqrt{15}}{4}K_{7} + 9\frac{\sqrt{3}}{16}K_{13} \\ + \left(\frac{3}{2}K_{4} - 3\frac{\sqrt{21}}{4}K_{10} + 15\frac{\sqrt{33}}{16}K_{16}\right)\mathrm{c}^{2} + \left(3\frac{\sqrt{15}}{4}K_{7} - 45\frac{\sqrt{3}}{8}K_{13}\right)\mathrm{cos}^{2}\theta_{p} \\ + \left(5\frac{\sqrt{21}}{4}K_{10} - 35\frac{\sqrt{33}}{8}K_{16}\right)\mathrm{cos}^{3}\theta_{p} \\ + \frac{105\sqrt{3}}{16}K_{13}\mathrm{cos}^{4}\theta_{p} + \frac{63\sqrt{33}}{16}K_{16}\mathrm{cos}^{5}\mathrm{cs}^{4}\mathrm{cs}^$$

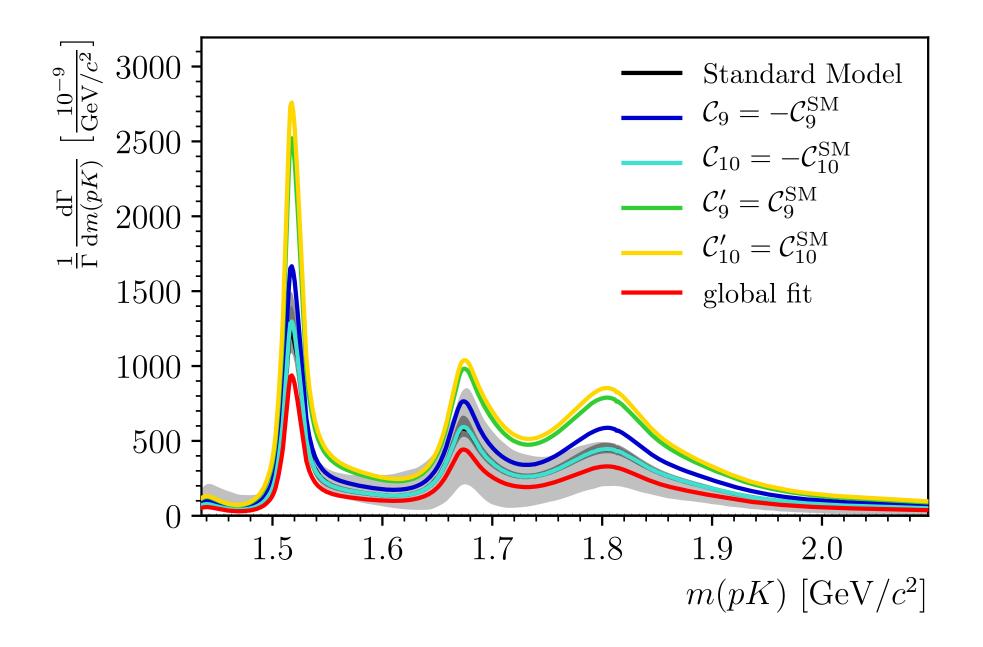
Numerical studies

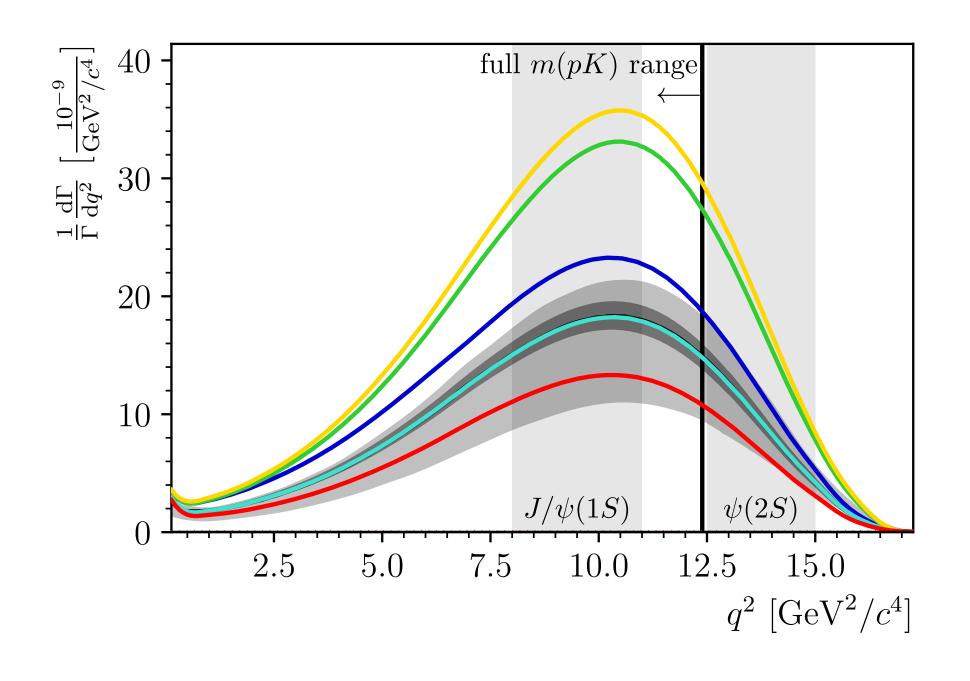
- ➡ Use SM Wilson coefficients used in <u>JHEP 05 (2013) 137</u>
- Most of the resonances modelled by relativistic Breit-Wigner
- \rightarrow Λ (1405) uses Flattè model
- Investigated scenarios:
 - \rightarrow Flip C₉/C₁₀ or add right C₉'/C₁₀'
 - Global fit in Eur. Phys. J. C 82 (2022) <u>326</u>

M/CK/FRSITY OF WARWICK

Use all well established states for which prediction for form-factors exists Form-factors based on quark-model from Int. J. Mod. Phys. A 30 (2015) 1550172

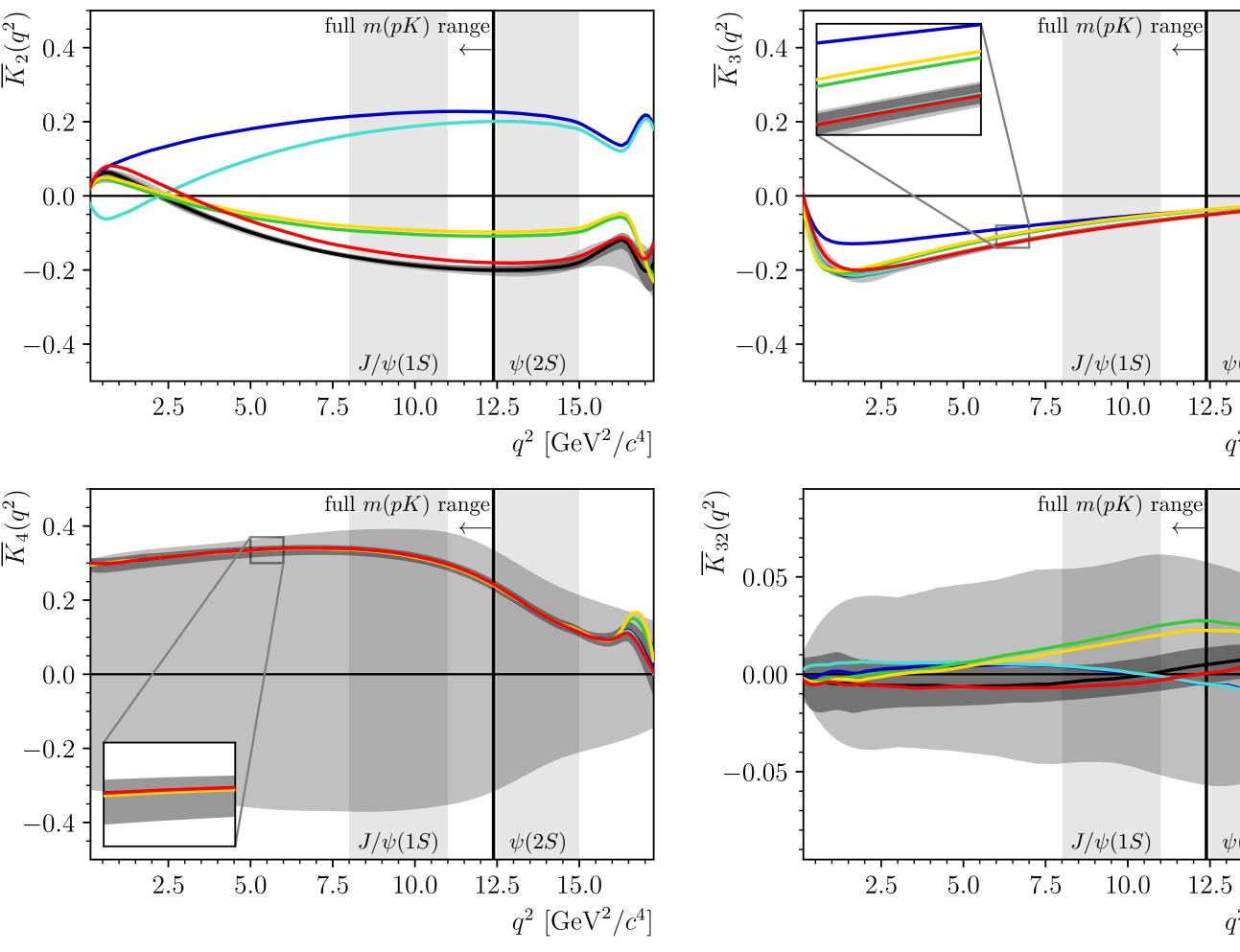
resonance	$\mid m_{\Lambda} \; [{ m GeV} / c^2 \;]$	$\Gamma_{\Lambda} \; [{ m GeV} / c^2 \;]$	$2J_{\Lambda}$	P_{Λ}	$\mathcal{B}(\Lambda \to N\overline{K})$
$\Lambda(1405)$	1.405	0.051	1	—	0.50
$\Lambda(1520)$	1.519	0.016	3		0.45
$\Lambda(1600)$	1.600	0.200	1	+	0.15 - 0.30
$\Lambda(1670)$	1.674	0.030	1		0.20 - 0.30
$\Lambda(1690)$	1.690	0.070	3		0.20 - 0.30
$\Lambda(1800)$	1.800	0.200	1		0.25 - 0.40
$\Lambda(1810)$	1.790	0.110	1	+	0.05 - 0.35
$\Lambda(1820)$	1.820	0.080	5	+	0.55 - 0.65
$\Lambda(1890)$	1.890	0.120	3	+	0.24 - 0.36
$\Lambda(2110)$	2.090	0.250	5	+	0.05 - 0.25

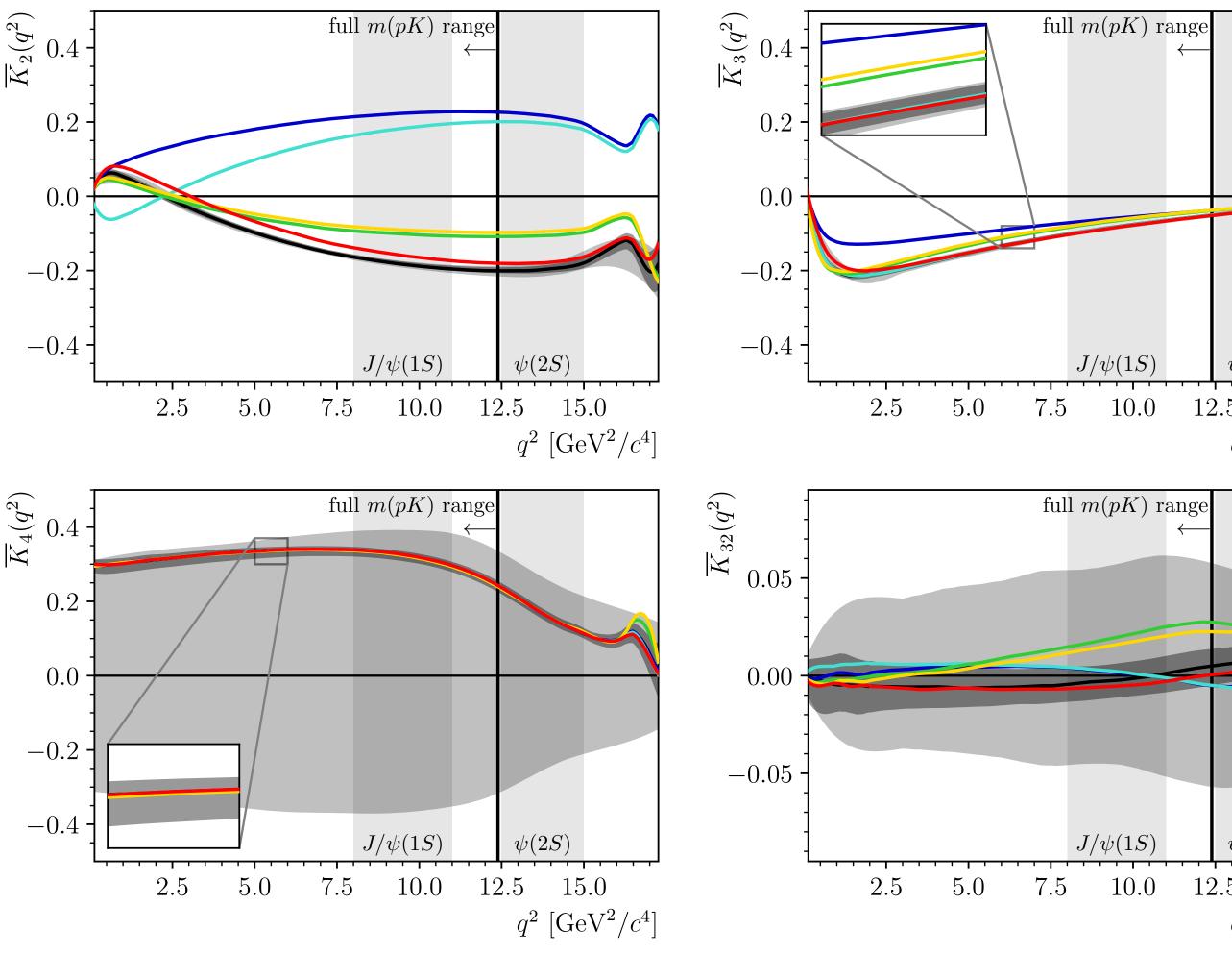


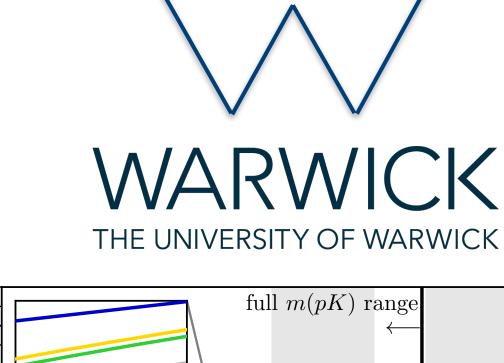

Ensemble of resonances

- \rightarrow Strong phases of all Λ resonances set to 0 ($\pi/2$ at the pole)

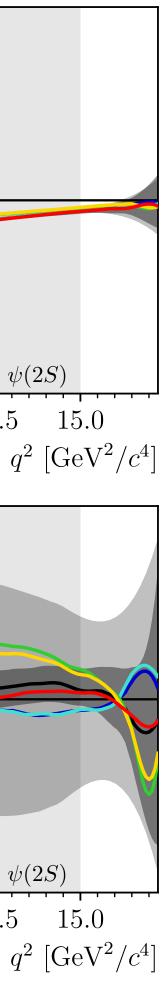
\rightarrow Investigate sensitivity of observables with ensemble of different Λ resonances \rightarrow Additional uncertainty from strong phases by varying them between $-\pi$ and π






Ensemble of resonances

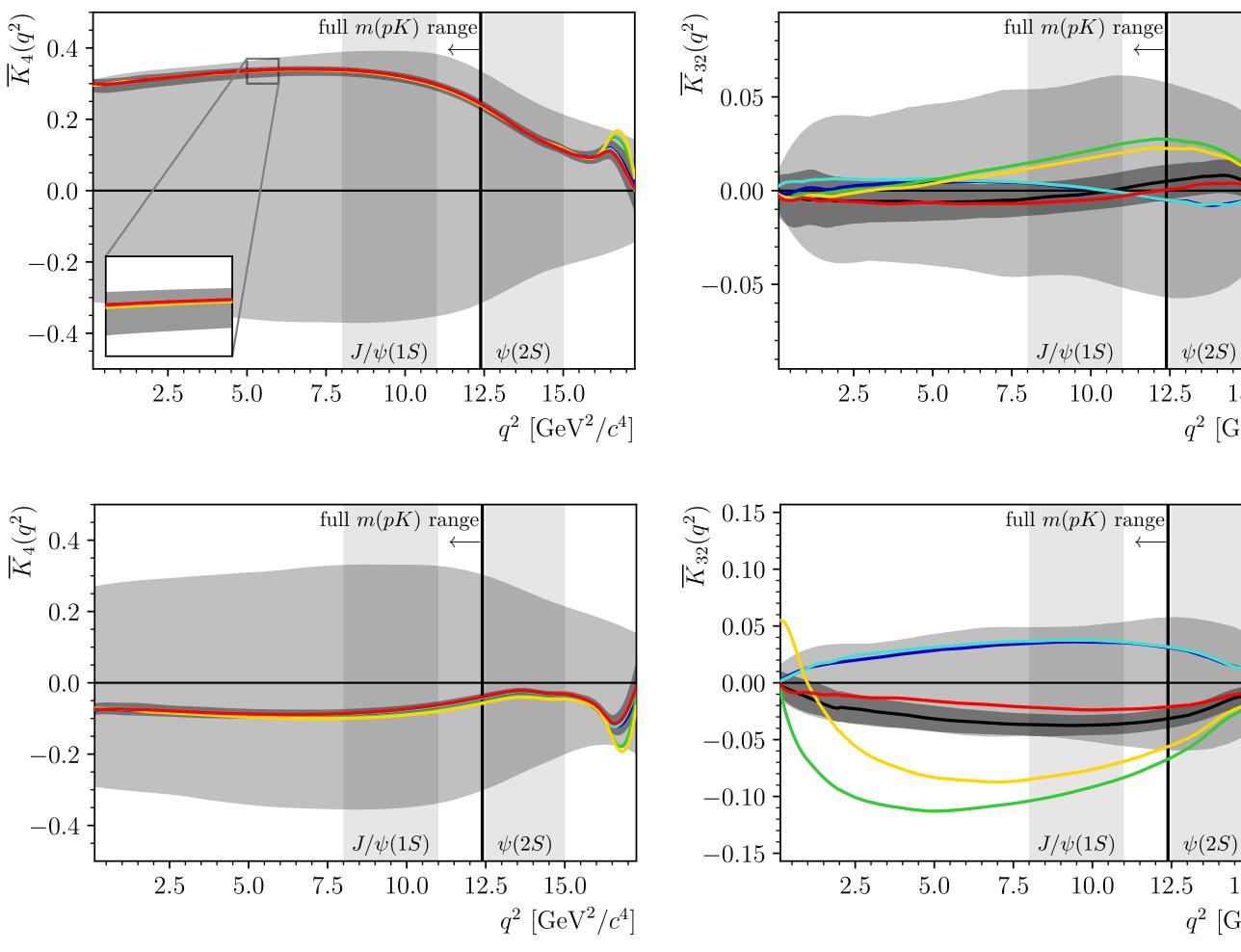
- Some cases give good sensitivity to new physics without effects from strong phases
- \blacktriangleright Some observables like K_4 has little sensitivity to new physics, but large effect from strong phases

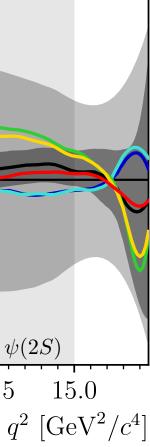

 \rightarrow Several observables like K_{32} sensitive to new physics but require knowledge of strong phases

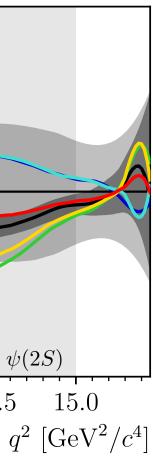
Ensemble of resonances

- Particular example of effect of strong phases
- Set strong phase of spin-3/2 resonances to π while keeping rest to 0
- \blacktriangleright Very large effects on K_4 and K_{32}
 - K_{32} shows significantly different behaviour
- ➡ We have all ingredients but as polarisation at LHCb is small, we never looked into details

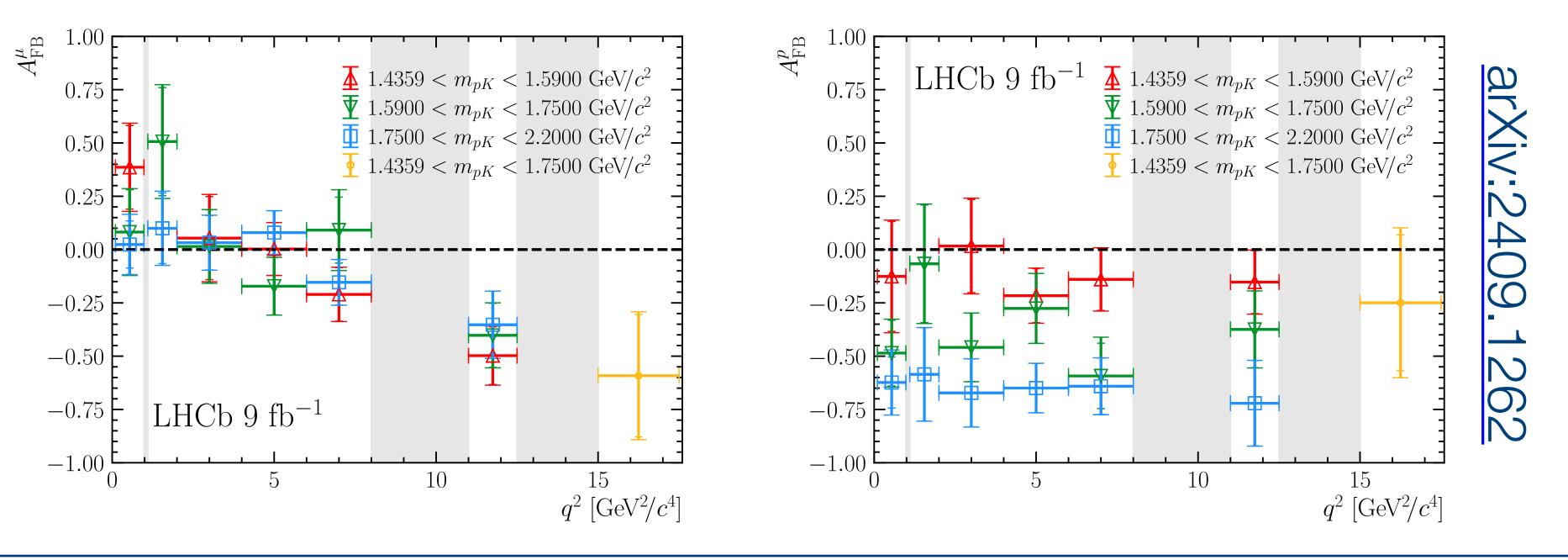
0.2


-0.2


-0.4


 $\overline{K}_4(q^2)$ 0.2

0.0



$\Lambda_b \rightarrow p K \mu \mu$ measurement

- Unpolarised observables measured at LHCb with Runs 1 and 2 data
- Interpretation is not trivial without detailed understanding of hadronic contributions
- But interference of various resonances introduces more observables

Summary

- \rightarrow There is interesting physics to be extracted from rare Λ_b decays
- \blacktriangleright With 10¹² Z bosons we expect about 15k decays for BF 10⁻⁶
- Size of the sample will likely be smaller than ultimate LHCb sample
- \rightarrow But with polarisation possibly being about 0.5 (10 times of that at LHCb), there is possibility to complement LHCb measurements
 - Larger uncertainty, but also on 10 times larger effect
 - Assumes that the polarisation axis does not align to make relevant terms zero
- There might be other interesting options with higher BF decays, but generally there are not many studies done
 - People interested will likely need to do work to understand whether polarisation brings benefits

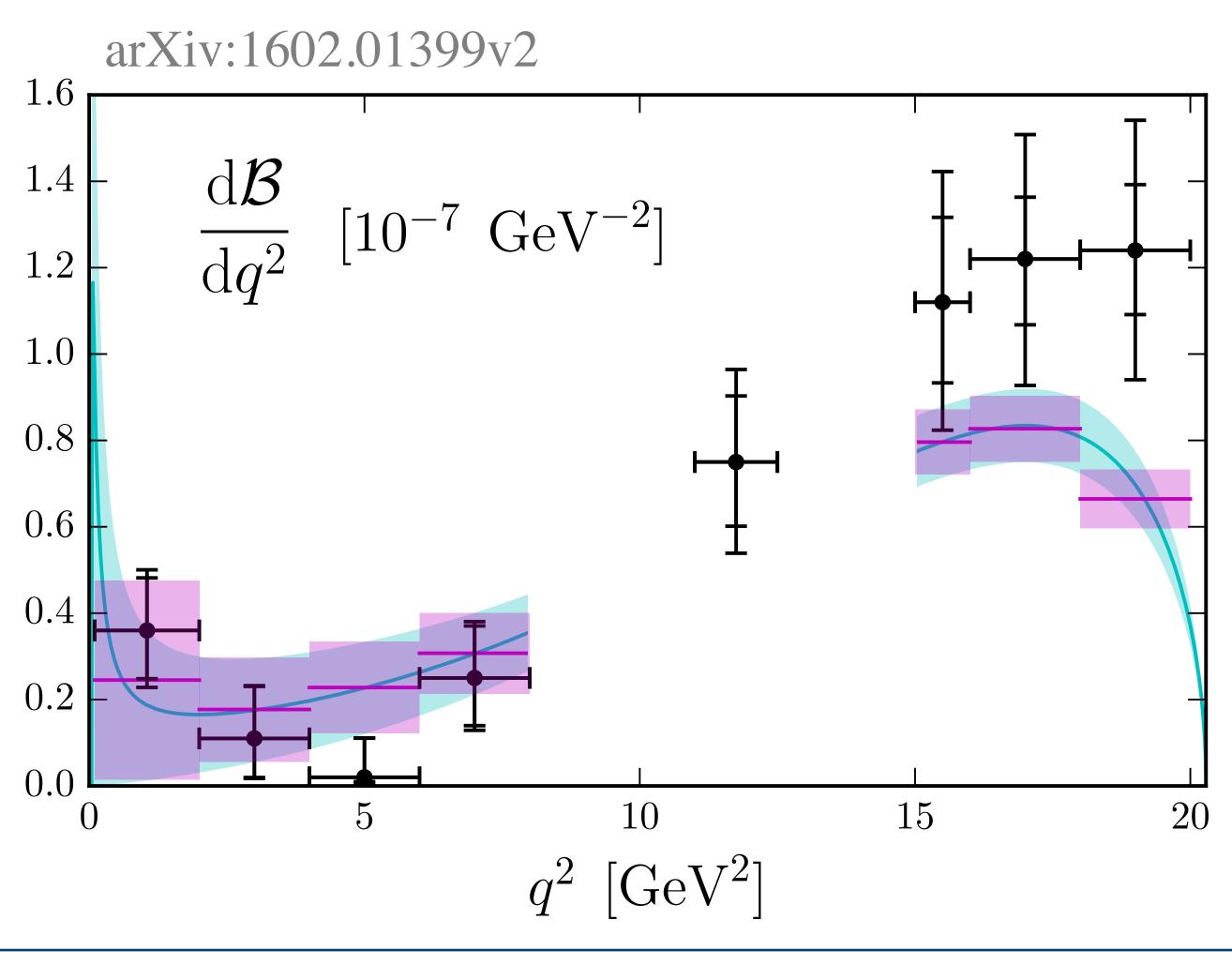
Summary

- Tom Blake and myself would be interested to look into question what can be gained by $10^{12} Z$ decays, but currently do not have enough bandwidth to do study on our own
 - Anja Beck who did lot on $\Lambda_b \rightarrow p K \mu \mu$ is still in physics and she might do some work on this, but again, not as a main work
- \rightarrow One should work out how well one can do measurement at Z pole and also look what impact such measurement would have
- If somebody is interested, get in touch we can discuss some collaboration to look into these questions

Backup

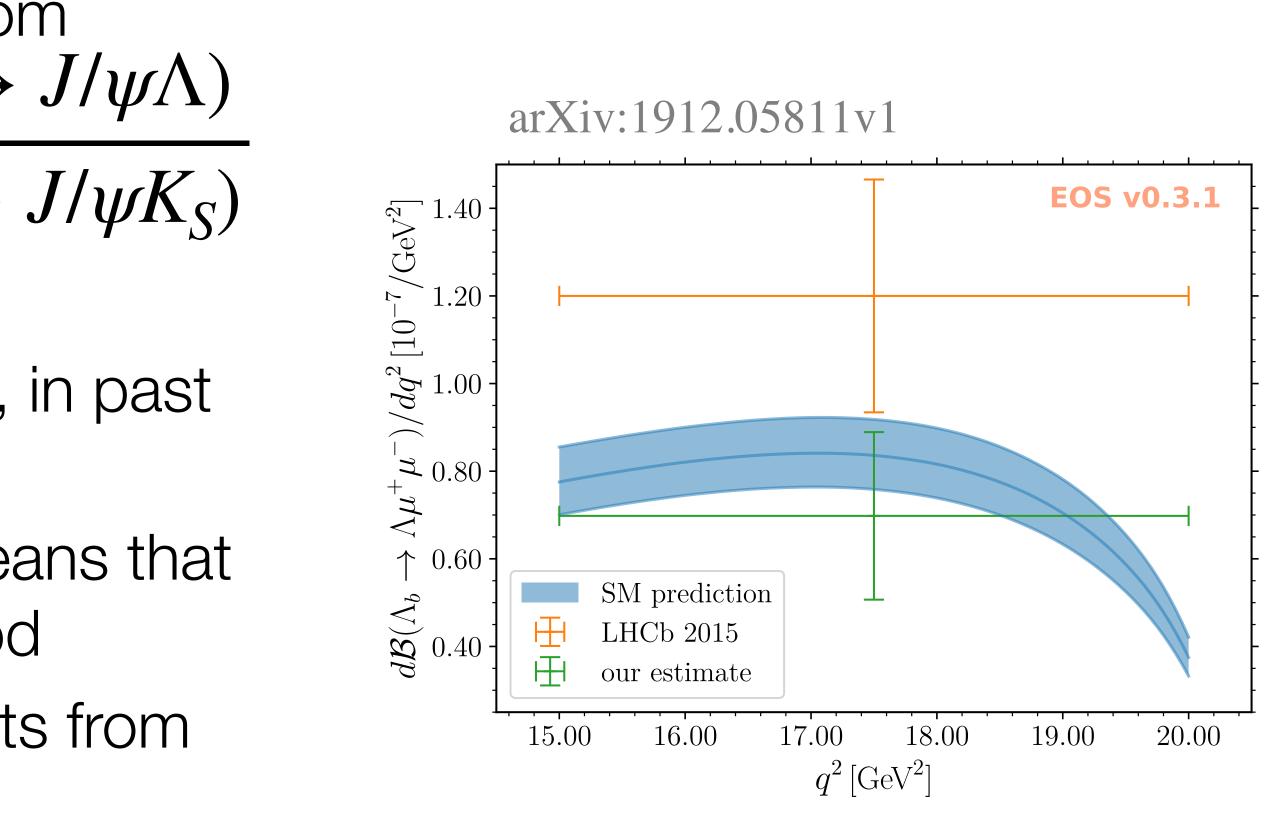
Why $\Lambda_b \rightarrow \Lambda \mu \mu$

- Provides rich angular structure thanks to non-zero spin of initial state \rightarrow Λ baryon is very long lived and can be easily treated as stable particle in
- calculations
- Both experimentally and theoretically very clean from any interference and backgrounds
- If produced polarised, it offers access to information not available with mesons
- \rightarrow Con: Long \wedge lifetime decreases detection efficiency, so statistics is usually smaller than similar meson decays



Differential branching fraction

- Measured at LHCb with Run 1 data
- Theory prediction is currently more precise than experiment
- Experimentally measured relative to $\Lambda_b \rightarrow J/\psi \Lambda$ for which we do not have good BF
- \rightarrow No significant signal below J/ψ yet



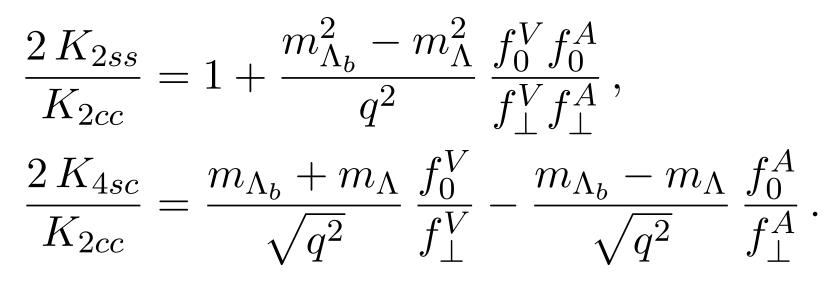
Experimental normalisation

- → Measurements for $\Lambda_b \to J/\psi \Lambda$ come from Tevatron which measured $\frac{f_{\Lambda}}{f_d} \frac{B(\Lambda_b \to J/\psi \Lambda)}{B(B^0 \to J/\psi K_S)}$
- Best number comes from D0
- One needs also fragmentation fraction, in past one would average LEP and Tevatron
- But there is pT dependence, which means that averaging LEP and Tevatron is not good
- ➡ Needs measurement of both ingredients from same experiment \Rightarrow ongoing at LHCb

Angular distributions

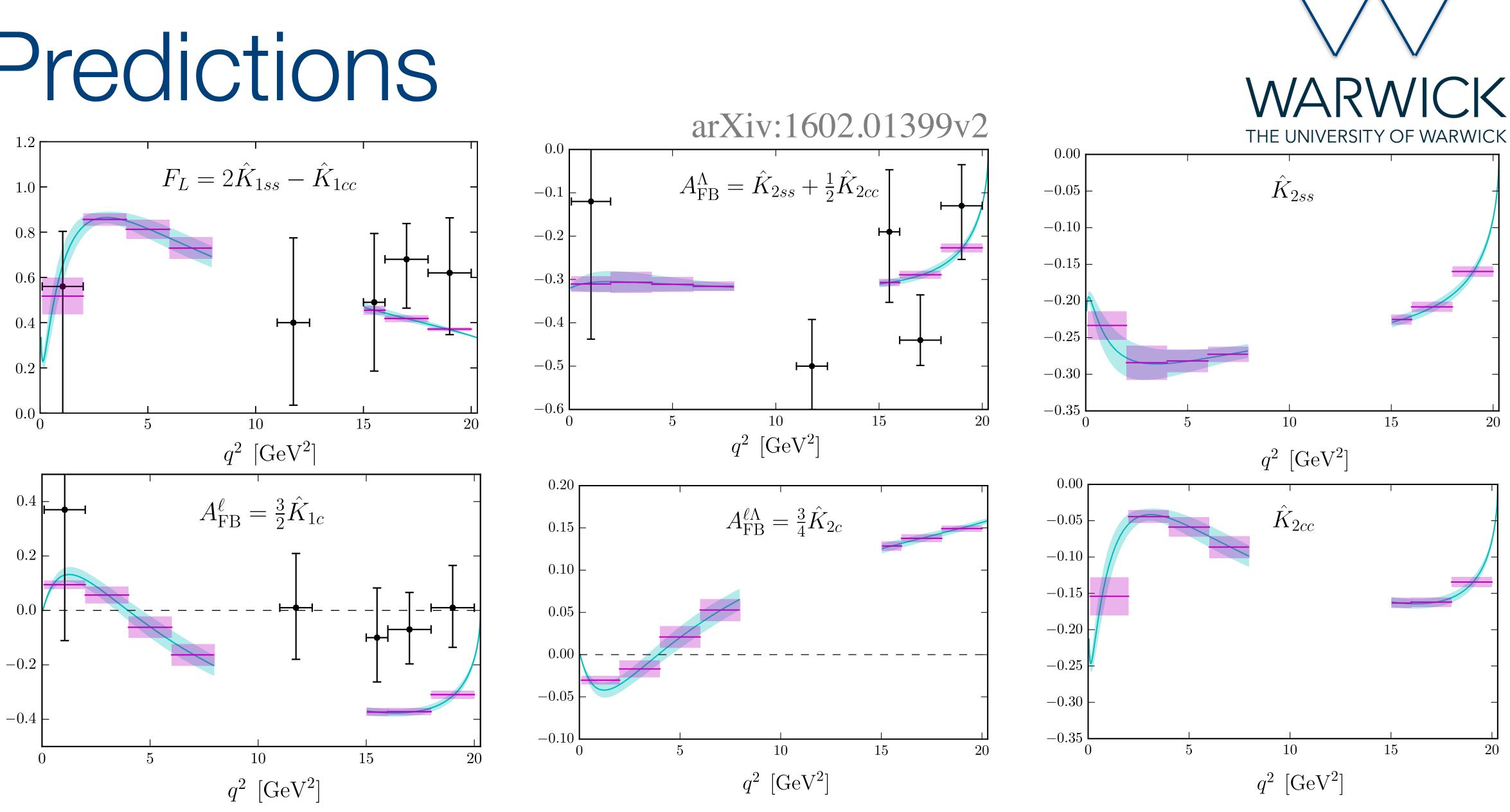
- Up to some constants, angular distribution in unpolarised case is $K(q^2, \cos\theta_\ell, \cos\theta_\Lambda, \phi) = \left(K_{1ss}\sin^2\theta_\ell + K_{1cc}\cos^2\theta_\ell + K_{1c}\cos\theta_\ell\right)$ + $(K_{2ss}\sin^2\theta_{\ell} + K_{2cc}\cos^2\theta_{\ell} + K_{2c}\cos\theta_{\ell})\cos\theta_{\Lambda}$ + $(K_{3sc}\sin\theta_{\ell}\cos\theta_{\ell} + K_{3s}\sin\theta_{\ell})\sin\theta_{\Lambda}\sin\phi$ + $(K_{4sc}\sin\theta_{\ell}\cos\theta_{\ell} + K_{4s}\sin\theta_{\ell})\sin\theta_{\Lambda}\cos\phi$.
- Specific features :
 - We can still define fraction of longitudinally polarised dilepton system There is non-zero hadron side forward-backward asymmetry thanks to weak decay of Λ with significant differences between two amplitudes $\alpha_{\Lambda} = \dots$

One can also construct combined forward-backward asymmetry

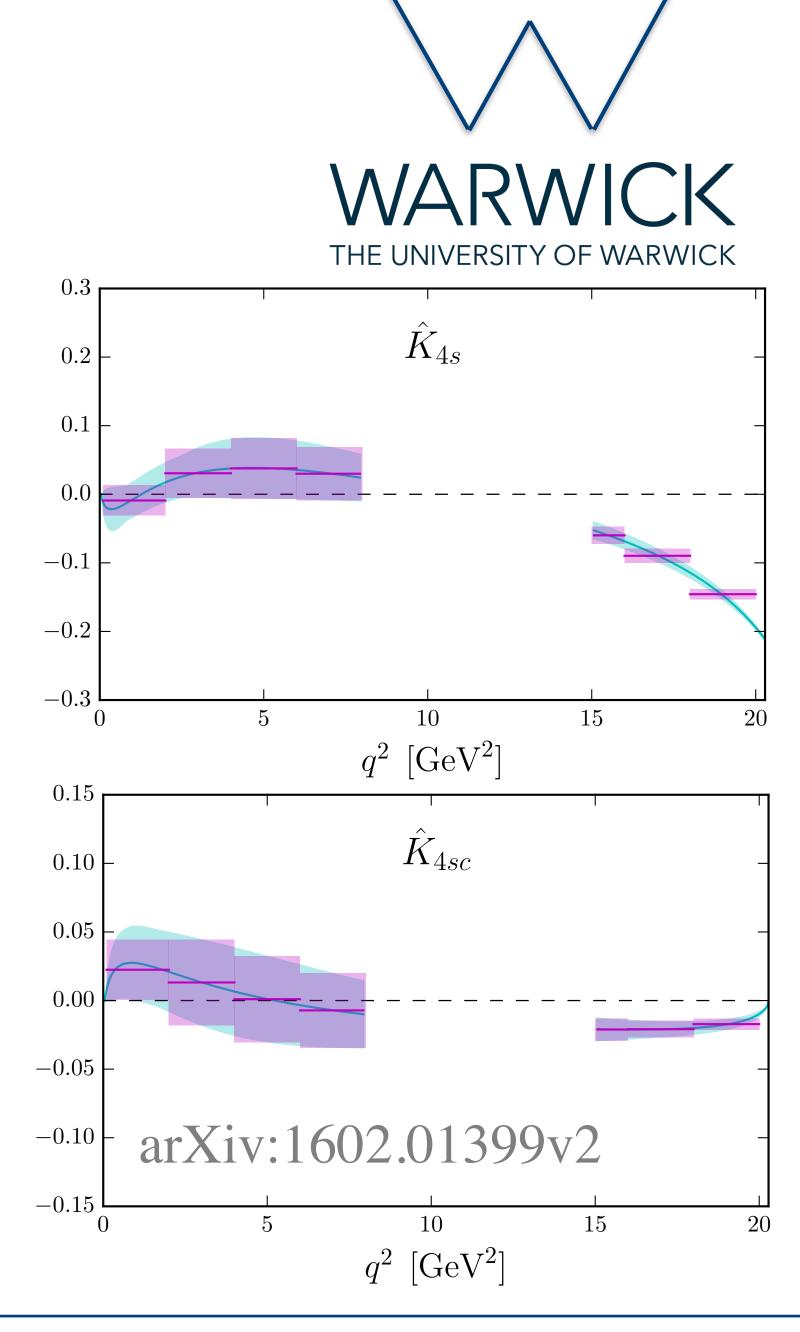


Angular distributions

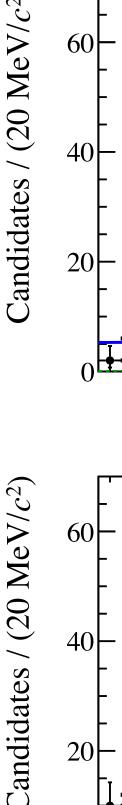
- One can take ratios of observables order are sensitive only to:
 - Form factors

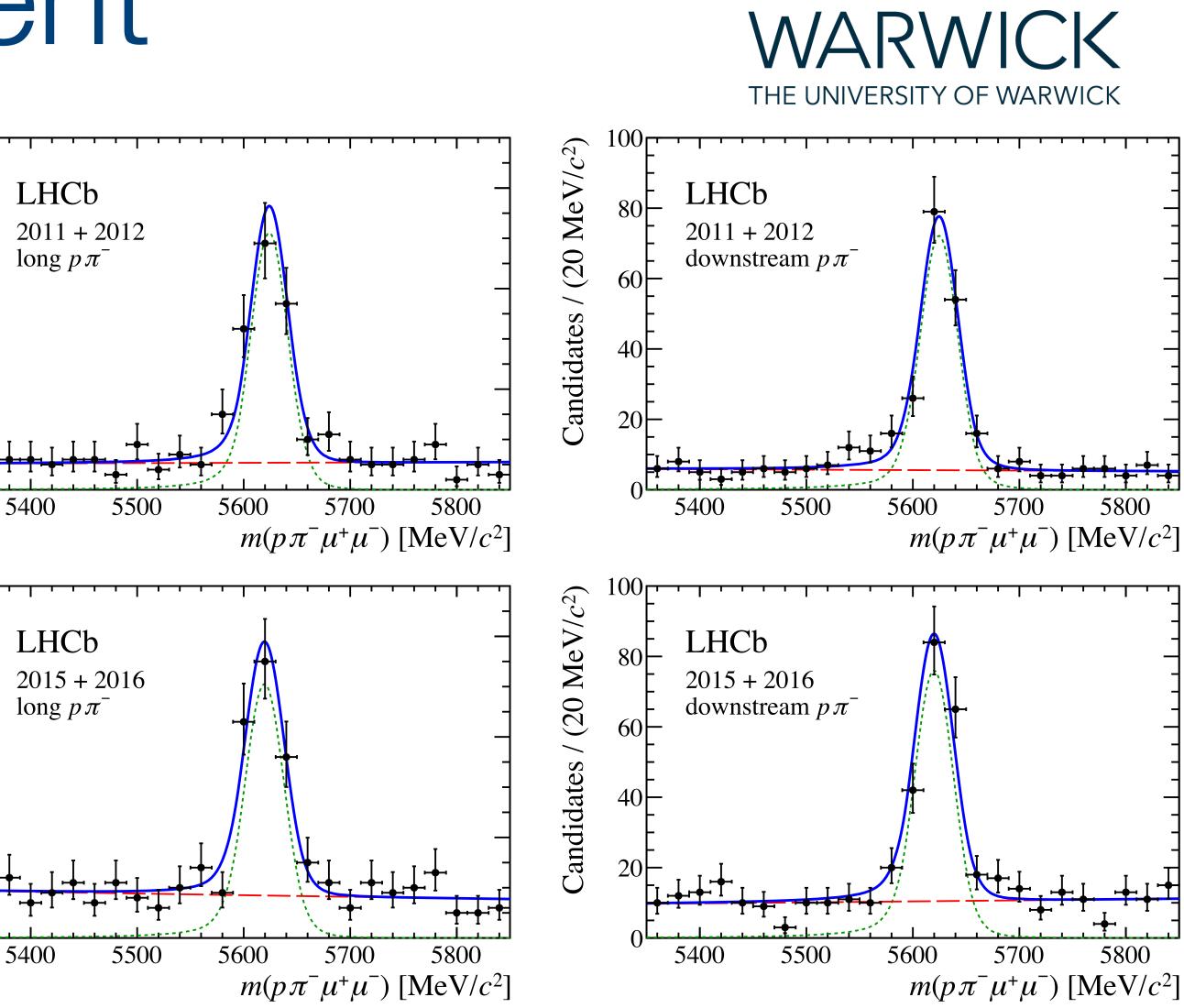

Short-scale physics
$$X_1 \equiv \frac{K_{1c}}{K_{2cc}} = -\frac{\operatorname{Re} \{\rho_2\}}{\alpha \operatorname{Re} \{\rho_4\}},$$

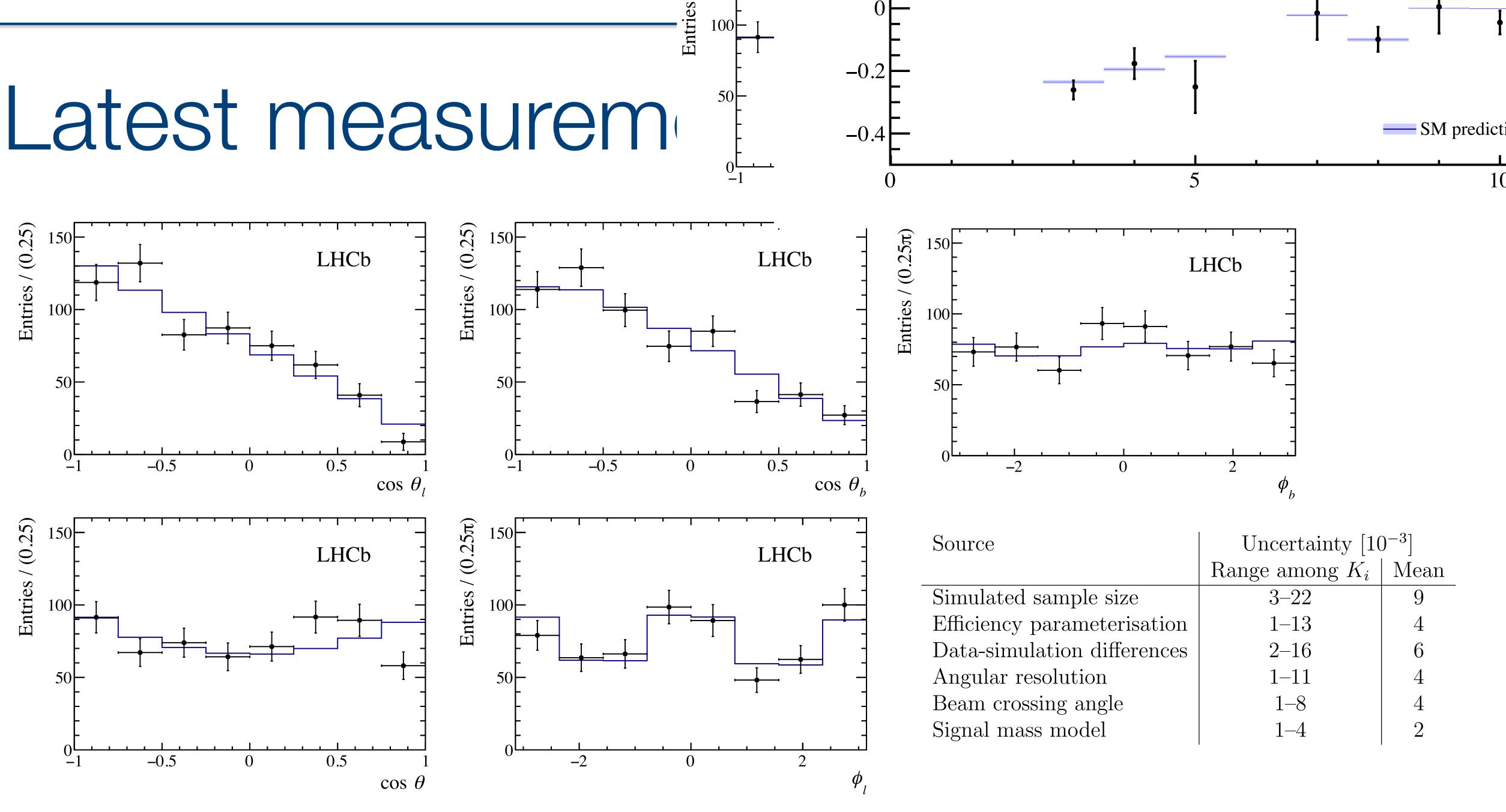
One can take ratios of observables to construct quantities which in first


Predictions

Predictions


- Predictions are generally reasonably precise Measurements on these plots come from very early analysis when we were figuring out what we should be actually doing
- With Tom Blake we extended work to polarised case, which adds another 24 observables
 - 10 have same structure as unpolarised case, just being multiplied by production polarisation
 - 14 are proportional to production polarisation and give access to more information



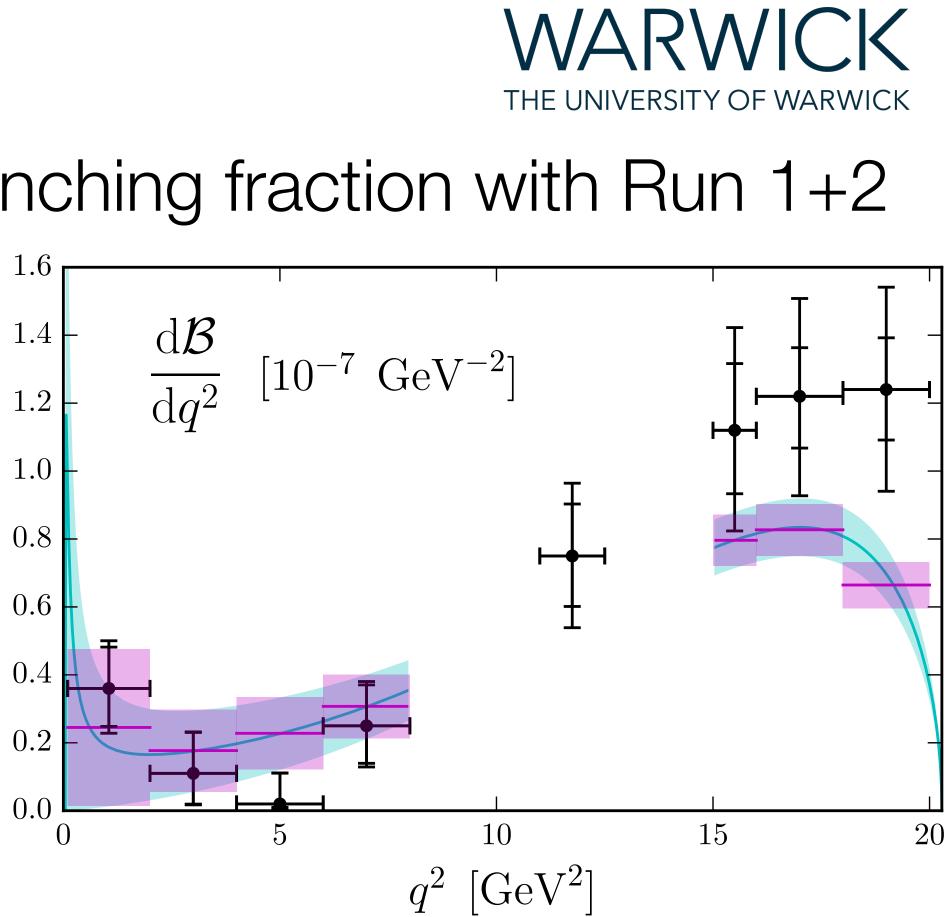

Latest measurement

- Uses Run 1 and part of Run 2 data from LHCb
- Measured only 15 < q² < 20
 GeV² bin as this is the only one having significant yield
- About 610 signal decays
- Used method of moments
 - Luckily, otherwise would run to troubles with value of α_A

How to get polarised sample

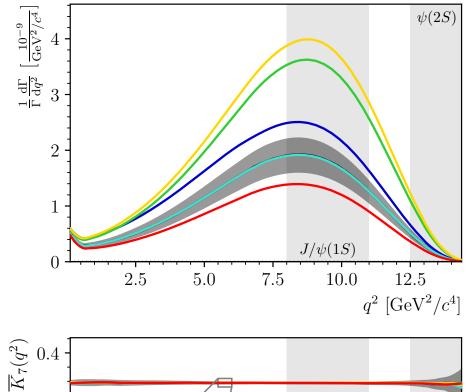
- ➡ If there is enough interest in observables accessible only with polarisation, we can try to play some tricks
 - \diamond We measured polarisation only integrated over large η - p_T region, but it does not have to be constant
 - \diamond One can look for Λ_b coming from decays which itself could introduce polarisation • Obvious choice for LHCb would be Σ_b^* but my intuition is that it will not help

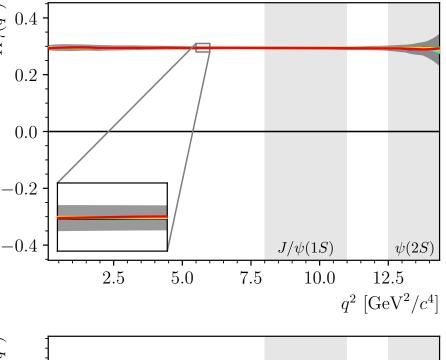
 - \bullet Top quark decays might be interesting, W in such case is polarised and so would be b-quark, this would be more suitable for ATLAS and CMS
- Each idea would need dedicated study whether it would work
- Each idea would mean lower statistics, on the other hand, one does not need to do all observables

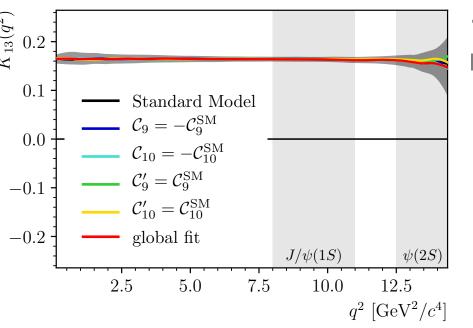

What to expect

- data
- \rightarrow Good chance to see signal in more q^2 bins, we have about 4 times more data in Run 2
- Not yet clear what we can do with angular observables below J/ψ
- Want to look back to polarisation measurement to see whether there is at least some indication of non-zero polarisation somewhere

\rightarrow LHCb is working on update of $\Lambda_b \rightarrow \Lambda_{\mu\mu}$ branching fraction with Run 1+2

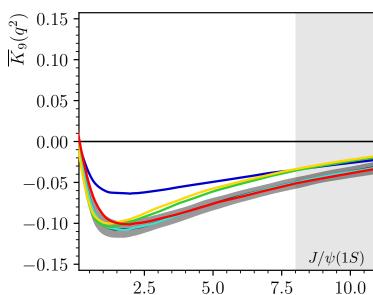


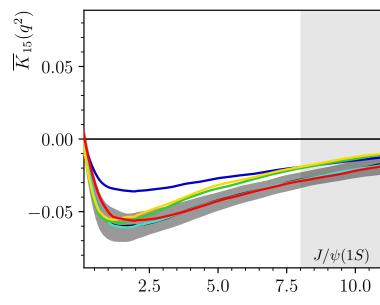


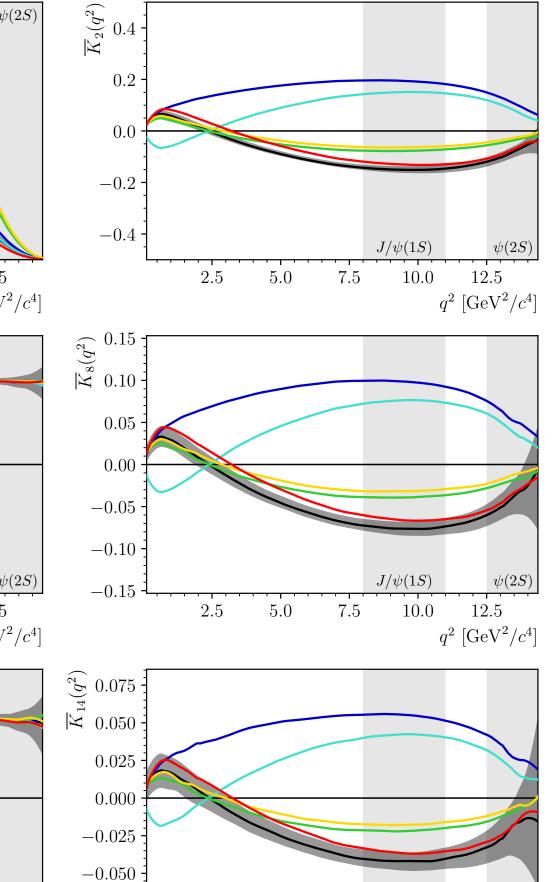


Isolated spin 5/2 resonance

- \rightarrow Only isolated $\Lambda(1820)$
- Grey band shows uncertainty from:
 - Form-factor
 - Widths etc.
 - Non-factorisable corrections
- Often need rather large change in Wilson coefficients for effects larger than uncertainties


WARWICK THE UNIVERSITY OF WARWICK




5.0

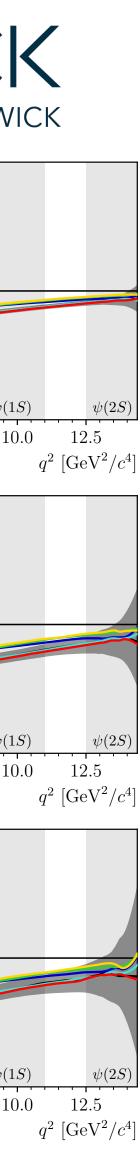
2.5

7.5

 $J/\psi(1S)$

10.0

5.0 7.5


2.5

 $\psi(2S)$

12.5

 $q^2 \; [\mathrm{GeV}^2/c^4]$

-0.075

Helicity amplitudes

$$\mathcal{H}^{\Lambda,7^{(\prime)}}_{\lambda_{\Lambda},\lambda_{V}}(q^{2},m_{pK}) = -\frac{2m_{b}}{q^{2}}\frac{\mathcal{C}^{\text{eff}}_{7^{(\prime)}}}{2} e^{i\delta_{\Lambda}} \left(H^{\Lambda,T}_{\lambda_{\Lambda},\lambda_{V}} \mp H^{\Lambda,T5}_{\lambda_{\Lambda},\lambda_{V}}\right)$$
$$\mathcal{H}^{\Lambda,9^{(\prime)}}_{\lambda_{\Lambda},\lambda_{V}}(q^{2},m_{pK}) = \frac{\mathcal{C}^{\text{eff}}_{9^{(\prime)}}}{2} e^{i\delta_{\Lambda}} \left(H^{\Lambda,V}_{\lambda_{\Lambda},\lambda_{V}} \mp H^{\Lambda,A}_{\lambda_{\Lambda},\lambda_{V}}\right)$$
$$\mathcal{H}^{\Lambda,10^{(\prime)}}_{\lambda_{\Lambda},\lambda_{V}}(q^{2},m_{pK}) = \frac{\mathcal{C}^{\text{eff}}_{10^{(\prime)}}}{2} e^{i\delta_{\Lambda}} \left(H^{\Lambda,V}_{\lambda_{\Lambda},\lambda_{V}} \mp H^{\Lambda,A}_{\lambda_{\Lambda},\lambda_{V}}\right)$$

$$H^{\Lambda,\Gamma^{\mu}}_{\lambda_{\Lambda},\lambda_{V}} = \varepsilon^{*}_{\mu}(\lambda_{V}) \langle \Lambda | \bar{s} \Gamma \rangle$$

 $\langle \Lambda | \bar{s} \Gamma^{\mu} b | \Lambda_b^0 \rangle = \bar{u}(k, \lambda_\Lambda) \left[X_{\Gamma 1}(q^2) \gamma^{\mu} + X_{\Gamma 2}(q^2) \gamma^{\mu} + X_$ $\langle \Lambda | \bar{s} \Gamma^{\mu} b | \Lambda_b^0 \rangle = \bar{u}_{\alpha}(k, \lambda_{\Lambda}) \left[v_p^{\alpha} \left(X_{\Gamma 1}(q^2) \gamma^{\mu} + X_{\Gamma 2}(q^2) v_p^{\mu} + X_{\Gamma$ $\langle \Lambda | \bar{s} \Gamma^{\mu} b | \Lambda_b^0 \rangle = \bar{u}_{\alpha\beta}(k, \lambda_\Lambda) v_p^{\alpha} \left[v_p^{\beta} \left(X_{\Gamma 1}(q^2) \gamma^{\mu} \right) \right]$

 $\Gamma^{\mu}b|\Lambda^0_b\rangle$

$$\begin{aligned} & \left[x_{1}^{2} \right] v_{p}^{\mu} + X_{\Gamma 3}(q^{2}) v_{k}^{\mu} \right] u(p, \lambda_{b}) & \text{Spin 1/2} \\ & + X_{\Gamma 3}(q^{2}) v_{k}^{\mu} \right] + X_{\Gamma 4}(q^{2}) g^{\alpha \mu} u(p, \lambda_{b}) & \text{Spin 3/2} \\ & + X_{\Gamma 2}(q^{2}) v_{p}^{\mu} + X_{\Gamma 3}(q^{2}) v_{k}^{\mu} \\ & + X_{\Gamma 4}(q^{2}) g^{\beta \mu} \right] u(p, \lambda_{b}) \,. & \text{Spin 5/2} \end{aligned}$$

Amplitude combinations

i	parity combination	$J_{\Lambda} + J'_{\Lambda}$	$\sin 1/2$	gle sta $3/2$		Re/Im	V/A	helicity combinations	Eq.
1	same	≥ 1	\checkmark	\checkmark	\checkmark	Re		$J_{\Lambda} = J'_{\Lambda}, (\lambda_{\Lambda}, \lambda_{V}) = (\lambda_{\Lambda}, \lambda_{V})'$	(62)
2	same	≥ 1	\checkmark	\checkmark	\checkmark	Re	\checkmark	$J_{\Lambda} = J'_{\Lambda}, \lambda_V \neq 0, \ (\lambda_{\Lambda}, \lambda_V) = (\lambda_{\Lambda}, \lambda_V)'$	(63)
3	same	≥ 1	\checkmark	\checkmark	\checkmark	Re		$J_{\Lambda} = J'_{\Lambda}, (\lambda_{\Lambda}, \lambda_{V}) = (\lambda_{\Lambda}, \lambda_{V})'$	(64)
4	opposite	≥ 1				Re		$(\lambda_{\Lambda}, \lambda_{V}) = (\lambda_{\Lambda}, \lambda_{V})'$	(66)
5	opposite	≥ 1				Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$	(117)
6	opposite	≥ 1				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(118)
7	same	≥ 2		\checkmark	\checkmark	Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(119)
8	same	≥ 2		\checkmark	\checkmark	Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$	(120)
9	same	≥ 2		\checkmark	\checkmark	Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(121)
10	opposite	≥ 3				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(122)
11	opposite	≥ 3				Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$	(123)
12	opposite	≥ 3				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(124)
13	same	≥ 4			\checkmark	Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(125)
14	same	≥ 4			\checkmark	Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$	(126)
15	same	≥ 4			\checkmark	Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$	(127)
16	opposite	≥ 5				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(128)
17	opposite	≥ 5				Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$	(129)
18	opposite	≥ 5				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(130)

Amplitude combinations

19	opposite	≥ 1			Re			(131
20	opposite	≥ 1			Re	\checkmark		(132)
21	same	≥ 2	\checkmark	\checkmark	Re			(133)
22	same	≥ 2	\checkmark	\checkmark	Re	\checkmark		(134)
23	opposite	≥ 3			Re		$\mathbf{v} = (\mathbf{v} + \mathbf{v} +$	(135)
24	opposite	≥ 3			Re	\checkmark	$\lambda_V = 0, \lambda'_V = 1$ (all possible $\lambda_{\Lambda}^{(\prime)}$)	(136)
25	same	≥ 4		\checkmark	Re			(137)
26	same	≥ 4		\checkmark	Re	\checkmark		(138)
27	opposite	≥ 5			Re			(139
28	opposite	≥ 5			Re	\checkmark		(140

WARWICK
THE UNIVERSITY OF WARWIG

Amplitude combinations

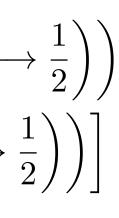
.

29	opposite	≥ 1			Im			(141)
30	opposite	$\stackrel{-}{\geq} 1$			Im	\checkmark		(142)
31	same	≥ 2	\checkmark	\checkmark	Im			(143)
32	same	≥ 2	\checkmark	\checkmark	Im	\checkmark		(67)
33	opposite	≥ 3			Im		(1) (1) (1) (2)	(144)
34	opposite	≥ 3			Im	\checkmark	$\lambda_V = 0, \lambda'_V = 1$ (all possible $\lambda_{\Lambda}^{(\prime)}$)	(145)
35	same	≥ 4		\checkmark	Im			(146)
36	same	≥ 4		\checkmark	Im	\checkmark		(147)
37	opposite	≥ 5			Im			(148)
38	opposite	≥ 5			Im	\checkmark		(149)
39	same	≥ 2	\checkmark	\checkmark	Re			(150)
40	opposite	≥ 3			Re			(151)
41	same	≥ 4		\checkmark	Re			(152)
42	opposite	≥ 5			Re		$ \rangle (\prime) 1 \rangle 1 \rangle = 1 / 0 \rangle / = 2 / 0$	(153)
43	same	≥ 2	\checkmark	\checkmark	Im		$ \lambda_V^{(\prime)} = 1, \ \lambda_\Lambda = \pm 1/2, \lambda'_\Lambda = \mp 3/2$	(154)
44	opposite	≥ 3			Im			(155)
45	same	≥ 4		\checkmark	Im			(156)
46	opposite	≥ 5			Im			(157)

.

Explicit expressions for observables

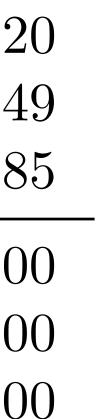
$$\mathcal{A}_{\lambda_{\Lambda},\lambda_{V}}^{Q,V} = N \sum_{\Lambda} \sum_{i=7^{(\prime)},9^{(\prime)}} \mathcal{H}_{\lambda_{\Lambda},\lambda_{V}}^{\Lambda,\mathcal{O}_{i}} h_{\lambda_{\Lambda},1/2}^{\Lambda} ,$$
$$\mathcal{A}_{\lambda_{\Lambda},\lambda_{V}}^{Q,A} = N \sum_{\Lambda} \sum_{i=10^{(\prime)}} \mathcal{H}_{\lambda_{\Lambda},\lambda_{V}}^{\Lambda,\mathcal{O}_{i}} h_{\lambda_{\Lambda},1/2}^{\Lambda} ,$$


$$K_1 = \frac{1}{\sqrt{3}} \sum_{Q} \sum_{\lambda_\Lambda, \lambda_V} \left(\left| \mathcal{A}_{\lambda_\Lambda, \lambda_V}^{Q, V} \right|^2 + V \longleftrightarrow A \right)$$

$$\begin{split} K_{4} &= \frac{1}{105} \sum_{\lambda = \pm 1} \operatorname{Re} \Big[+ \lambda \left(+ 35 \mathcal{A}_{\frac{1}{2}\lambda,0}^{\frac{1}{2}+,V*} \mathcal{A}_{\frac{1}{2}\lambda,0}^{\frac{1}{2}-,V} + 35 \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{\frac{1}{2}+,V*} \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{\frac{1}{2}-,V} \\ &+ 21 \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{3}{2}+,V*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{3}{2}-,V} + 7 \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{\frac{3}{2}+,V*} \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{\frac{3}{2}-,V} \\ &+ 21 \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{3}{2}+,V*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{3}{2}-,V} + 7 \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{\frac{3}{2}+,V*} \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{\frac{3}{2}-,V} \\ &+ 3\mathcal{A}_{\frac{1}{2}\lambda,0}^{\frac{5}{2}+,V*} \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{\frac{5}{2}-,V} + 3\mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{\frac{5}{2}+,V*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{5}{2}-,V} \\ &+ 3\mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{3}{2}+,V*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{5}{2}-,V} + 3\mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{\frac{5}{2}+,V*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{5}{2}-,V} \\ &+ 3\mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{3}{2}+,V*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{5}{2}-,V} + 3\mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{5}{2}+,V*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{5}{2}-,V} \\ &+ 3\mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{3}{2}+,V*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{5}{2}-,V} + 70\sqrt{2}\mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{\frac{1}{2}+,V*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{5}{2}-,V} \\ &+ 84\mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{3}{2}+,V*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{5}{2}-,V} + 70\sqrt{2}\mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{\frac{1}{2}+,V*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{5}{2}-,V} \\ &+ 42\sqrt{6}\mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{\frac{3}{2}+,V*} \mathcal{A}_{\frac{5}{2}-,V} \\ &+ 42\sqrt{6}\mathcal{A}_{\frac{1}{2}\lambda,0}^{\frac{3}{2}+,V*} \mathcal{A}_{\frac{5}{2}-,V} \\ &+ (V \longleftrightarrow A) + (P_{\Lambda} \longrightarrow -P_{\Lambda}), \end{array} \right)$$

$$K_{2} = -\sum_{Q} \sum_{\lambda = \pm 1} \lambda \cdot \operatorname{Re} \left[\mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{Q,A*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{Q,V} + \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{Q,A*} \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{Q,V} \right]$$

$$K_3 = \frac{1}{2\sqrt{15}} \sum_{Q} \sum_{\lambda=\pm 1} \left(\left| \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{Q,V} \right|^2 + \left| \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{Q,V} \right|^2 - 2 \left| \mathcal{A}_{\frac{1}{2}\lambda,0}^{Q,V} \right|^2 \right) + V \longleftrightarrow A$$



Wilson coefficients

- ➡ SM Wilson coefficients used in <u>JHEP 05</u> (2013) 137
- Global fit from <u>Eur. Phys. J. C 82 (2022) 326</u>
 - \diamond Consistent with existing measurements in $b \rightarrow s/l$

	WAR' THE UNIVERSIT	
	Standard Model	global
\mathcal{C}_1	-0.2632	
\mathcal{C}_2	1.0111	
\mathcal{C}_3	-0.0055	
\mathcal{C}_4	-0.0806	
\mathcal{C}_5	0.0004	
\mathcal{C}_6	0.0009	
\mathcal{C}_7	-0.3120	-0.312
\mathcal{C}_9	4.0749	2.994
\mathcal{C}_{10}	-4.3085	-4.158
$\mathcal{C}_{7'}$	0.0000	0.000
$\mathcal{C}_{7'} \mathcal{C}_{9'}$	0.0000	0.160
$\mathcal{C}_{10'}$	0.0000	-0.180

