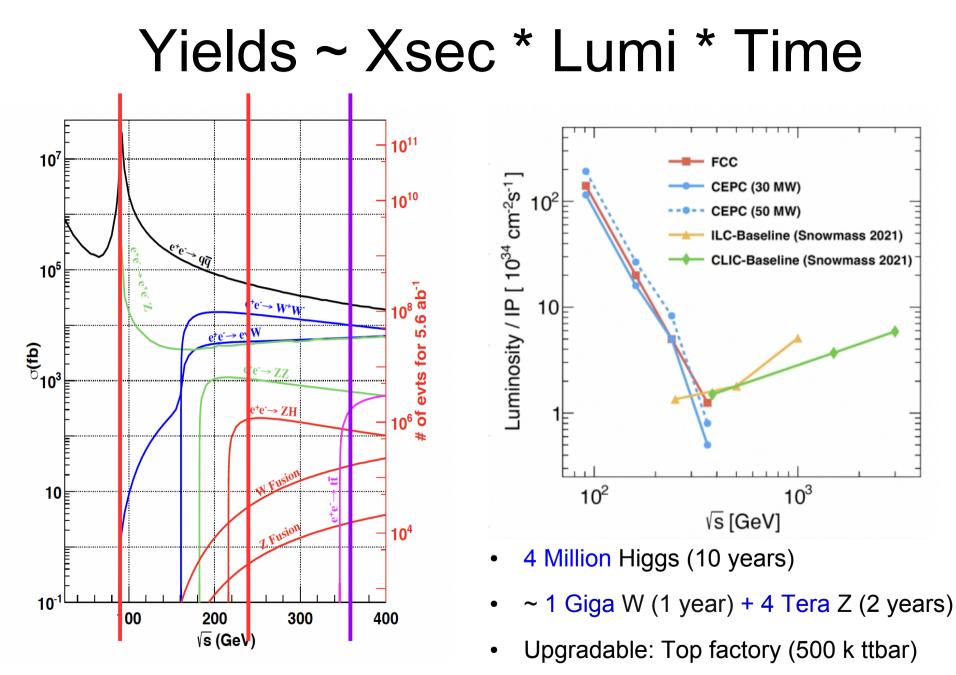
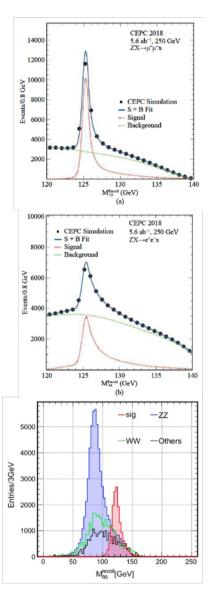
CEPC Flavor Physics study and white paper


status

2

25/10/2024


CEPC WS@Hangzhou

Mangi Ruan

CEPC WS@Hangzhou

CEPC Physics study

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs physics at the CEPC*

Fenfen An(安芬芬)⁴³³ Yu Bai(白羽)⁹ Chunhui Chen(陈春晖)²³ Xin Chen(陈新)⁵ Zhenxing Chen(陈振兴)³ Joao Guimaraes da Costa⁴ Zhenwei Cui(崔振儀)³ Yaquan Fang(方亚泉)^{4,6,34,3)} Chengdong Fu(付成栋)⁴ Jun Gao(高俊)¹⁰ Yanyan Gao(高艳彦)²² Yuanning Gao(高原宁)³ Shaofeng Ge(葛韶铎)^{15,2} Jiavin Gu(顾嘉荫)^{13,2)} Fangyi Guo(郭方毅)^{1,4} Jun Guo(郭军)¹⁰ Tao Han(韩海)^{5,31} Shuang Han(韩夷)⁴ Hongjian He(何红建)^{11,10} Xianke He(何显何)¹⁰ Xiaogang He(何小刚)^{11,10,20} Jifeng Hu(胡继峰)¹⁰ Shih-Chieh Hsu(徐士杰)¹² Shan Jin(金山)⁸ Maogiang Jing(荆茂强)^{4,7} Susmita Jyotishmati³³ Ryuta Kinchi Chia-Ming Kuo(郭家铭)²¹ Peizhu Lai(赖培策)²¹ Boyang Li(李博扬)⁵ Congqiao Li(李聪乔)³ Gang Li(李明)^{4,34,5} Haifeng Li(李海峰)¹² Liang Li(李亮)¹⁰ Shu Li(李數)^{11,10} Tong Li(李通)¹² Qiang Li(李强)³ Hao Liang(梁浩)^{4,6} Zhijun Liang(梁志均)⁴ Libo Liao(廖立波)⁴ Bo Liu(刘波)^{4,23} Jianbei Liu(刘建北)¹ Tao Liu(刘清)¹⁴ Zhen Liu(刘真)^{26,36,4)} Xinchou Lou(委辛丑)^{4,633,34} Lianliang Ma(马连良)¹² Bruce Mellado^{17,18} Xin Mo(莫欣) Mila Pandurovic¹⁶ Jianming Qian(钱剑明)^{24,3)} Zhuoni Qian(钱卓妮)¹⁹ Nikolaos Rompotis²¹ Manqi Ruan(阮曼奇)⁴⁶⁾ Alex Schuy³² Lianyou Shan(单连友)⁴ Jingyuan Shi(史静远)⁹ Xin Shi(史欣)⁴ Shufang Su(苏淑芳)25 Dayong Wang(王大勇)3 Jin Wang(王節)4 Liantao Wang(王连涛)2 Yifang Wang(王贻芳)^{4,6} Yuqian Wei(魏彧骞)⁴ Yue Xu(许悦)⁵ Haijun Yang(杨海军)^{10,11} Ying Yang(杨迎)⁴ Weiming Yao(她为民)²⁸ Dan Yu(于丹)⁴ Kaili Zhang(张凯栗)^{4,6,8)} Zhaoru Zhang(张照载)⁴ Mingrui Zhao(赵明锐)² Xianghu Zhao(赵祥虎)⁴ Ning Zhou(周宁)¹⁰

randing randof 2.2 ft. randing randof 1.4 rand randof 1.4

White papers + ~300 Journal/AxXiv citables

Gingdow 26/23, China
 Gingdow 26/23, China
 ¹⁰PRISMA Cluster of Excellence & Mainz Isotitote of Theoretical Physics, Johannes Controllerg-Universitä Mainz, Mainz 53/28, Germany
 ¹⁰PRISMA Cluster of Excellence & Mainz Isotitote of Theoretical Physics, Reing Kong, University of Science and Technology, Heng Kong,
 ¹⁰Krafi Parly (WPR), UTLAS, The University of Tokyo, Kabinas, Cabina 274-588, Japan
 ¹⁰Yinea Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Serbia
 ¹⁰School of Physics and Hardwide Physics, University of the Winstermand, Johannesburg 2098, South Africa

Received 9 November 2018, Revised 21 January 2019, Published online 4 March 2019

* Supported by the National Key Piogram for S&T Reseath and Development (2016/YEA040040); CAS Center for Excellence in Particle Physics: Yifing Wang's Science Studio of the Ten Thomsond Talents Project, the CAS/SATEA International Parturenting Program for Centure Research Tenus (FT)3011537; JEEP Internation Gram (Y4551077); Key Research Program of Tomice Science, CAS SQUZZYU-X5533-XEB00; Clanese Academy of Science Special Grant In Large Scientific Program (13111KYSB3)10000); the National Natural Science Foundation of Clanual (167300); the Hendmeir Talent Pregram of Grantese Academy of Science (Y3555400); the National 1000 Talentes Program Grantese LLQ (DE-ACQ207EH1135); the SHOPHYI (100070); by the Mayland Crater for Fundamental Physics (MCFP); Tanghan University Institute Sciencific Research Program; and the Briging Manicipal Science and Technology Commission project(2111)0002(1100))

1) E-mail: fangyq@ihep.ac.cn 2) E-mail: jagu@mai-mainz.de 3) E-mail: jagu@mail.ihep.ac.cn 4) E-mail: zinghys@unaich.edu 5) E-mail: qianj@unaich.edu 6) E-mail: manqiruan@ihep.ac.cn 2) E-mail: forerases?throthep.ac.cn

• ...

B = mail: shangkl@hep.a.c.cn
 Construction of this work must main a soft of the terms of the Creative Commons Attribution 1.0 Sense: Any further distribution of this work must main maintaine to the author(s) and the the of the work, journal citation and DOL Article finded by SCOAP3 and published under licence by Chanse Physical Society and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastitute of Modern Physics of the Chanse Academy of Societies and the lastite of Modern Physics of the Chanse Academy of Societie

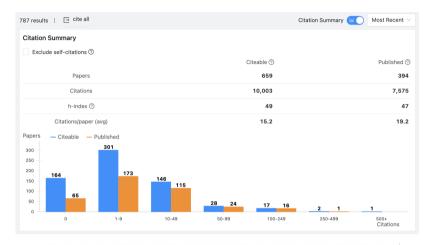


Table 2.1: Precision of the main parameters of interests and observables at the CEPC, from Ref. [1] and the references therein, where the results of Higgs are estimated with a data sample of 20 ab^{-1} . The HL-LHC precision of 2000 bb^{-1} data are used for comparison [2]

	Higgs	W, Z and top				
Observable	HL-LHC projections	CEPC precision	Observable	Current precision	CEPC precision	
M_H	20 MeV	3 MeV	M_W	9 MeV	0.5 MeV	
Γ_H	20%	1.7%	Γ_W	49 MeV	2 MeV	
$\sigma(ZH)$	4.2%	0.26%	M _{top}	760 MeV	$\mathcal{O}(10)$ MeV	
$B(H \rightarrow bb)$	4.4%	0.14%	M_Z	2.1 MeV	0.1 MeV	
$B(H \rightarrow cc)$	-	2.0%	Γ_Z	2.3 MeV	0.025 MeV	
$B(H \rightarrow gg)$	-	0.81%	R _b	$3 imes 10^{-3}$	$2 imes 10^{-4}$	
$B(H \rightarrow WW^*)$	2.8%	0.53% R _c		$1.7 imes 10^{-2}$	$1 imes 10^{-3}$	
$B(H \rightarrow ZZ^*)$	2.9%	4.2%	R_{μ}	$2 imes 10^{-3}$	$1 imes 10^{-4}$	
$B(H \rightarrow \tau^+ \tau^-)$	2.9%	0.42%	R_{τ}	$1.7 imes 10^{-2}$	$1 imes 10^{-4}$	
$B(H o \gamma \gamma)$	2.6%	3.0% A _µ		$1.5 imes 10^{-2}$	$3.5 imes 10^{-5}$	
$B(H \to \mu^+ \mu^-)$ 8.2%		6.4%	A_{τ}	$4.3 imes10^{-3}$	$7 imes 10^{-5}$	
$B(H \rightarrow Z\gamma)$	20%	8.5%	A_b	$2 imes 10^{-2}$	$2 imes 10^{-4}$	
$Bupper(H \rightarrow inv.) 2.5\%$		0.07%	N_{ν}	$2.5 imes 10^{-3}$	$2 imes 10^{-4}$	

Scientific Significance quantified by CEPC physics studies, via full simulation/phenomenology studies:

- Higgs: Precisions exceed HL-LHC ~ 1 order of magnitude.
- EW: Precision improved from current limit by 1-2 orders.
- Flavor Physics, sensitive to NP of 10 TeV or even higher.
- Sensitive to varies of NP signal.

25/10/2024

Flavor Physics

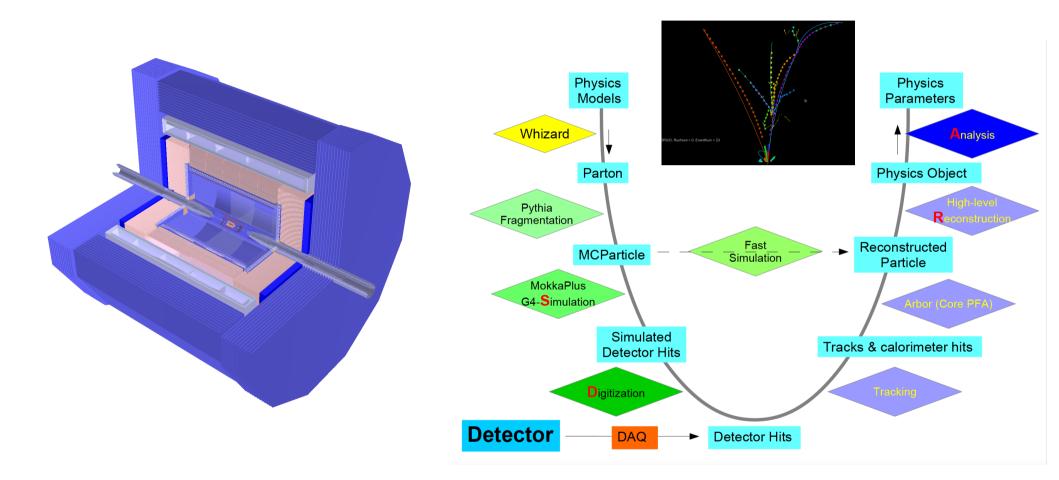
Particle	BESIII	Belle II (50 ab^{-1} on $\Upsilon(4S)$)	LHCb (300 fb^{-1})	CEPC (4×Tera- Z)
$B^0, ar{B}^0$	-	$5.4 imes10^{10}$	$3 imes 10^{13}$	$4.8 imes 10^{11}$
B^{\pm}	-	$5.7 imes10^{10}$	$3 imes 10^{13}$	$4.8 imes 10^{11}$
$B^0_s,ar{B}^0_s$	-	$6.0 imes 10^8~(5~{ m ab}^{-1}~{ m on}~\Upsilon(5S))$	1×10^{13}	$1.2 imes 10^{11}$
B_c^{\pm}	-	-	1×10^{11}	$7.2 imes 10^8$
$\Lambda_b^0,ar{\Lambda}_b^0$	-	-	$2 imes 10^{13}$	1×10^{11}
$D^0,ar{D}^0$	$1.2 imes 10^8$	$4.8 imes 10^{10}$	$1.4 imes 10^{15}$	$8.3 imes10^{11}$
D^{\pm}	$1.2 imes 10^8$	$4.8 imes10^{10}$	$6 imes 10^{14}$	$4.9 imes 10^{11}$
D_s^{\pm}	1×10^7	$1.6 imes 10^{10}$	$2 imes 10^{14}$	$1.8 imes 10^{11}$
Λ_c^{\pm}	$0.3 imes 10^7$	$1.6 imes 10^{10}$	$2 imes 10^{14}$	$6.2 imes 10^{10}$
$ au^+ au^-$	$3.6 imes 10^8$	$4.5 imes 10^{10}$		$1.2 imes 10^{11}$

Flavor Physics @ Z pole

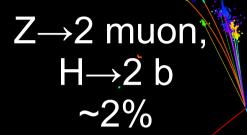
- Extremely rich physics & strong competition from Belle-II & LHCb
- Comparative advantages of a Tera-Z
 - V.S. Bellell, Access to particles heavier than Bs, large boost
 - V.S. LHCb, much lower yields (2 orders of magnitudes) Better Acceptance, better reconstruction of neutral final state (photon, missing energy, and even Klong, neutron) and Jet Charge – Jet Origin

Contents

1	Introduction	2
2	Description of CEPC Facility	6
	2.1 Key Collider Features for Flavor Physics	6
	2.2 Key Detector Features for Flavor Physics	8
	2.3 Simulation Method	15
3	FCCC Semileptonic and Leptonic b-Hadron Decays	16
4	Rare b-Hadron Decays	22
	4.1 Di-lepton Modes	23
	4.2 Neutrino Modes	26
	4.3 Radiative Modes	28
	4.4 Tests of SM Global Symmetries with Forbidden Modes	29
5	CP Violation in <i>b</i> -Hadron Decays	30
6	Charm and Strange Physics	35
7	au Physics	36
	7.1 LFV in τ Decays	37
	7.2 LFU of τ Decays	38
	7.3 Opportunities with Hadronic τ Decays	41
8	Flavor Physics in Z Boson Decays	42
	8.1 LFV and LFU	43
	8.2 Factorization Theorem and Hadron Inner Structure	45
9	Flavor Physics beyond Z Pole	46
	9.1 Flavor Physics and W Boson Decays	47
	9.2 FCNC Higgs Boson Decays	48
	9.3 FCNC Top Quark Physics	51
10	0 Spectroscopy and Exotics	54
11	1 Light BSM States from Heavy Flavors	57
	11.1 Lepton Sector	58
	11.2 Quark Sector	59
12	2 Detector Performance Requirements	60


~ 40 benchmarks

No.	Process	\sqrt{s} (GeV)	Parameter of interest	Observable	Current precision	CEPC Precision	Estimation method	Key detector performance	Relevar Section
1	$Z \to \mu \mu a$	91.2	-	BR upper limit		$\lesssim 3\times 10^{-11}~[251]$	Fast simulation	Tracker Missing energy	12
2	$B \to K \hat{\pi} (\to \mu \mu)$	91.2	-	BR upper limit	-	$\lesssim 10^{-10} \ [261]$	Fast simulation	Tracker Vertex	12
3	$Z \to \pi^+\pi^-$	91.2	-	BR upper limit	-	$O(10^{-10})$ [109]	Guesstimate	Tracker PID	9
4	$Z \to \pi^+\pi^-\pi^0$	91.2	-	BR upper limit	-	${\cal O}(10^{-9})~[109]$	Guesstimate	Tracker PID ECAL	9
5	$b\to s\tau^+\tau^-$	91.2	-	BR upper limit	-	$B^{0} \rightarrow K^{*0}\tau^{+}\tau^{-} \sim \mathcal{O}(10^{-6})$ $B_{s} \rightarrow \phi\tau^{+}\tau^{-} \sim \mathcal{O}(10^{-6})$ $B^{+} \rightarrow K^{+}\tau^{+}\tau^{-} \sim \mathcal{O}(10^{-6})$ $B_{s} \rightarrow \tau^{+}\tau^{-} \mathcal{O}(10^{-5})$ [7]	71] Fast simulation	Tracker Vertex Jet origin ID	4
6	$Z\to \rho\gamma$	91.2	-	BR upper limit	$< 2.5 \times 10^{-5}$ [150]	${\cal O}(10^{-9})$ [109]	Guesstimate	Tracker PID ECAL	9
7	$Z \to J/\psi \gamma$	91.2	-	BR upper limit	$< 1.4 imes 10^{-6}$ [150]	$10^{-9} - 10^{-10}$ [109]	Guesstimate	Tracker PID ECAL	9
8	$Z \rightarrow \tau \mu$ $Z \rightarrow \tau e$ $Z \rightarrow \mu e$	91.2	-	BR upper limit	$< 6.5 \times 10^{-6}$ $< 5.0 \times 10^{-6}$ $< 7.5 \times 10^{-7}$ [105-107	$O(10^{-9})$ [108, 109] $O(10^{-9})$ [108, 109] 1×10^{-9} [110]	Guesstimate	E _{beam} Tracker PID	6
9	$\tau \to \mu a$	91.2	-	BR upper limit	$\lesssim 7\times 10^{-4}~[259]$	\lesssim 3–5 $\times 10^{-6}$	Fast simulation	Tracker Missing energy	12
10	$\tau \rightarrow \mu\mu\mu$ $\tau \rightarrow eee$ $\tau \rightarrow e\mu\mu$ $\tau \rightarrow \mu ee$	91.2	-	BR upper limit	$ \begin{array}{c} < 2.1 \times 10^{-8} \\ < 2.7 \times 10^{-8} \\ < 2.7 \times 10^{-8} \\ < 1.8 \times 10^{-8} \end{array} $ [150]	$\mathcal{O}(10^{-10})$ [108, 109]	Guesstimate	Tracker Lepton ID	8
1	$\tau \rightarrow \mu \gamma$ $\tau \rightarrow e \gamma$	91.2	-	BR upper limit	$< 4.4 \times 10^{-8} \\ < 3.3 \times 10^{-8} $ [150	$\mathcal{O}(10^{-10})~[108,109]$	Guesstimate	Tracker Lepton ID ECAL	8
2	$B_c \to \tau \nu$	91.2	$ V_{cb} $	$\sigma(\mu)/\mu$	${ m BR} \lesssim 30\% \ [267]$	${\cal O}(1\%)$ [63]	Full simulation	Tracker Lepton ID Missing energy Jet origin ID	3
3	$B_s \to \phi \nu \bar{\nu}$	91.2		$\sigma(\mu)/\mu$	${\rm BR} < 5.4 \times 10^{-3} \ [150]$	$\lesssim 2\%$ [35]	Full simulation	Tracker Vertex Missing energy PID	4
4		91.2		τ_{τ} (s) lifetime	$\pm 5 \times 10^{-16}$ [150]	$\pm 1 \times 10^{-18}$ [108]	Guesstimate	-	8
5		91.2		m_{τ} (MeV)	±0.12 [150]	$\pm 0.004 \pm 0.1 \; [108]$	Guesstimate		8
6	$\tau \to \ell \nu \bar{\nu}$	91.2	-	BR	$\pm 4 imes 10^{-4}$ [150]	$\pm 3 imes 10^{-5}$ [108]	Guesstimate	Tracker Lepton ID Missing energy	8
17	$b\to c\ell\nu$	91.2	-	R_{H_c}	$\begin{split} R_{J/\psi} &= 0.71 \pm 0.17 \pm 0.18 \ [268] \\ R_{\Lambda_c} &= 0.242 \pm 0.076 \ [269] \end{split}$	relative (stat. only) $R_{J/\psi} \lesssim 5\%$ $R_{D_{\lambda}^{(*)}} \lesssim 0.4\%$ $R_{\Lambda_c} \sim 0.1\%$	[38] Fast simulation	Tracker Vertex	3
18	$B_s \to J/\psi \phi$	91.2	$\phi_s (= -2\beta_s)$	$\Gamma_s, \Delta \Gamma_s$	$\begin{split} \Gamma_s &= 657.3 \pm 2.3 \ \mathrm{ns}^{-1} \ [150] \\ \Delta \Gamma_s &= 65.7 \pm 4.3 \pm 3.7 \ \mathrm{ns}^{-1} \ [270] \\ \phi_s &= -87 \pm 36 \pm 21 \ \mathrm{mrad} \ [270] \end{split}$	$\sigma(\phi_s) = 4.3 \text{ mrad}$	[5] Full simulation	Tracker Vertex Lifetime resolution Jet origin ID	5
9	$\begin{array}{c} B^0 \rightarrow \pi^0 \pi^0 \\ B^0 \rightarrow \pi^+ \pi^- \\ B^+ \rightarrow \pi^+ \pi^0 \end{array}$	91.2	α	BR, A_{CP}	$\begin{array}{l} BR^{00} = (1.59\pm 0.26)\times 10^{-6} \ (16\%)\\ BR^{+0} = (5.5\pm 0.4)\times 10^{-6} \ (7\%)\\ BR^{+-} = (5.12\pm 0.19)\times 10^{-6} \ (4\%)\\ C^{00}_{CP} = -0.33\pm 0.22\\ C^{-}_{CP} = -0.31\pm 0.030\\ S^{+-}_{CP} = -0.670\pm 0.030 \end{array}$	$\begin{array}{c} \sigma(BR)/BR^{00}=0.45\%\\ \sigma(BR)/BR^{+0}=0.19\%\\ \sigma(BR)/BR^{+-}=0.18\%\\ \sigma(a_{CP}^{00})=\pm(0.014-0.018)\\ \sigma(C_{CP}^{-})=\pm(0.004-0.005)\\ \sigma(S_{CP}^{+})=\pm(0.004-0.005)\\ \end{array}$	81] Fast simulation	ECAL Tracker Vertex Jet origin ID	5
20	$H \rightarrow sb, sd, db, uc$	240	-	BR upper limit	-	0.02%-0.1% [32]	Full simulation	Jet origin ID	10
21	$H \to ss, uu, dd$	240	-	BR upper limit	-	0.1% [32]	Full simulation	Jet origin ID	10
22	$e^+e^- \to t(\bar{t})j$	240	-	FCNC constraint coefficients	two-fermion, LHC [199–203] four-fermion, LEP2 [204, 205]	1–2 orders of magnitude improvement compared to LEP2 [19	[98] Fast simulation	Tracker Missing energy Jet origin ID	10
23	$WW \rightarrow \mu\nu qq$ $WW \rightarrow \tau (\rightarrow \mu\nu\nu)\nu qq$	240	$ V_{cb} $	$ V_{cb} $	$(38.9 \pm 0.53) \times 10^{-3}$ relative ~ 1.4% [9		Full simulation	Jet origin ID	10


Access to non-seen •

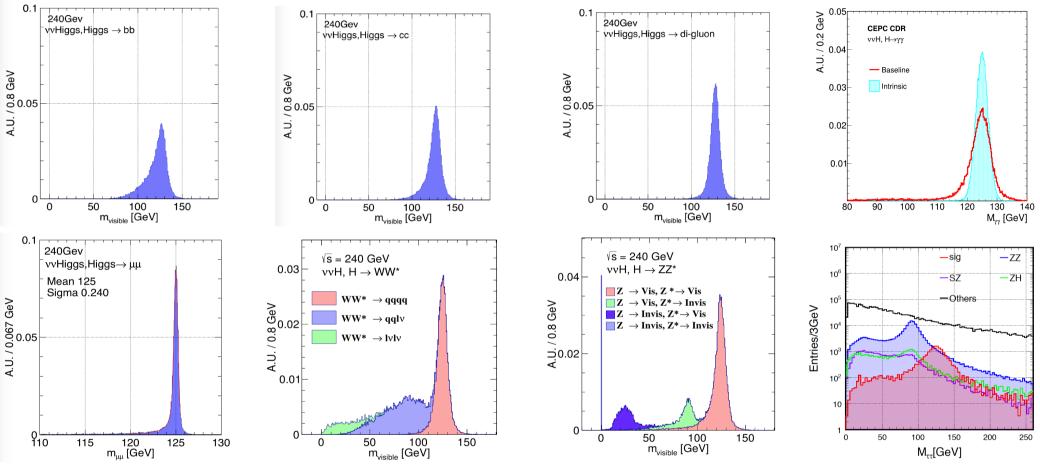
- Orders of magnitudes improvements
- Multiple sqrt(s)
- Non-inclusive + long wishlist -> to be addressed in phase II flavor WP study

Detector & Reconstruction

Part of the benchmark evaluated with detector performance in pace ref-TDR R&D

Z→2 jet, H→2 tau ~5%

ZH \rightarrow 4 jets ~50%


Z→2 muon H→WW*→eevv ~1%

25/10/2024

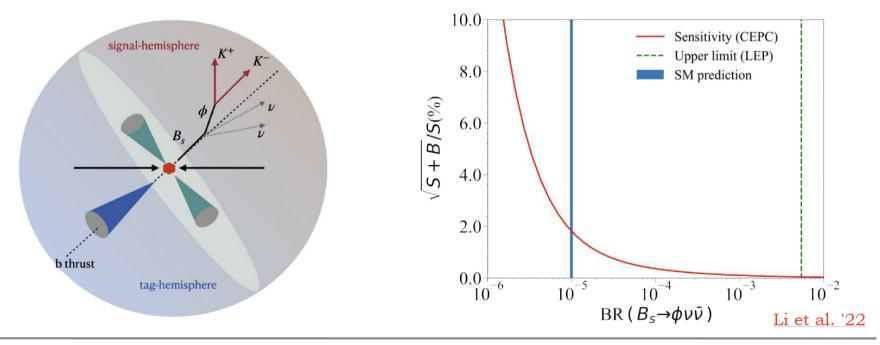
CEPC WS@Hangzhou

8

Reconstructed Higgs Signatures

Clear Higgs Signature in all SM decay modes

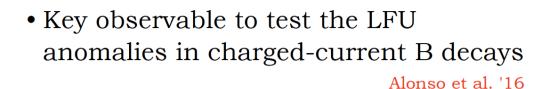
Massive production of the SM background (2 fermion and 4 fermions) at the full Simulation level

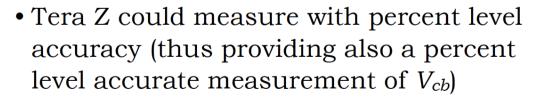

Right corner: di-tau mass distribution at qqH events using collinear approximation 25/10/2024 CEPC WS@Hangzhou

Accesses to the Non-Seen

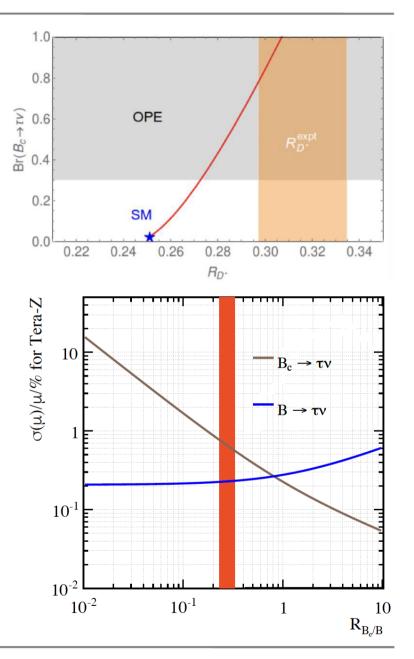
 $b \to s \nu \nu$

			Li et al. '22
	Current Limit	Detector	SM Prediction
$BR(B^0 \to K^0 \nu \bar{\nu})$	$< 2.6 \times 10^{-5}$ [3]	BELLE	$(3.69 \pm 0.44) \times 10^{-6}$ [1]
$BR(B^0 \to K^{*0} \nu \bar{\nu})$	$< 1.8 \times 10^{-5}$ [3]	BELLE	$(9.19 \pm 0.99) \times 10^{-6}$ [1]
$BR(B^{\pm} \to K^{\pm} \nu \bar{\nu})$	$< 1.6 \times 10^{-5}$ [4]	BABAR	$(3.98 \pm 0.47) \times 10^{-6}$ [1]
$BR(B^{\pm} \to K^{*\pm} \nu \bar{\nu})$	$< 4.0 \times 10^{-5}$ [5]	BELLE	$(9.83 \pm 1.06) \times 10^{-6}$ [1]
$BR(B_s \to \phi \nu \bar{\nu})$	$< 5.4 \times 10^{-3}$ [6]	DELPHI	$(9.93 \pm 0.72) \times 10^{-6}$


- Also these modes can be greatly enhanced by new physics responsible for the *B* anomalies see e.g. <u>LC Crivellin Ota '15</u>
- A Tera Z can measure $B_s \rightarrow \phi \nu \nu$ with a percent level precision:


CEPC Flavour Physics

Lorenzo Calibbi (Nankai) 11


 $B_c \to \tau \nu$

• SM prediction for the BR ~ 2%, beyond the reach of LHCb

Zheng et al. '20

Lorenzo Calibbi (Nankai)

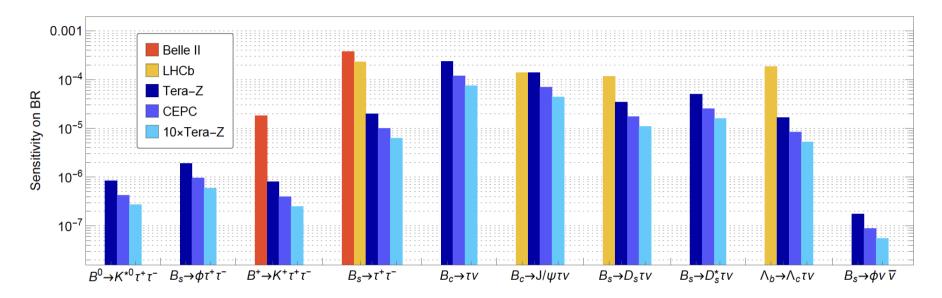


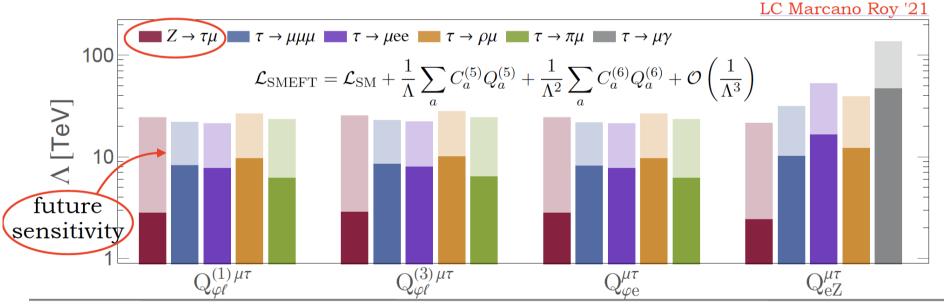
Figure 17: Projected sensitivities of measuring the $b \to s\tau\tau$ [71], $b \to s\nu\bar{\nu}$ [35] and $b \to c\tau\nu$ [37, 63] transitions at the Z pole. The sensitivities at Belle II @ 50 ab⁻¹ [6] and LHCb Upgrade II [17, 72] have also been provided as a reference. Note, the LHCb sensitivities are generated by combining the analyses of $\tau^+ \to \pi^+\pi^-\pi^-(\pi^0)\nu$ and $\tau \to \mu\nu\bar{\nu}$. This plot is adapted from [37].

Ho et al. '22 CEPC flavour WP, in preparation

Orders of magnitude improvements

Summary of the tau and Z prospects

Measurement	Current [126]	FCC [115]	Tera- Z Prelim. [127]	Comments
Lifetime [sec]	$\pm 5 \times 10^{-16}$	$\pm 1 \times 10^{-18}$		from 3-prong decays, stat. limited
${\rm BR}(\tau \to \ell \nu \bar{\nu})$	$\pm 4 \times 10^{-4}$	$\pm 3 \times 10^{-5}$		$0.1\times$ the ALEPH systematics
$\mathrm{m}(\tau)~[\mathrm{MeV}]$	± 0.12	$\pm 0.004 \pm 0.1$		$\sigma(p_{\mathrm{track}})$ limited
${\rm BR}(\tau\to 3\mu)$	$<2.1\times10^{-8}$	$\mathcal{O}(10^{-10})$	same	bkg free
$\mathrm{BR}(\tau\to 3e)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$\mathrm{BR}(\tau^{\pm} \to e \mu \mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$\mathrm{BR}(\tau^{\pm} \to \mu e e)$	$< 1.8 \times 10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
${\rm BR}(\tau \to \mu \gamma)$	$<4.4\times10^{-8}$	$\sim 2 \times 10^{-9}$	$\mathcal{O}(10^{-10})$	$Z \to \tau \tau \gamma$ bkg , $\sigma(p_\gamma)$ limited
$\mathrm{BR}(\tau \to e \gamma)$	$< 3.3 \times 10^{-8}$	$\sim 2 \times 10^{-9}$		$Z \to \tau \tau \gamma$ bkg, $\sigma(p_{\gamma})$ limited
${\rm BR}(Z\to\tau\mu)$	$< 1.2 \times 10^{-5}$	$\mathcal{O}(10^{-9})$	same	$\tau \tau$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limited
${\rm BR}(Z\to\tau e)$	$<9.8\times10^{-6}$	$\mathcal{O}(10^{-9})$		$\tau\tau$ bkg, $\sigma(p_{\rm track})$ & $\sigma(E_{\rm beam})$ limited
${\rm BR}(Z\to \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$	$\mathcal{O}(10^{-9})$	PID limited
${\rm BR}(Z\to\pi^+\pi^-)$			$\mathcal{O}(10^{-10})$	$\sigma(\vec{p}_{\text{track}})$ limited, good PID
$BR(Z \to \pi^+ \pi^- \pi^0)$)		$\mathcal{O}(10^{-9})$	au au bkg
${\rm BR}(Z\to J/\psi\gamma)$	$< 1.4 \times 10^{-6}$		$10^{-9} - 10^{-10}$	$\ell\ell\gamma + \tau\tau\gamma$ bkg
${\rm BR}(Z\to\rho\gamma)$	$<2.5\times10^{-5}$		$\mathcal{O}(10^{-9})$	$\tau\tau\gamma$ bkg, $\sigma(p_{\rm track})$ limited


From the Snowmass report: The Physics potential of the CEPC

Lorenzo Calibbi (Nankai)

Lepton Flavour Violation in Z decays

Mode	LEP bound (95% CL)	LHC bound (95% CL)	CEPC/FCC-ee exp.
$BR(Z \to \mu e)$	1.7×10^{-6} [2]	7.5×10^{-7} [3]	$10^{-8} - 10^{-10}$
${\rm BR}(Z\to\tau e)$	9.8×10^{-6} [2]	5.0×10^{-6} [4, 5]	10^{-9}
${\rm BR}(Z\to\tau\mu)$	1.2×10^{-5} [6]	6.5×10^{-6} [4, 5]	10^{-9} <u>M. I</u>

- LHC searches limited by backgrounds (in particular $Z \rightarrow \tau \tau$): max ~10 improvement can be expected at HL-LHC (3000/fb)
- A Tera Z can test LFV new physics searching for $Z \rightarrow \tau \ell$ at the level of what Belle II (50/ab) will do through LFV tau decays (or better)

CEPC Flavour Physics

Lorenzo Calibbi (Nankai) 1

Bs→Jpsi/Phi : Xcheck with LHCb

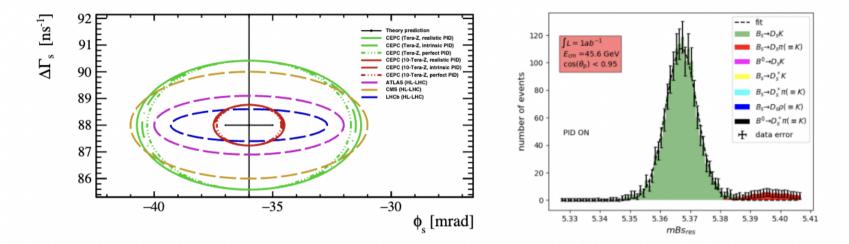


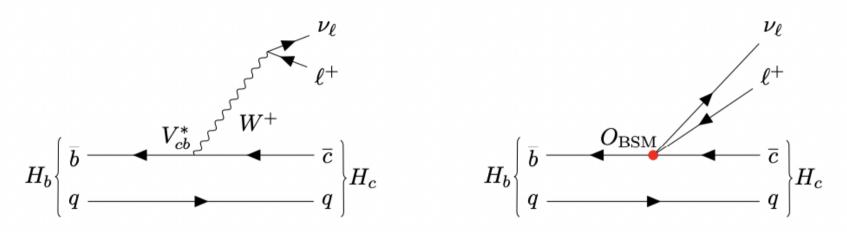
Figure 22: LEFT: Projected sensitivities (68% confidence level (C.L.)) of measuring the parameters $\Delta\Gamma_s$ and $\phi_s = -2\beta_s$ at the CEPC [56], through the time-dependent *CP* violation in the decay $B_s^0 \to J/\psi(\to \mu^+\mu^-)\phi(\to K^+K^-)$. RIGHT: B_s^0 mass reconstruction in the decays $B_s^0 \to D_s^{\pm}(\to \phi\pi^{\pm} \to K^+K^-\pi^{\pm})K^{\mp}$ at the *Z* pole of FCC-ee [126].

Table 1 Parameters table of factors to calculate the precision of ϕ_s , Γ_s and $\Delta\Gamma_s$. The terms with * means that the factor is insensitive to the resolution of Γ_s and $\Delta\Gamma_s$

	LHCb (HL-LHC)	CEPC (Tera-Z)	CEPC/LHCb 1/284	
$b\bar{b}$ statics	43.2×10^{12}	0.152×10^{12}		
Acceptance \times efficiency	7%	75%	10.7	
Br	6×10^{-6}	12×10^{-6}	2	
Flavor tagging*	4.7%	17.3%	3.7	
Time resolution* $(\exp(-\frac{1}{2}\Delta m_s^2 \sigma_t^2)^2)$	0.52	1	1.92	
$\overline{\sigma_t(\mathrm{fs})^*}$	45	4.7		
Scaling factor ξ	0.0015	0.0021	1.4	
$\sigma(\phi_s)$	3.3 mrad	4.6 mrad		

Eur. Phys. J. C (2024) 84:859	THE EUROPEAN	Check for
https://doi.org/10.1140/epjc/s10052-024-13217-3	PHYSICAL JOURNAL C	updates
Regular Article - Theoretical Physics		

Prospect for measurement of the CP-violating phase ϕ_s in the $B_s \rightarrow J/\psi\phi$ channel at a future Z factory

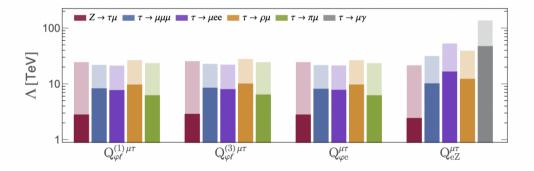

Xiaomei Li¹, Manqi Ruan², Mingrui Zhao^{1,3,a}

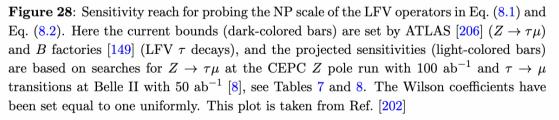
¹ Science and Technology on Nuclear Data Laboratory, China Institute of Atomic Energy, Beijing, China ² Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China

³ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Significantly enhanced using Jet origin id tech. CEPC WS@Hangzhou 17

Lepton Flavor Universality

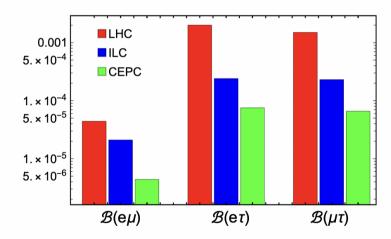
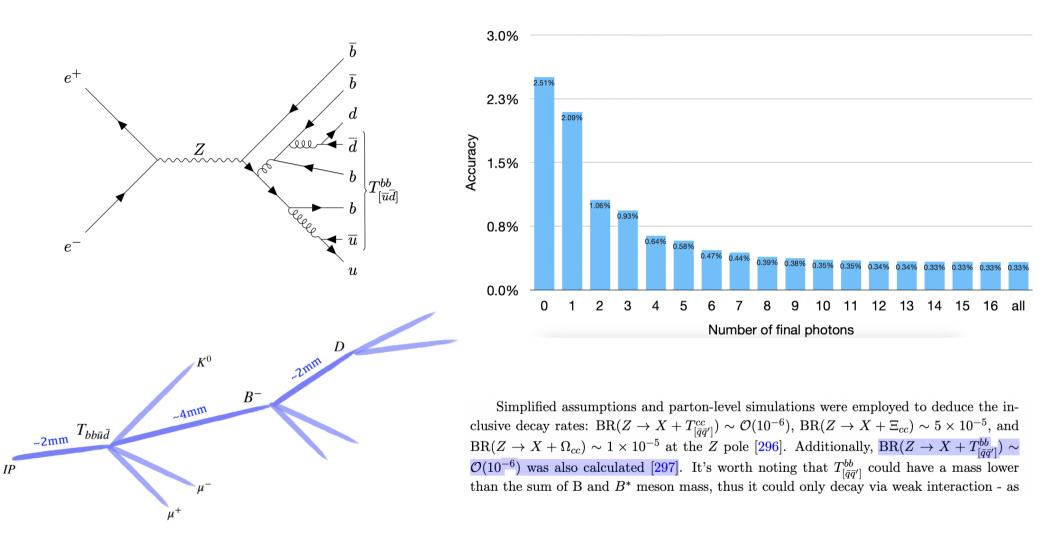


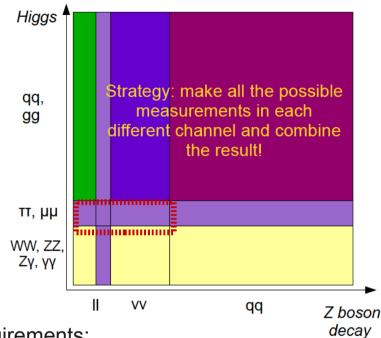

Figure 13: Illustrative Feynman diagrams for the transition $H_b \to H_c \ell^+ \nu_\ell$. **LEFT**: SM example. **RIGHT**: BSM example.

R_{H_c}	SM Value	Tera -Z	$4 \times \text{Tera-}Z$	$10 \times \text{Tera-}Z$
$R_{J/\psi}$	0.289	$4.3 imes 10^{-2}$	$2.1 imes 10^{-2}$	$1.4 imes 10^{-2}$
R_{D_s}	0.393	$4.1 imes 10^{-3}$	$2.1 imes 10^{-3}$	$1.3 imes 10^{-3}$
$R_{D_s^*}$	0.303	$3.3 imes 10^{-3}$	$1.6 imes 10^{-3}$	$1.0 imes 10^{-3}$
R_{Λ_c}	0.334	$9.8 imes 10^{-4}$	$4.9 imes 10^{-4}$	3.1×10^{-4}

Lepton Flavor Violation

Measurement	Current	HL-LHC	FCC	CEPC prelim.
	$< 6.5 \times 10^{-6}$		10^{-9}	10^{-9}
$BR(Z \to \tau e)$	$< 5.0 \times 10^{-6}$	$1.1 imes 10^{-6}$	10^{-9}	
${\rm BR}(Z\to \mu e)$	$<2.62\times10^{-7}$	$5.7 imes 10^{-8}$	$10^{-8} - 10^{-10}$	10^{-9}

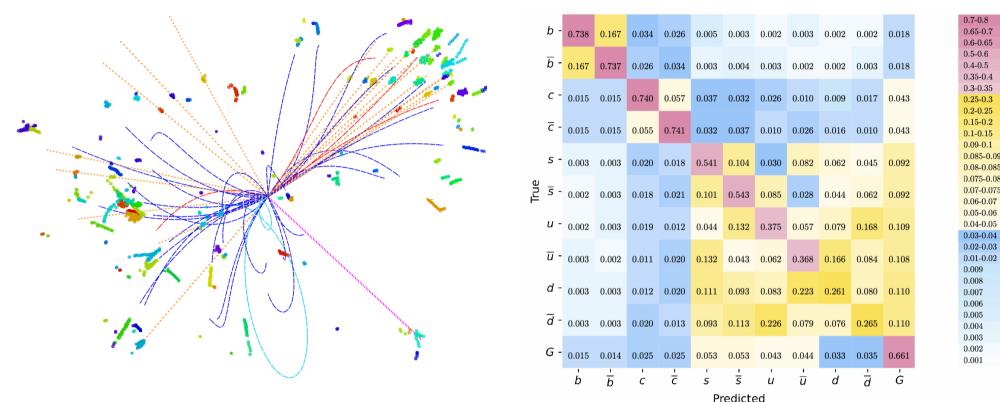

Figure 33: Anticipated upper limits on LFV Higgs decays at CEPC, ILC, and LHC. Figure updated from [231].

Spectroscope: T(bbud)

Performance requirements

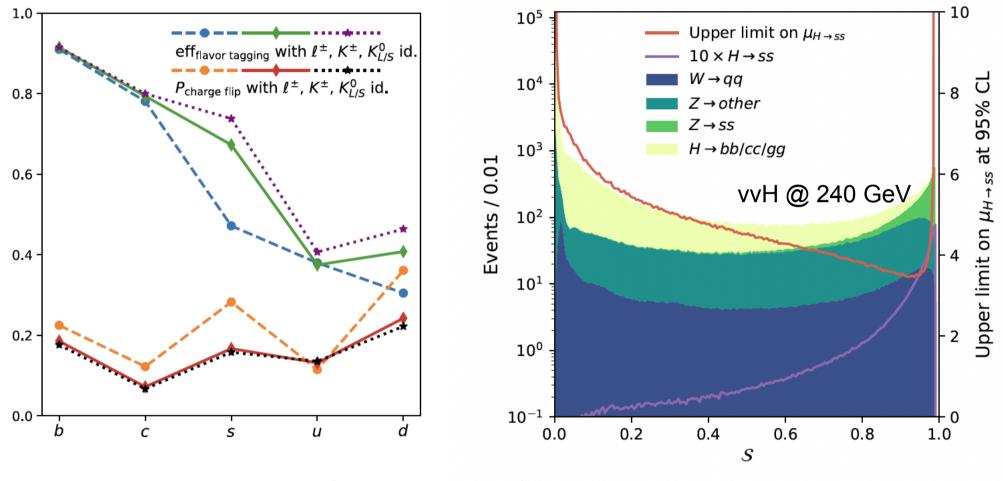
- To reconstruct all kinds of Physics Object •
 - Identification & Measurements
 - Objects:
 - Lepton, Photons, Kaon,
 - pi-0, Tau, Lambda, Kshort,
 - Heavy flavor hadrons,
 - Jets
 - Missing energy/momentum
 - Exotics...
- Massive Four in Standard Model: •
 - Z & W: ~ 70% goes to a pair of jets
 - Higgs: ~90% final state with jets (ZH events)
 - Top: $t \rightarrow W + b$

Requirements: •


Final state

1-1 correspondence

Excellent pattern. Reco. & Object id - PID


- Larger acceptance, Excellent intrinsic resolutions, Extremely stable...
- Be addressed by detector design, technology, and reconstruction algorithm

Jet origin id

- Jet origin identification: 11 categories (5 quarks + 5 anti quarks + gluon)
 - Jet Flavor Tagging + Jet Charge measurements + s-tagging + gluon tagging...
- Full Simulated vvH, Higgs to two jets sample at CEPC baseline configuration: CEPC-v4 detector, reconstructed with Arbor + ParticleNet (Deep Learning Tech.)
- 1 Million samples each, 60/20/20% for training, validation & test
 25/10/2024
 CEPC WS@Hangzhou

Performance with different PID scenarios & $H \rightarrow ss$ measurements

Flavor tagging: type that maximize {L_q + L_q_bar, L_g}Remark: current jet flavor tagging efficiency &
jet charge flip rates are projections of the
11-dim arrays produced by Jet origin id

Benchmark analyses: Higgs rare/FCNC

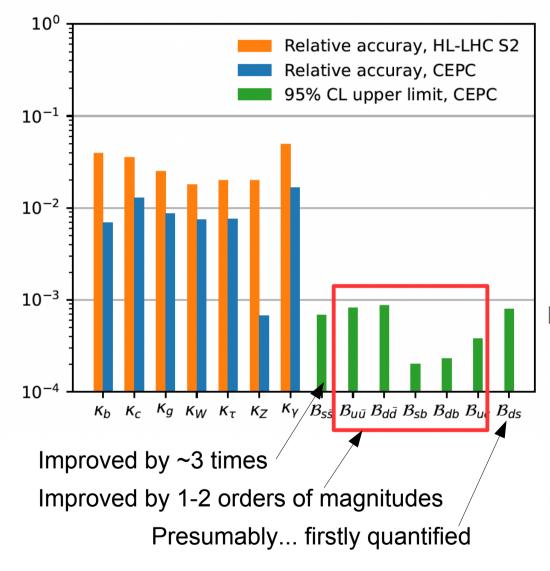


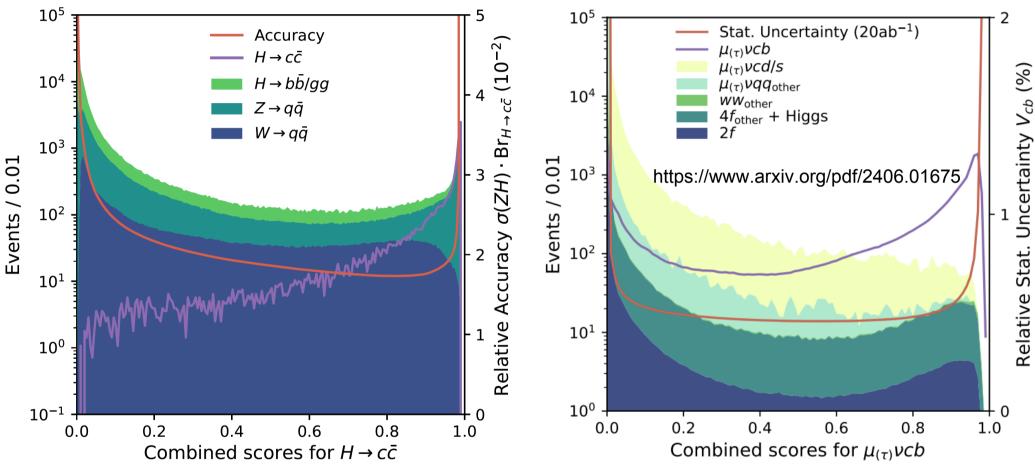
TABLE I: Summary of background events of $H \rightarrow b\bar{b}/c\bar{c}/gg$, Z, and W prior to flavor-based event selection, along with the expected upper limits on Higgs decay branching ratios at 95% CL. Expectations are derived based on the background-only hypothesis.

	Bkg. (10^3)				Upper limit (10^{-3}) $s\bar{s}$ $u\bar{u}$ $d\bar{d}$ sb db uc ds					
	H	Z	W	$s\bar{s}$	$u \bar{u}$	$dar{d}$	sb	db	uc	ds
$ u \bar{ u} H$	151	20	2.1	0.81	0.95	0.99	0.26	0.27	0.46	0.93
$\mu^+\mu^-H$	50	25	0	2.6	3.0	3.2	0.5	0.6	1.0	3.0
e^+e^-H	26	16	0	4.1	4.6	4.8	0.7	0.9	1.6	4.3
$ \frac{\nu\bar{\nu}H}{\mu^+\mu^-H} \\ e^+e^-H \\ Comb. $	-	-	-	0.75	0.91	0.95	0.22	0.23	0.39	0.86

- [28] J. Duarte-Campderros, G. Perez, M. Schlaffer, and A. Soffer. Probing the Higgs–strange-quark coupling at e^+e^- colliders using light-jet flavor tagging. *Phys. Rev.* D, 101(11):115005, 2020.
- [50] Alexander Albert et al. Strange quark as a probe for new physics in the Higgs sector. In *Snowmass 2021*, 3 2022.
- [59] J. de Blas et al. Higgs Boson Studies at Future Particle Colliders. JHEP, 01:139, 2020.
- [60] Jorge De Blas, Gauthier Durieux, Christophe Grojean, Jiayin Gu, and Ayan Paul. On the future of Higgs, electroweak and diboson measurements at lepton colliders. *JHEP*, 12:117, 2019.

...In principle...

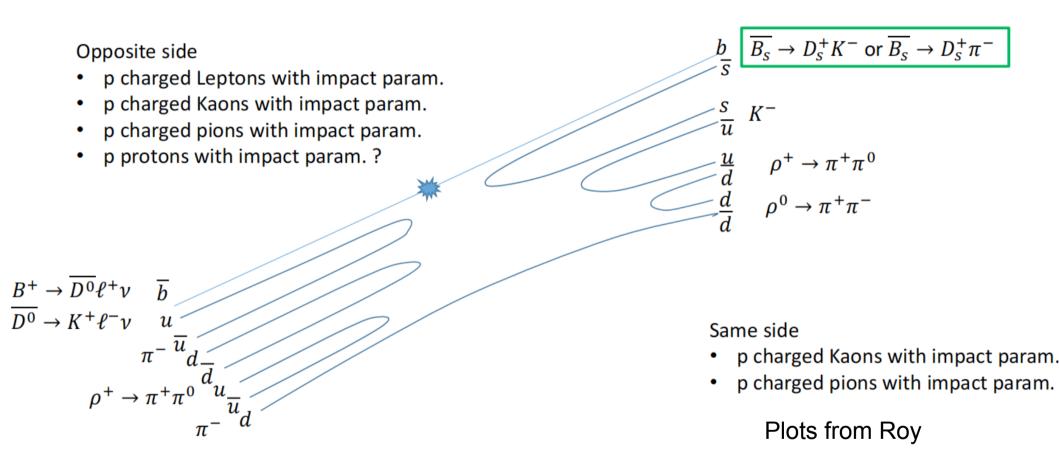
Z boson FCNC


- Without considering other process other than Z
 - 1 Tera Z boson
- Confusion matrix based
 - Using 11x11 confusion matrix as template, extract signal strength of FCNC
 - Re-use confusion matrix of Higgs boson (No much difference according study of Yongfeng)
 - may not be statistically optimal
- No kinematic cut. No polar angle factors considered

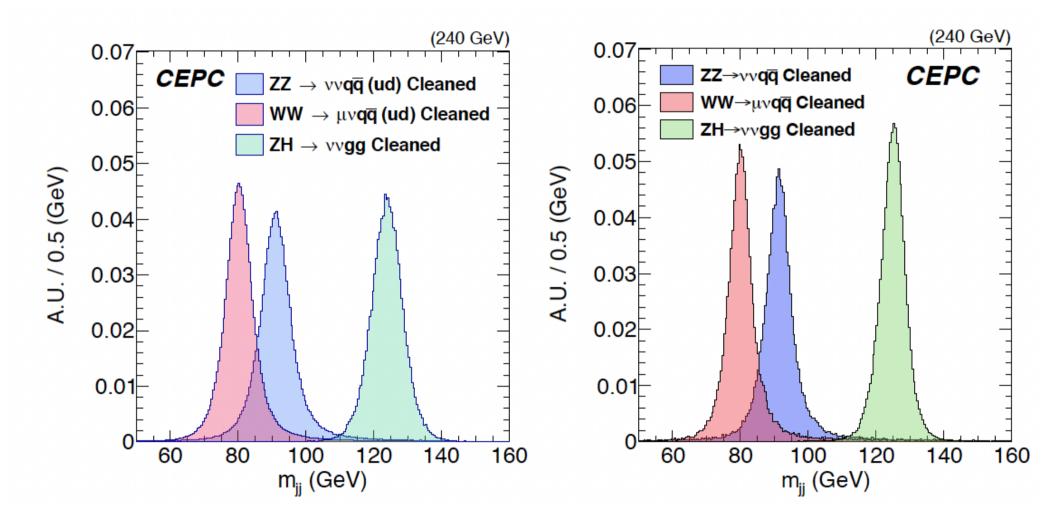
	Z Br by SM (Flavor violating Higgs and Z decays at FCC-ee)	95% Upper limit on Br (statistics only)
Z->bs	4.2E-8	2.3e-07
Z->bd	1.8E-9	2.5e-07
Z->cu	1.4E-18	6.3e-07
Z->sd	-	1.3e-06

But surly the Calibration etc need breakthrough method...

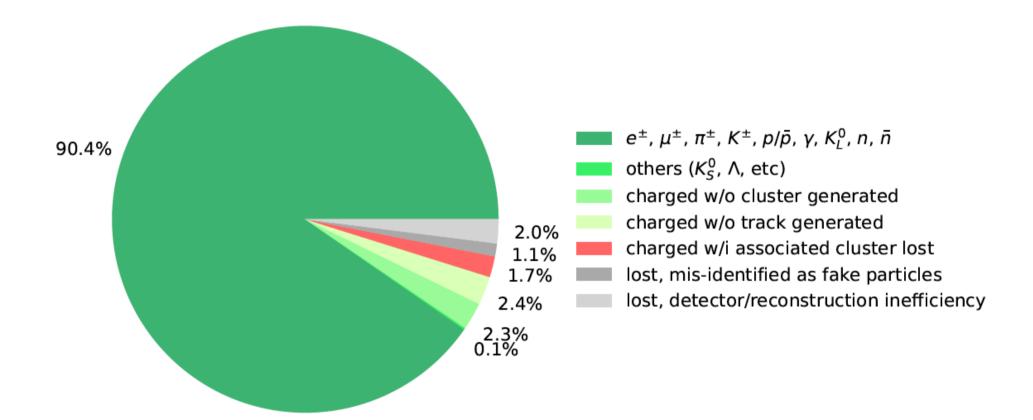
CEPC WS@Hangzhou


Recent update at more benchmarks

- From Jet Flavor Tagging to Jet Origin ID:
 - vvH, H \rightarrow cc: 3% \rightarrow 1.7% (**Preliminary**)


 $\begin{array}{ccc} - & Vcb: \ 0.75\% \rightarrow 0.45\% \ (muvqq \ channel. \ evqq: \ 0.6\%, \ combined \ 0.4\%) \\ & & CEPC \ WS@Hangzhou \end{array}$

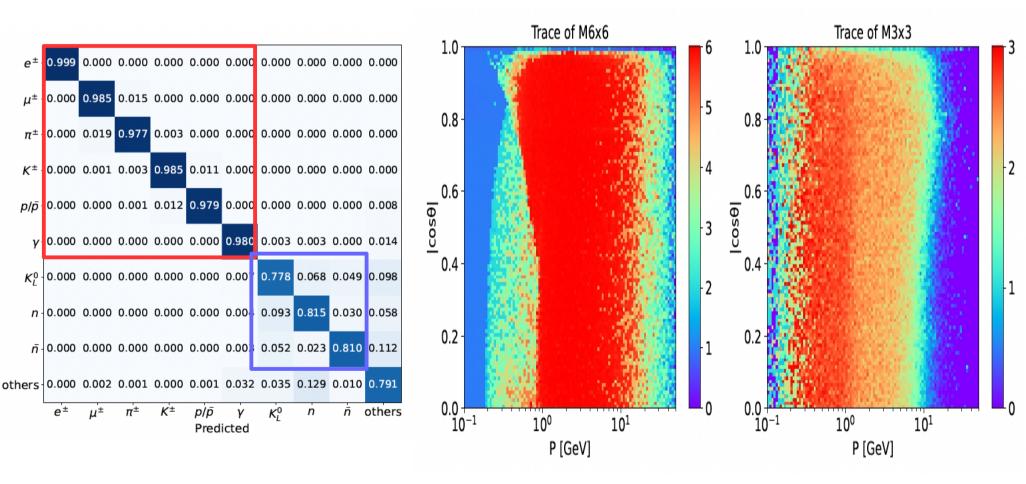
B-charge flip rate: Bs oscillations



• See Mingrui's talk for more details

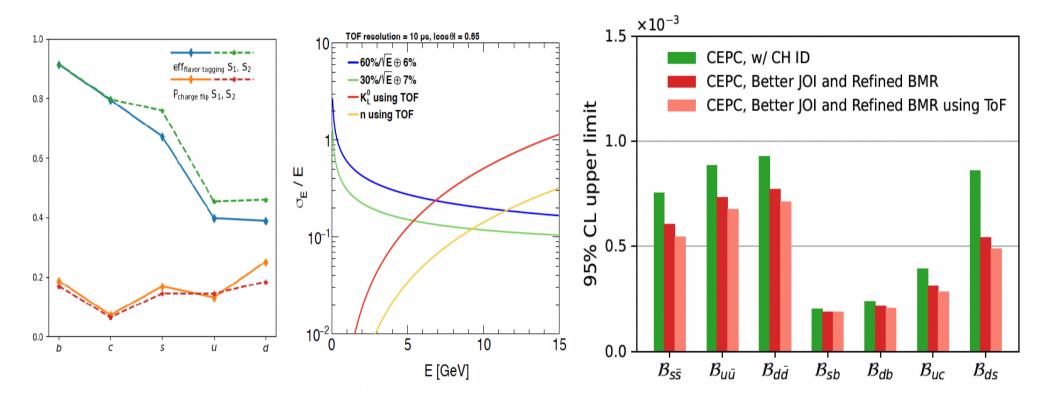
BMR of 2.75% reached

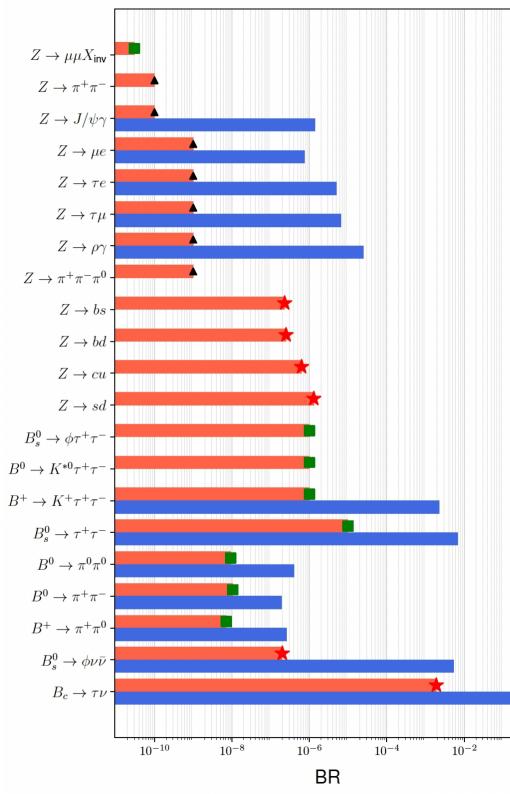
Visible particle: mapping composition

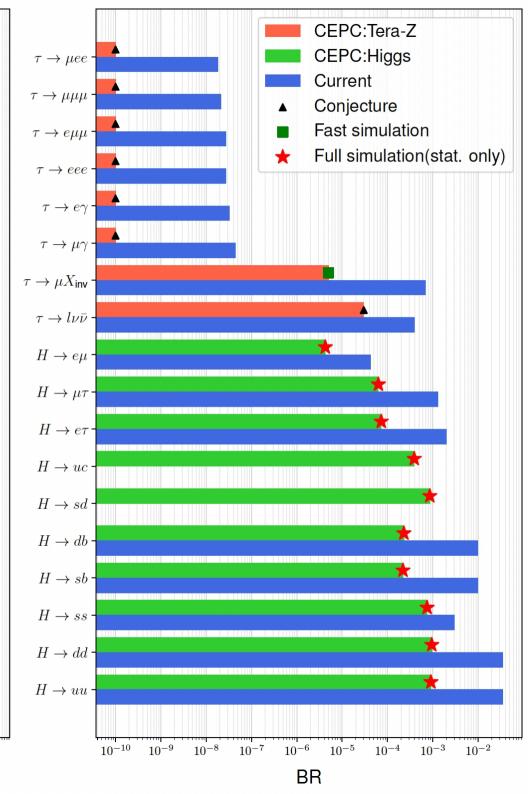


~95% of the visible energy are mapped to reco-particle with 1-1 correspondency.

~90% are well reconstructed: has the right composition of clusters & tracks.


CEPC WS@Hangzhou

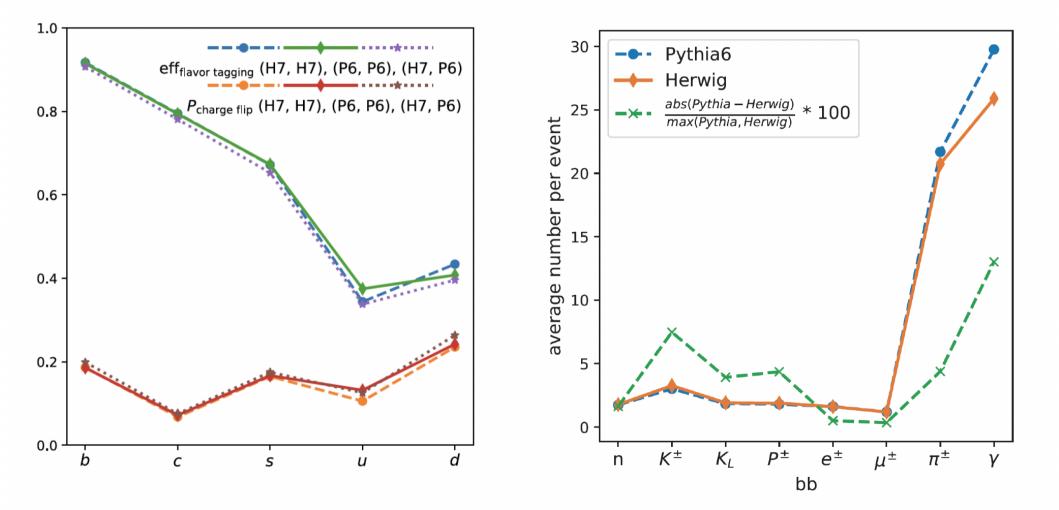

Identification of 'well reconstructed' particles



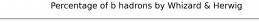
True

Impact on benchmark physics...

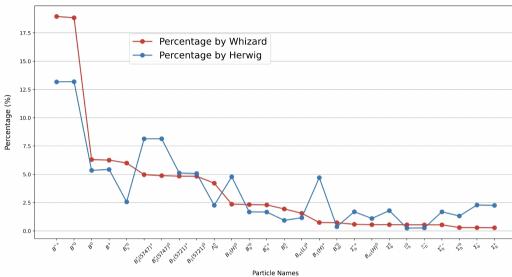
Summary

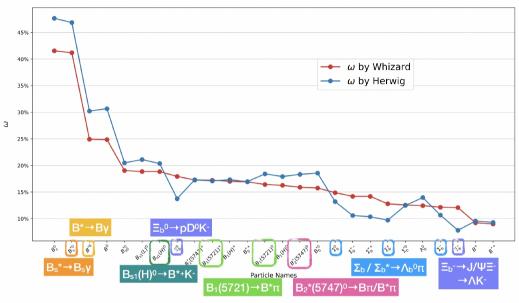

- Electron Positron Higgs factories: a gigantic boost from LHC
- CEPC physics studies: composed of physics reach/pheno and detector requirement optimization, aims at White papers to be released according to the project paces
 - Community activated, results in multiple new ideas/results
 - Good international communication/collaboration
 - Lots of raw material available, visionary summarization/interpretation is needed
- Flavor Physics at CEPC: strong comparative advantages, a windows to access NP of 10 TeV or even higher
 - Accesses to Un-seen, plus orders of magnitudes improvements
- Extremely rich physics program results in stringent requirements on the detector performance, to be addressed by intensive study on detector design, key tech R&D, and algorithms development
 - Significant efforts towards the Reference detector design TDR)
- New tools, especially AI, could significantly alter the physics study/detector design.

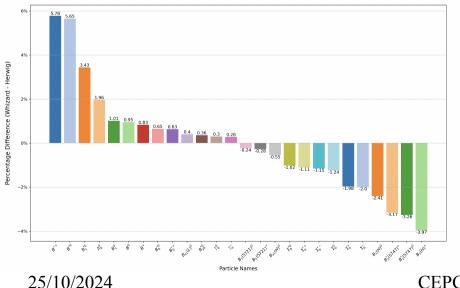
Summary


- White paper draft available at:
 - https://indico.ihep.ac.cn/event/20312/attachments/71044/10
 5872/CEPC_Flavor_White_Paper_24th_Oct_2024_.pdf

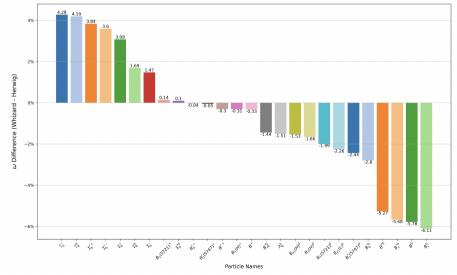
Back up

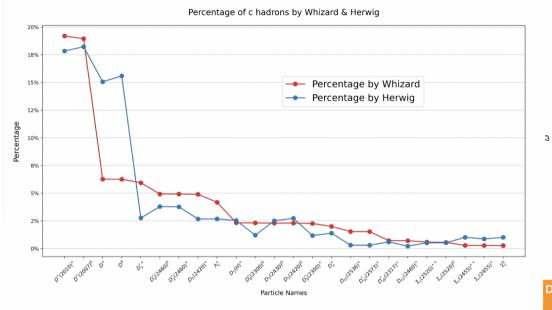

V.S. Hadronization models



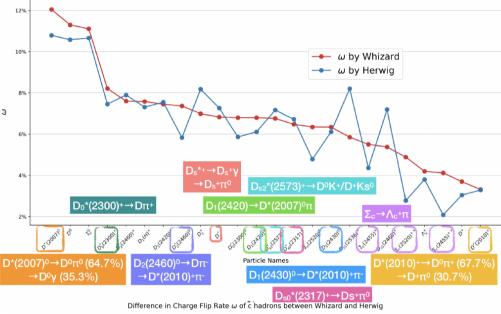

b-jet: leading b-hadrons & flip rates

Charge Flip Rate ω of b hadrons by Whizard & Herwig

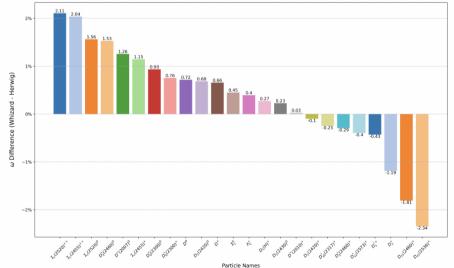



Difference in Percentage of b hadrons between Whizard and Herwig

Difference in Charge Flip Rate ω of b hadrons between Whizard and Herwig


CEPC WS@Hangzhou

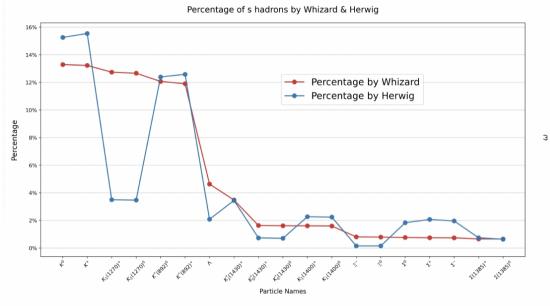
c-jet: leading c-hadrons & flip rates



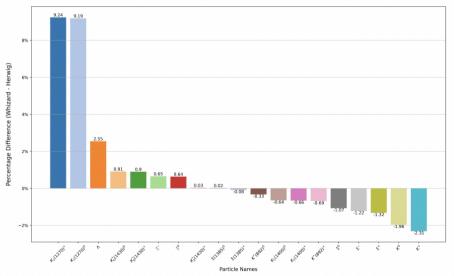
Difference in Percentage of c hadrons between Whizard and Herwig

Particle Name

Charge Flip Rate ω of c hadrons by Whizard & Herwig

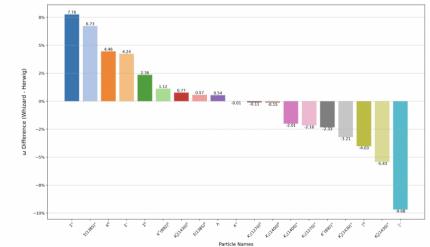

25/10/2024

(Whizard - Herwig)

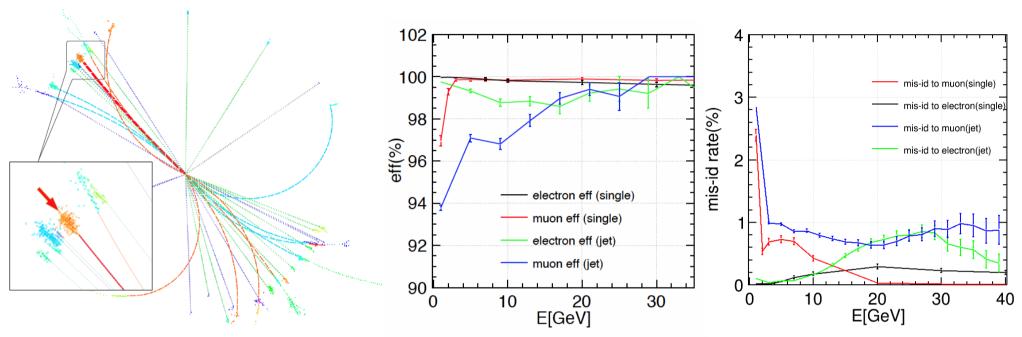

Difference

Percentage

s-jet: leading s-hadrons & flip rates

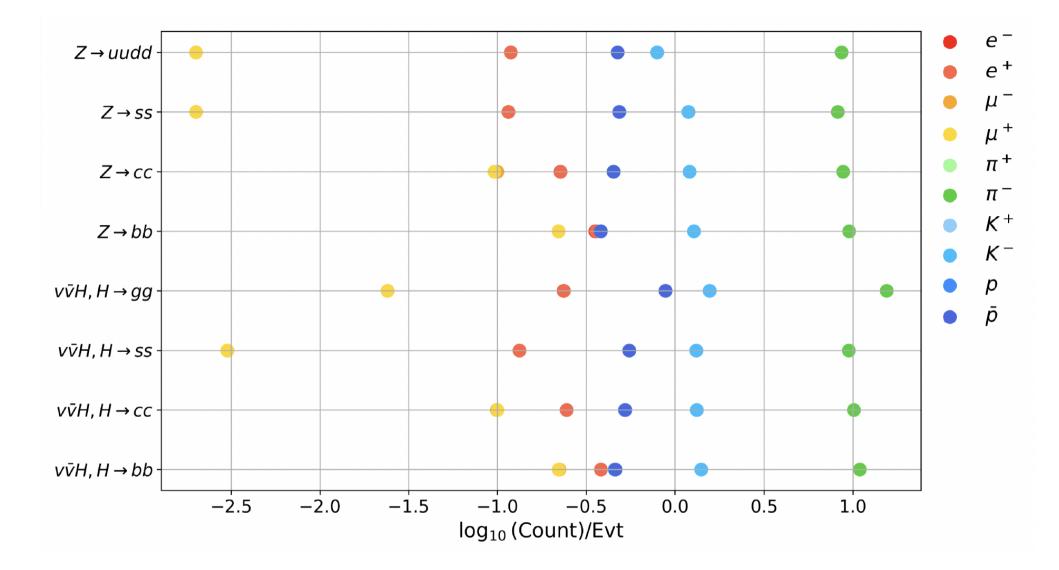

Difference in Percentage of s hadrons between Whizard and Herwig

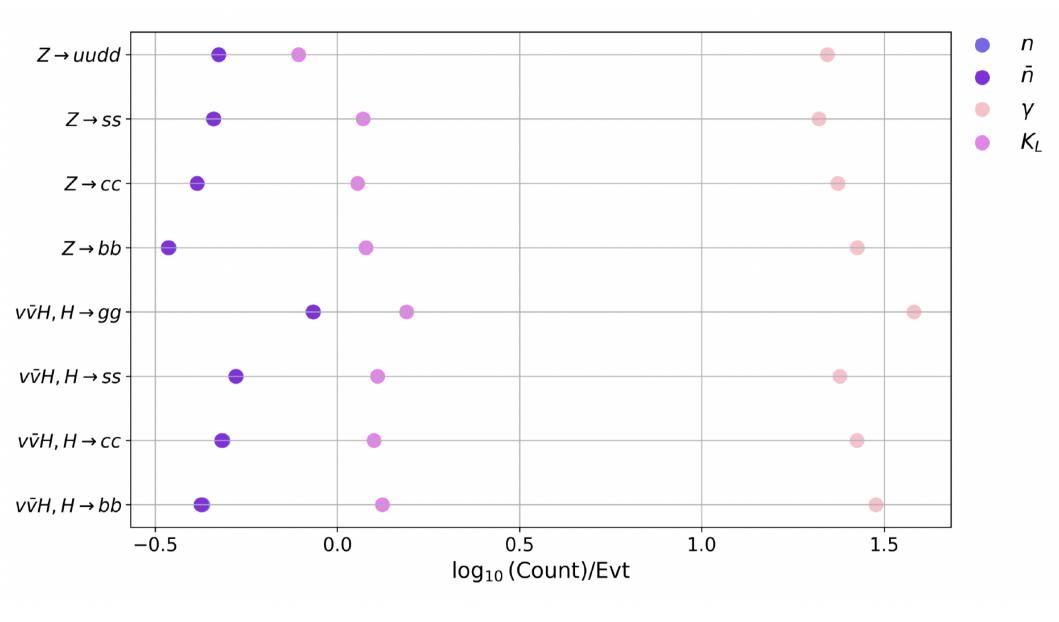
30% ω by Whizard 25% $\leftarrow \omega$ by Herwig 20% 15% K₁(1270)→Kp (38% 10% →K₀*(1430)π (28% +K*(892)π (21%) 19 Ξ→Λπ Particle Names K₁(1400)⁰→K*(892)π (94%) К*(892)→Кп <mark>Σ(1385)→</mark>Λπ (87% **→Σπ (12**% 23


Charge Flip Rate ω of s hadrons by Whizard & Herwig

25/10/2024

Lepton: inside jet

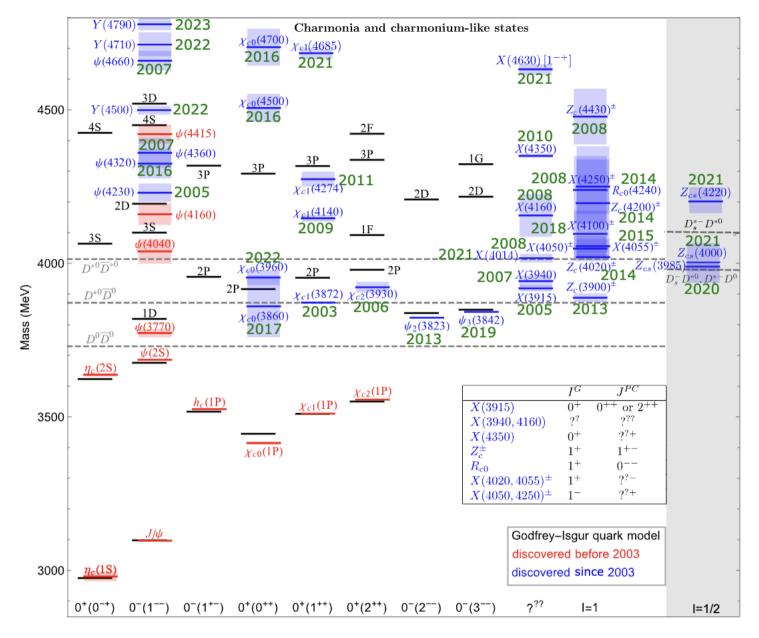
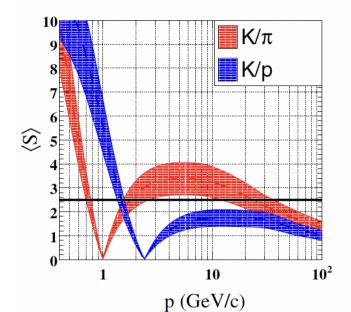
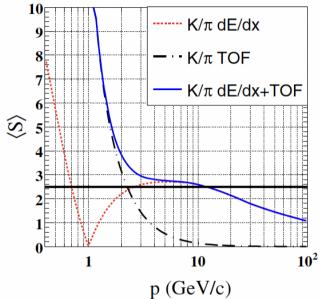


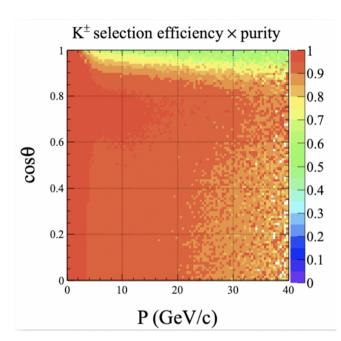

Compared the single particle sample, the jet lepton (at Z->bb sample at sqrt = 91.2 GeV) Performance will be slightly degraded – Due to the limited clustering performance (splitting & contaimination).

At the same working point, the efficiency can be reduced by up to 3%; while mis-id rate increases up to 1%. Marginal Impact on Flavor Physics measurements as Bc->tauv.

However, to identify Genius Lepton and those coming from photon conversion & hadron decay, Is still a demanding task...

25/10/2024

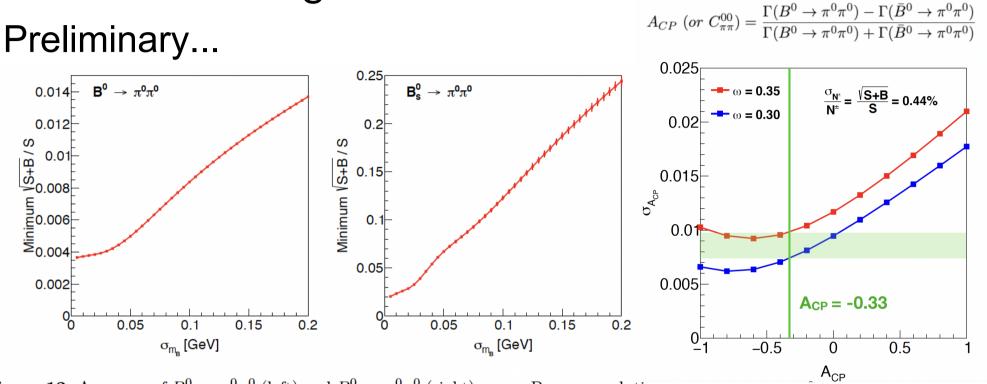





Figure 35: Spectrum of the charmonium and charmonium-like states. Black lines represent the masses in the Godfrey-Isgur quark model [215]. The red and blue lines represent the states observed experimentally before 2003 and since 2003, respectively. For the latter, the years when the states were observed are labeled in green. The height of each shadow indicates the width of the corresponding state. We also show a few two-body open-charm thresholds as dashed lines.

25/10/2024

Tracker: Pid

 $\sigma_{dE/dx}^{}/\langle dE/dx \rangle ~[\%]$ 30 25 20 15 TPC prototype integrated with 266pm UV laser tracks $\sigma_{dE/dx}\text{=}3.4\pm0.3\%$ 10 5 0 0 250 50 100 150 200 # hits in track 25/10/2024


Tab	le 3		

The K^{\pm} identification performance with different	It factors, σ_{i}	$c_{tual} = factor \cdot \sigma_{intrinsic},$
with/without combination of TOF information at	the Z-pole.	

,			1		
	Factor	1.	1.2	1.5	2.
dE/dx	ϵ_K (%) purity _K (%)	95.97 81.56	94.09 78.17	91.19 71.85	87.09 61.28
dE/dx & TOF	ε _K (%) purity _K (%)	98.43 97.89	97.41 96.31	95.52 93.25	92.3 87.33

- Pid via dEdx or dNdx: < 3%
- Current TPC studies using laser reaches 3.4%
- $_{CEPC \ WS(\epsilon)}$ $~50 \ ps$ Timing on Calo. Clusters

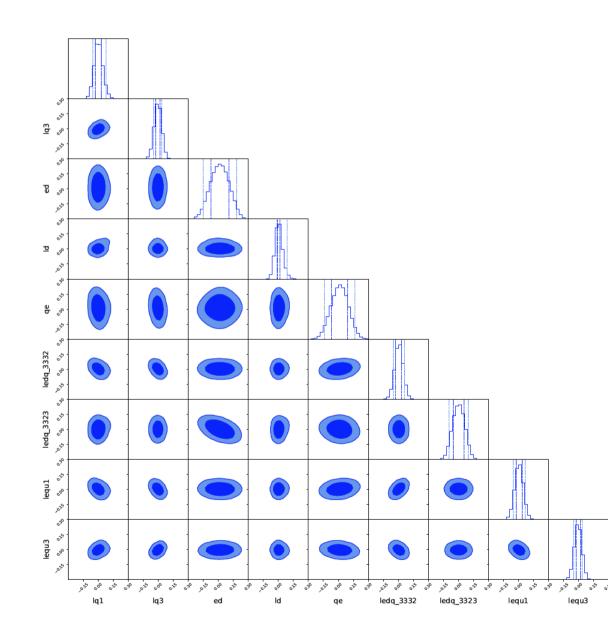

 $B_{c}/B^{0} \rightarrow 2 \text{ pi0/eta}$

Figure 12: Accuracy of $B^0 \to \pi^0 \pi^0$ (left) and $B_s^0 \to \pi^0 \pi^0$ (right) versus B mass resolution.

- Provide sub percentage level accuracies on B0->2 pi0, 40/5 times than current world average & Belle II anticipation, have a strong impact on the CKM angle (alpha measurements), discover the other three modes for the 1st time.
- Strongly Depends on the b-tagging performance (ILD is good enough) and the ECAL intrinsic resolution (provide 30 MeV mass resolution for B-meson... 5 times better than ILD ECAL)

Current Progress in LFU Tests (II)

Regular Article - Theoretical Physics | Open Access | Published: 09 June 2021 $b \rightarrow s\tau^+\tau^-$ physics at future Z factories

Lingfeng Li & Tao Liu 🖂

Journal of High Energy Physics 2021, Article number: 64 (2021) Cite this article

Preliminary: 9 effective channels: $(R_{J/\psi}, R_{D_s}, R_{D_s^*}, R_{\Lambda_c}, B_c \rightarrow \tau \nu, B \rightarrow K \nu \bar{\nu}, B_s \rightarrow \phi \nu \bar{\nu}, B^0 \rightarrow K \tau \tau, B^+ \rightarrow K^+ \tau \tau, B^+ \rightarrow K^+ \tau \tau, B_s \rightarrow \tau \tau ...)$

Dim-6 SMEFT basis at NP scale Λ =3 TeV.

Lingfeng Li

Updated result on $\sin^2 \theta_{eff}^l$ measurement

 Table 2.
 Sensitivity S of different final state particles.

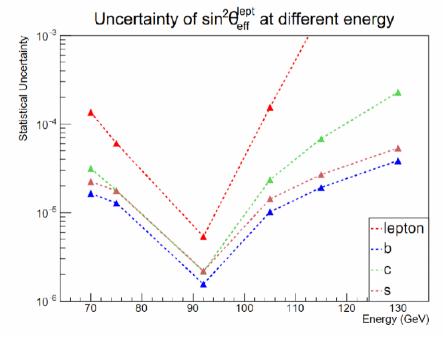
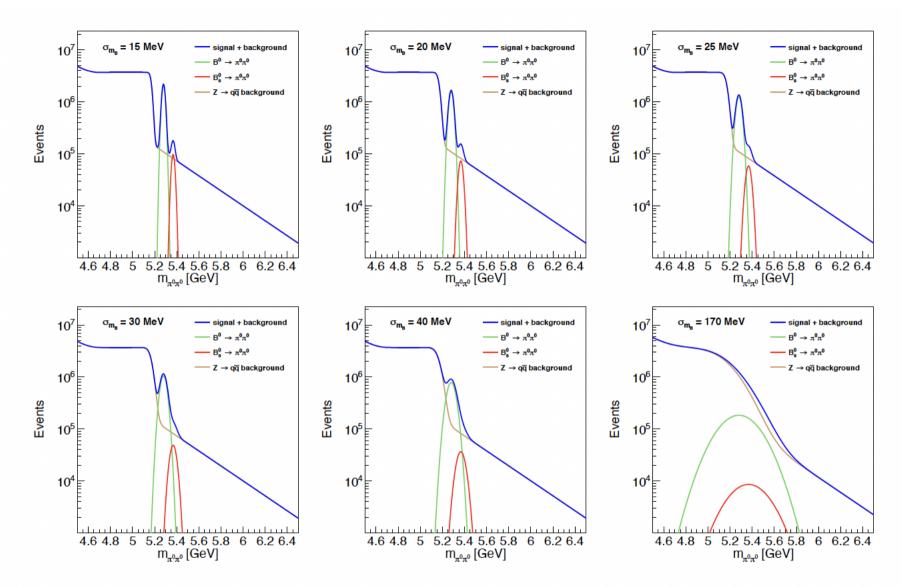

√s/GeV	S of $A_{FB}^{e/\mu}$	$S ext{ of } A^d_{FB}$	$S ext{ of } A^u_{FB}$	S of A^s_{FB}	S of A^c_{FB}	S of A^b_{FB}
70	0.224	4.396	1.435	4.403	1.445	4.352
75	0.530	5.264	2.598	5.269	2.616	5.237
92	1.644	5.553	4.200	5.553	4.201	5.549
105	0.269	4.597	1.993	4.598	1.994	4.586
115	0.035	3.956	1.091	3.958	1.087	3.942
130	0.027	3.279	0.531	3.280	0.520	3.261

Table 3. Cross section of process $e^+e^- \rightarrow f\bar{f}$ calculated using the ZFITTER package. Values of the fundamental parameters are set as $m_Z = 91.1875$ GeV, $m_t = 173.2$ GeV, $m_{II} = 125$ GeV, $\alpha_s = 0.118$ and $m_W = 80.38$ GeV.


\sqrt{s}/GeV	$\sigma_\mu/{ m mb}$	$\sigma_d/{ m mb}$	$\sigma_u/{ m mb}$	$\sigma_{\rm s}/{ m mb}$	$\sigma_c/{ m mb}$	$\sigma_b/{ m mb}$
70	0.039	0.032	0.066	0.031	0.058	0.028
75	0.039	0.047	0.073	0.046	0.065	0.043
92	1.196	5.366	4.228	5.366	4.222	5.268
105	0.075	0.271	0.231	0.271	0.227	0.265
115	0.042	0.135	0.122	0.135	0.118	0.132
130	0.026	0.071	0.068	0.071	0.066	0.069

Verify the RG behavior... using ~1 month of data taking

Expected statistical uncertainties on $\sin^2 \theta_{eff}^l$ measurement. (Using one-month data collection, ~ 4e12/24 Z events at Z pole)

\sqrt{s}	b	С	S
70	1.6×10^{-5}	3.2×10^{-5}	2.2×10^{-5}
75	1.3×10^{-5}	1.8×10^{-5}	1.8×10^{-5}
92	1.6×10^{-6}	2.2×10^{-6}	2.2×10^{-6}
105	1.0×10^{-5}	2.4×10^{-5}	1.4×10^{-5}
115	1.9×10^{-5}	6.8×10^{-5}	2.7×10^{-5}
130	3.9×10^{-5}	2.3×10^{-4}	5.4×10^{-5}

Figure 11: $m_{\pi^0\pi^0}$ distributions of $B^0 \to \pi^0\pi^0$, $B_s^0 \to \pi^0\pi^0$, and $Z \to q\bar{q}$ background at different B mass resolutions when applying CEPC baseline b-tagging.