The 2024 international workshop on the high energy Circular Electron Positron Collider Oct 22-27, 2024

# TOP QUARK SPIN CORRELATION & ENTANGLEMENT

## Kai-Feng Chen (NTU) On Behalf of the CMS Collaboration





# TOP QUARK PRODUCTIONS AT THE LHC

- ► Top quark is the **most massive** known fundamental particle.
  - ~36 times heavier than the bottom quark. Any reason?
- > Top quark is **extremely short lived**:





- Decays before its hadronization & spin decorrelation
  - ⇒ Allow to probe bare quark properties!
- The decay preserves the spin information in the **angular distribution of the decay products**.

Top pair productions at LHC are ideal for studying polarization and spin correlation!

# **TOP POLARIZATION & SPIN CORRELATI**

- Measuring tī polarization and spin correla in the helicity basis: {k̂, r̂, n̂}
- ► Angular distribution for the decay daughter e.g. dilepton tī events  $\frac{1}{\sigma} \frac{d^4 \sigma}{d\Omega_1 d\Omega_2} = \frac{1}{(4\pi)^2} (1 + \mathbf{B_1} \cdot \hat{\ell}_1 + \mathbf{B_2} \cdot \hat{\ell}_2 - \hat{\ell}_1)$   $\mathbf{B_{1,2}} = \begin{pmatrix} x \\ x \\ x \end{pmatrix} \quad \mathbf{C} = \mathbf{C}$
- Spin information is fully described by the polarization vectors and correlation matrix
- These coefficients can be probed by 1D and distributions individually:

$$\frac{1}{\sigma} \frac{d\sigma}{dX} = \frac{1}{2} (1 + [Coefficient])^{\dagger}$$

|                                                                           | ĥ                                                                                                                                        |                                       |                           |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|
| $\mathbf{ION}$                                                            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | CM Frame                              |                           |
| ation top                                                                 | $\frac{1}{r}$                                                                                                                            | Coofficient                           | Cooff fu                  |
| $\hat{k}$                                                                 | $\cos \theta_1^k$                                                                                                                        | $B_1^k$                               | $b_k^+$                   |
| ers: n                                                                    | $\cos \theta_2^k$                                                                                                                        | $B_2^k$                               | $b_k^{\kappa}$            |
|                                                                           | $\cos \theta_1^r$                                                                                                                        | $B_1^r$                               | $b_r^+$<br>$b^-$          |
| n correlation                                                             | $\cos \theta_2$<br>$\cos \theta_1^n$                                                                                                     | $B_2$<br>$B_1^n$                      | $b_r$<br>$b_r^+$          |
| $2 \cdot \mathbf{C} \cdot \hat{\boldsymbol{\ell}}_{\boldsymbol{\lambda}}$ | $\cos \theta_1^n$                                                                                                                        | $B_1^n$                               | $b_n^-$                   |
|                                                                           | $\cos 	heta_1^{	ilde{k}*}$                                                                                                               | $B_1^{	ilde{k}*}$                     | $b_k^+$                   |
| $\begin{pmatrix} X & X & X \end{pmatrix}$                                 | $\cos 	heta_2^{k*}$                                                                                                                      | $B_2^{k*}$                            | $b_k^-$                   |
| $= \left( \begin{array}{ccc} X & X & X \\ - & - & - \end{array} \right)$  | $\cos \theta_1^{r*}$                                                                                                                     | $B_1^{r*}$                            | $b_r^+$                   |
| X X X X/                                                                  | $\cos \theta_2^{\prime \star}$                                                                                                           | $B_2^{\prime*}$                       | <i>b</i> <sub>r</sub>     |
|                                                                           | $\cos \theta_1^k \cos \theta_2^k$                                                                                                        | $C_{kk}$                              | $c_{kk}$                  |
| v alomonto                                                                | $\cos \theta_1' \cos \theta_2'$                                                                                                          | $C_{rr}$                              | C <sub>rr</sub>           |
| x elements.                                                               | $cos v_1 cos v_2$                                                                                                                        | $C_{nn}$                              | c <sub>nn</sub>           |
| oulor                                                                     | $\cos \theta_1^r \cos \theta_2^k + \cos \theta_1^k \cos \theta_2^r$ $\cos \theta_1^r \cos \theta_2^k - \cos \theta_1^k \cos \theta_1^r$  | $C_{rk} + C_{kr}$<br>$C_{k} - C_{kr}$ | $c_{rk}$                  |
| Igulai                                                                    | $\cos \theta_1^n \cos \theta_2^r - \cos \theta_1^r \cos \theta_2^r \\ \cos \theta_1^n \cos \theta_2^r + \cos \theta_1^r \cos \theta_2^n$ | $C_{rk} C_{kr}$<br>$C_{nr} + C_{rn}$  | $C_n$                     |
|                                                                           | $\cos\theta_1^n\cos\theta_2^r - \cos\theta_1^r\cos\theta_2^n$                                                                            | $C_{nr} - C_{rn}$                     | $C_k$                     |
|                                                                           | $\cos \theta_1^n \cos \theta_2^k + \cos \theta_1^k \cos \theta_2^n$                                                                      | $C_{nk} + C_{kn}$                     | $c_{kn}$                  |
| $\mathbf{T}$                                                              | $\cos\theta_1^n\cos\theta_2^k - \cos\theta_1^k\cos\theta_2^n$                                                                            | $C_{nk} - C_{kn}$                     | $-c_r$                    |
| $\cdot X)f(X)$                                                            | $\cos \varphi$                                                                                                                           | D -                                   | $-(c_{kk}+c_{rr}+c_{nr})$ |
|                                                                           | $\cos \varphi_{\text{lab}}$                                                                                                              | $A^{\text{lab}}_{\cos \varphi}$       | • • •                     |
|                                                                           | $ \Delta \phi_{\ell\ell} $                                                                                                               | $A_{ \Delta \phi_{\ell\ell} }$        | • • •                     |



Inc



# **MEASURING TOP QUARK SPINS**

► In the SM tī production is ~unpolarized:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{1,2}^i} = \frac{1}{2} (1 + \mathbf{B_{1,2}^i} \cdot \cos\theta_{1,2}^i) - \begin{bmatrix} - & \mathbf{B_{1,2}^i} \\ \mathbf{B_{1,2}^i} \end{bmatrix} - \begin{bmatrix} - & \mathbf{B_{1,2}^i} \\ \mathbf{B_{1,2}^i} \end{bmatrix}$$

However top/anti-top spins are strongly correlated:

- Rich spin correlation structure!
- Spin correlation coefficient **D** is related to the **C** matrix diagonal terms.
- Sensitivity to the alignment of top/anti-top quark spins  $\bigcirc$ ⇒ access to **entanglement measurement**!

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\phi} = \frac{1}{2} (1 - \mathbf{D} \cdot \cos\phi) - \frac{\text{Non-zero}}{\text{mos}}$$

$$\frac{\cos\phi}{\cos\phi} = \hat{\ell}_1 \cdot \hat{\ell}_2 \quad \mathbf{D} = -\frac{\text{Tr}[C]}{3} = -\left(\frac{C_k}{3}\right)$$

## Ref. CMS PRD 100 (2019) 072002





0.5

0.5

# **TOP QUARKS ARE ENTANGLED OR NOT?**

- Entanglement = inseparability of quantum states
- Can be studied with spin correlations observables.
- The SM predicts entangled of top/anti-top:
  - **boosted region** for central production of tt.
  - **near the production threshold** in g-g fusion production;  $\bigcirc$

The strength depends on production modes,  $M(t\bar{t})$ , and top scattering angle  $\Theta$ 



Relatively lower velocity top quarks  $\rightarrow$  time-like separated events

Relatively higher velocity top quarks  $\rightarrow$  space-like separated events

top



anti-top





|   | 1.0 |
|---|-----|
| - | 0.9 |
| - | 0.8 |
| - | 0.7 |
| - | 0.6 |
| - | 0.5 |
| - | 0.4 |
| - | 0.3 |
| - | 0.2 |
|   | 0.1 |
|   | 0.0 |

5

# **DILEPTON ANALYSIS FOR LOW M(tt)**

## > The **Peres-Horodecki criterion**:

- For tt system, states are separable if eigenvalues of the spin density matrix are all positive;
- Top quarks are entangled in a certain phase space if <u>at least one negative eigenvalue</u>! > A sufficient condition to observe entanglement in top quarks is:

 $\Delta E = C_{nn} + |C_{rr} + C_{kk}| > 1$ 

Consider a dilepton tt analysis focused in low m(tt) region: 900

- Top spin information 100% goes to charged leptons!
- Spin-singlet state  $\Rightarrow$  positive  $C_{rr}$  and  $C_{kk}$ :

$$\Delta E = C_{nn} + C_{rr} + C_{kk} = \operatorname{Tr}[C] = -3$$

• The sufficient condition is then translated as:

$$\mathbf{D} = -\frac{\mathrm{Tr}[\mathbf{C}]}{3} < -\frac{1}{3}$$
 Measure of the second sec



## **Ref.** Peres PRL 77 (1996) 1413 Horodecki PLA 232 (1997) 5

## Ref. <u>Afik, De Nova, EPJ Plus 136 (2021) 907</u>



# ATLAS OBSERVATION OF TOP ENTANGLEMENT AT LOW M(tt)

- clearly away from the threshold.



> ATLAS performed a analysis using very clean  $e\mu$ +jets events with 140 fb<sup>-1</sup> data. > A measurement of proxy D at particle level in the region of  $340 < m(t\bar{t}) < 380$  GeV

Particle-level Invariant Mass Range [GeV]

![](_page_6_Picture_7.jpeg)

# **CMS ANALYSIS STRATEGY: DILEPTON**

- > Based on 36.3 fb<sup>-1</sup> data collected in 2016.
- Strength of entanglement depends on the phase-space:
  - Scan over  $m(t\bar{t})$  vs  $\cos\Theta$  vs  $\beta z(t\bar{t})$  to determine most sensitive region + minimizing total uncertainty.
  - Focus on low-mass region:  $345 < m(t\bar{t}) < 400 \text{ GeV}$ .
  - $\circ \text{ Increase gg/q\bar{q} fraction} \\ \text{with cut on the velocity } \beta_z(t\bar{t}) = \left| \frac{p_z^t p_z^{\bar{t}}}{E^t E^{\bar{t}}} \right| < 0.9$ along the beam:
- ► The tt four-momentum are calculated using a kinematic reconstruction algorithm. Ref. CMS JHEP 02 (2019) 149
- > The distribution of **helicity angle**  $\cos \phi = \hat{\ell}_1 \cdot \hat{\ell}_2$  is measured and perform a profiled maximum likelihood fit to extract the **D** value of the events in the signal region.

## Entanglement vs phase-space

## **CMS** Simulation (13 TeV) m(t<u>1</u>) [GeV] 000 [GeV] 600 550 500 450 400 350 -0.5 0.0 0.5 1.0 $\cos\Theta$ **CMS** Simulation (13 TeV) m(tī) [GeV] 002 [GeV] 82 (2022) 666 600 550 500 450 400 350 0.0 0.6 8.0 0.4 0.2 1.0 $\beta_{\rm z}({ m t}{ m t})$

Ref. <u>Aguilar-Saavedra,</u> <u>Casas,</u>

![](_page_7_Figure_16.jpeg)

![](_page_7_Figure_17.jpeg)

![](_page_7_Figure_18.jpeg)

# NEAR THRESHOLD tt MODELING

## > The tt simulated samples are described by **PowhegBox+Pythia8(NLO)**:

- EWK corrections at NLO with HATHOR included. Ref. <u>HATHOR Comput. Phys. Commun. 182 (2011) 1034</u>
- Reweighed to NNLO QCD calculations. Ref. Mazzitelli at el PRL 127 (2021) 062001
- However mis-modeling of the events near the threshold has been observed in several CMS/ATLAS differential cross section analyses already:

O(10%) discrepancy, consistent between dilepton and lepton+jets analyses from both CMS and ATLAS

![](_page_8_Figure_7.jpeg)

# NEAR THRESHOLD tt MODELING (CONT.)

- Consider a potential "toponium" contribution:
  - NRQCD predicts a quasi-bound state at 343 GeV and a width of 7 GeV.
- - Consider a pseudoscalar colour singlet spin-0 state  $\eta_t$ .
  - Improves the modeling near the threshold!

Perform the full entanglement measurement w/ and w/o toponium model included.

![](_page_9_Figure_8.jpeg)

Not considered in ATLAS analysis, although the conclusion should not be affected.

Ref. Ju et al JHEP 06 (2020) 158

• Modifies both the invariant mass and spin correlations. Ref. Maltoni et al JHEP 03 (2024) 099

► Toponium model generated with MG5 aMC@NLO(LO) + Pythia8: Ref. Fuks et al, PRD 104 (2021) 034023

See also the CMS H/A->tt analysis! (HIG-22-013) O Strong excess above the background if no nt considered. \$\sigma(n\_t) = 7.14 \pm 0.77 \text{ pb}\$
 \$\see \L.Jeppe's talk @
 \$\text{TOP2024 for details.}\$

![](_page_9_Picture_19.jpeg)

# **EXTRACTION OF ENTANGLEMENT**

## $\blacktriangleright$ Binned profiled likelihood fit to the distribution with ~48k signal candidates:

- is accessible.
- All systematic effects included as nuisance parameters.

Excellent description of the events: good agreement with the SM predictions.

![](_page_10_Figure_5.jpeg)

• Signal templates with different proxy **D** value are derived from mixed samples generated w/ and w/o spin correlations  $\Rightarrow$  any possible value of D between  $\pm 1$ 

![](_page_10_Picture_7.jpeg)

## SYSTEMATIC UNCERTAINTIES

- As the analysis heavily rely on the knowledge for the near-threshold tt events, the uncertainties associated with signal tt modeling are unavoidable.
- Uncertainties related to Toponium:
  - Toponium cross section varied by ±50% due to missing the octet contributions.
  - Binding energy uncertainty varied by ±0.5 GeV.
- ► Other leading uncertainties:
  - Jet energy scale
  - NNLO QCD reweighing
  - Parton Shower

![](_page_11_Figure_9.jpeg)

# **OBSERVATION OF tT ENTANGLEMENT AT THRESHOLD**

- Scan of the likelihood value versus D at parton level, with all detector effects accounted.
- ► If toponium contribution is not included:
  - Pushes to a more negative *D* value / stronger entanglement.
  - $\circ \sim 1.5\sigma$  tension with respect to the expectation.

Observation of top quarks being entangled at tt threshold!

![](_page_12_Figure_6.jpeg)

 $D_{\rm obs} = -0.480^{+0.016}_{-0.017} (\text{stat.})^{+0.020}_{-0.023} (\text{syst.})$  $D_{\rm exp} = -0.467^{+0.016}_{-0.017} ({\rm stat.})^{+0.021}_{-0.024} ({\rm syst.})$ 

Significance: 5.1σ Obs (4.7σ Expt.)

![](_page_12_Picture_10.jpeg)

13

## LEPTON+JETS ANALYSIS

- Consider the differential cross section direction  $\Omega(\overline{\Omega})$ :
- large spin analyzing power  $\kappa$  (~unity at LO).
- > Entangled or not via the **Peres-Horodecki criterion**:
- ► Two analysis approaches:
  - Use the full angular information of decay **products** to measure spin matrix and then derive  $\Delta E$ .
  - Measure **proxies D** and **D** via simpler 1D  $\chi$  and  $\tilde{\chi}$  angular distributions.

![](_page_13_Figure_7.jpeg)

 $\Delta E = C_{nn} + |C_{rr} + C_{kk}| > 1$ 

> The charged lepton and down-type quark decaying from W bosons are used, which has a

![](_page_13_Figure_10.jpeg)

14

# LEPTON+JETS ANALYSIS (CONT.)

 $\frac{1}{\sigma} \frac{d\sigma}{d\cos\chi} \propto 1 + \mathbf{D} \kappa \overline{\kappa} \cdot \cos\chi \quad \Longrightarrow \quad \Delta E = -3\mathbf{D} > 1 \quad \Longrightarrow \quad \mathbf{D} < -\frac{1}{3} \quad < \text{Basically the same as the dilepton analysis}$ 

- both qq & gg productions, can be probed with the  $\tilde{\chi}$  distribution:  $\frac{1}{\sigma} \frac{d\sigma}{d\cos\tilde{\chi}} \propto 1 + \tilde{\mathbf{D}}\,\kappa\overline{\kappa}\cdot\cos\tilde{\chi}$
- > With negative  $C_{rr}$  and  $C_{kk}$ , the sufficient condition is then translated as:

$$\Delta E = C_{nn} - C_{rr} - C_{kk} = 3\tilde{\mathbf{D}} > 1 \quad or \qquad \tilde{\mathbf{D}} > 1$$

Measure the proxies D & D to prob entanglement!

## > Study the angular distribution of $\chi$ for at low m(tt) region for gg fusion events:

# > The entanglement in a spin-triplet state at high $m(t\bar{t})$ and central region, via

![](_page_14_Figure_11.jpeg)

![](_page_14_Picture_13.jpeg)

![](_page_14_Figure_14.jpeg)

![](_page_14_Picture_15.jpeg)

# **CMS ANALYSIS STRATEGY & EVENT RECONSTRUCTION**

- ► Based on full Run-2 138 fb<sup>-1</sup> data at 13 TeV.
- ► Target: determine the full correlation matrix & polarization vectors + measure D &  $\tilde{D}$ .
  - Differential measurements in bins of  $m(t\bar{t})$ ,  $p_T(t)$ , and/or the top scattering angle  $|\cos\Theta|$
  - Inclusive measurement by combining differential bins.
- ► Nominal tt sample is prepared with the same prescription: PowhegBox+Pythia8 + EWK corrections/NNLO weights.
- ► Reconstruction of the tī system is performed using an artificial NN:
  - For identifying detector-level physics objects and in particular up/down jet assignments.
  - Inputs include lepton kinematics, missing energy, jet kinematics, b-tagging scores (up to 8 jets).

Events / 0.02

![](_page_15_Figure_11.jpeg)

![](_page_15_Figure_12.jpeg)

![](_page_15_Figure_13.jpeg)

## **EVENT CATEGORIZATION**

- > ANN is trained with "correct permutation" vs. "wrong *permutations*"  $\Rightarrow$  the permutation with the highest score is used in the final analysis.
- Events divided into categories based on lepton flavor  $(e/\mu)$ , number of b-tagged jets, and the S<sub>NN</sub> score.
  - Drop the events with low  $S_{NN}$  score (<0.1) to avoid the events with low fraction of correctly assigned permutation & larger background contribution.

|          | # of b-tags | $S_{low}$                 |     |
|----------|-------------|---------------------------|-----|
| 4 event  | 2b          | $0.1 < S_{\rm NN} < 0.36$ | 0.3 |
| C1077-67 | 1b          | $0.1 < S_{\rm NN} < 0.30$ | 0.3 |

Reaches ~50% correct jet assignment rate (including) the down-type quark assignment too!).

## Shigh

 $36 < S_{NN}$ 

 $30 < S_{NN}$ 

![](_page_16_Figure_13.jpeg)

# **EXTRACTION OF POLARIZATION & SPIN CORRELATION**

> Differential cross section  $\Sigma_{tot}$  as a linear combination of template functions  $\Sigma_m \times P \& C$  coefficients  $Q_m$ :

$$\Sigma_{\text{tot}} = \Sigma_0 + \sum_{m=1}^{15} Q_m \Sigma_m$$

 $\Sigma_m \propto \sigma_{\text{norm}} \{ \sin \theta_p \cos \phi_p, \sin \theta_p \sin \phi_p, \dots, \cos \theta_p \cos \theta_{\overline{p}} \}$ 

- $\succ$  Coefficients  $Q_m$  are extracted by fitting  $\Sigma_{tot}$  in bins of  $m(t\bar{t})$  vs  $|\cos\Theta|$  or  $p_T(t)$  vs  $|\cos\Theta|$ .
- > Reweighting technique  $(\Sigma_m / \Sigma_{tot})$  to evaluate the detectorlevel template  $T_m$  for each  $Q_m$ .
- > The gen-level template  $\Sigma_m$  should be independent from top kinematics, but not the case of  $T_m$ .
- > The binning should be narrow enough to minimize the bias due to top kinematics dependence of  $T_m$  within a bin.

## T<sub>m</sub>: detector-level template

![](_page_17_Figure_10.jpeg)

![](_page_17_Figure_16.jpeg)

## FULL POLARIZATION & SPIN MATRIX FITS

- periods = 16 categories in total.
- > Post-fit distributions for full matrix analysis in  $m(t\bar{t})$  vs  $|cos\Theta|$  bins:

![](_page_18_Figure_3.jpeg)

> A maximum likelihood fit combining the information of the 4 event classes × 4 data-taking

![](_page_18_Picture_6.jpeg)

# **RESULTS: FULL POLARIZATION & SPIN MATRIX**

## > Inclusive & Differential measurements in bins of $m(t\bar{t})$ vs $|\cos\Theta|$ and $p_T(t)$ vs $|\cos\Theta|$ . • Evaluation of full correlation matrix and polarization vectors. Ref. CMS arXiv:2409.11067

- Good agreement with SM prediction!

![](_page_19_Figure_4.jpeg)

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

![](_page_19_Picture_8.jpeg)

# • Good agreement with SM prediction still!

![](_page_20_Figure_4.jpeg)

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_4.jpeg)

## **RESULTS: ENTANGLEMENT FITS**

• Good agreement with SM prediction as well!

![](_page_22_Figure_3.jpeg)

> Inclusive & differential measurements of D & D proxies in bins of  $m(t\bar{t})$  vs  $|\cos\Theta|$  and  $p_T(t)$  vs  $|\cos\Theta|$ .

In order to "see" the entanglement we have to go to specific phasespace regions!

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_7.jpeg)

## **ENTANGLED OR NOT?**

- > Test of entanglement with **D** & **D** proxies or with full correlation **matrix** in specific phase-space regions.
  - Observation of tt entanglement at high m(tt) for the first time!  $\bigcirc$
  - Modest sensitivity for low  $m(t\bar{t})$ .

![](_page_23_Figure_4.jpeg)

![](_page_23_Figure_5.jpeg)

![](_page_23_Figure_7.jpeg)

Best sensitivity here!

![](_page_23_Picture_9.jpeg)

![](_page_23_Picture_10.jpeg)

# **SPACE-LIKE EVENTS: ENTANGLED OR NOT?**

- > Fraction of **space-like** separation events increases with  $m(t\bar{t})$ :
  - For  $m(t\bar{t}) > 800GeV$  the fraction of space-like separated decays is ~90%.
- > A more stringent criterion for entanglement that cannot be explained exchange of information at  $v \le c$  alone ("*critical entanglement*") is defined:

$$\Delta E_{\rm crit} = f \Delta E_{\rm sep} + (1 - f) \Delta E_{\rm max} \approx 1.2$$

Regular criterion for from space-like events: from time-like events:  $\Delta E_{sep} = 1$ 

Maximized contribution  $\Delta E_{max} = 3$ 

Criterion for entangled  $\Delta E > \Delta E_{\rm crit}$ space-like events

![](_page_24_Figure_9.jpeg)

# WHAT'S THE NEXT?

- ► Observation of tī entanglement is just the beginning of the journey!
- > Analysis of high m(tt) region has the potential to find the violation of Bell's Inequality!
  - Phrased in terms of Clauser, Horne, Shimony, and Holt (CHSH) **Ref. Clauser et al** inequality. PRL 23(15) (1969) 880
  - For tī the criterion can be expressed as:  $\sqrt{2} | - C_{rr} + C_{nn} | \le 2$
  - To be examined in the near future  $\bigcirc$ with a much larger data set!

![](_page_25_Figure_6.jpeg)

![](_page_25_Figure_7.jpeg)

## **SUMMARY & OUTLOOK**

## > Top quark entanglement has been observed:

- A potential "toponium" bound state at the threshold improves the data modeling.
- Using the lepton+jets events at high  $m(t\bar{t})$  confirms the space-like separated events are entangled.

## > At future e<sup>+</sup>e<sup>-</sup> machines:

- A much cleaner environment for better understanding of top quark properties & modeling (including the threshold effects)!
- Similar formulation can be introduced for spin correlation studies; level of entanglement depends on m(tt̄) as well — higher  $\sqrt{s}$  is preferred!

## Also see the related talks yesterday!

![](_page_26_Figure_8.jpeg)

![](_page_26_Figure_9.jpeg)

![](_page_27_Picture_0.jpeg)

## CMS SEARCH FOR H/A $\rightarrow$ tt

- ► Heavy A/H to tt dilepton and lepton+jets, 138 fb<sup>-1</sup> at CMS.
- > Significant excess at tt threshold, favors the pseudoscalar signal hypothesis.
- > Perform fits to the invariant masse and helicity angle distributions.

![](_page_28_Figure_4.jpeg)

Ref. <u>CMS-PAS-HIG-22-013</u>

![](_page_28_Figure_9.jpeg)