

Charmoniumlike States at BESII

Yuping Guo (郭玉萍)

On Behalf of BESIII Collaboration

The 2024 International Workshop on the High Energy Circular Electron Positron Collider Hangzhou 2024.10.25

• Quark Model [1964 by Gell-Mann and Zweig]

• Exotic hadrons:

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN

Lowest Configuration!

Received 4 January 1964

California Institute of Technology, Pasadena, California

anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

Glueball

Yuping Guo @ 2024 CEPC Internatinal Workshop

Beijing Electron Positron Collider II and BESIII

Solenoid Magnet: 0.9/1.0 T

MUC $\sigma_{R\Phi}$: 2 cm

TOF

σ_T:80 ps 110 ps (60 ps)

MDC

dE/dx: 6% σ_p /p: 0.5% at 1GeV/c_

EMC

 $\Delta E/E$: at 1GeV 2.5% 5.0% σ_{z} : 0.6 cm/ \sqrt{E}

BESIII Data Samples

Can measure $\sigma[e^+e^- \rightarrow h_i]$ (CS) with high precision using direct e^+e^- annihilation data at BESIII \Rightarrow Y states

BESIII Data Samples

Can measure $\sigma[e^+e^- \rightarrow h_i]$ (CS) with high precision using direct e^+e^- annihilation data at BESIII \Rightarrow Y states

Discovery of Y States

- - Confirmed by CLEO and Belle
 - \blacksquare Mass > 4 GeV, above $D\overline{D}$ threshold
 - Solution Served in inclusive hadron cross section
 - Not observed in open charm pair cross section

Yuping Guo @ 2024 CEPC Internatinal Workshop

Discovery of Y States

- - \blacksquare Mass > 4 GeV, above *DD* threshold
 - Solution Served in inclusive hadron cross section
 - Not observed in open charm pair cross section

Yuping Guo @ 2024 CEPC Internatinal Workshop

Yuping Guo @ 2024 CEPC Internatinal Workshop

Y(4230) in Open Charm Process

				\downarrow					
$\Gamma_{ee}B(\mathrm{eV})$	$\pi^+\pi^- J/\psi$	$\pi^+\pi^-h_c$	$\omega\chi_{c0}$	$\pi^+\pi^-\psi(2S)$	$\eta J/\psi$	K^+K^-J/ψ	$\pi^+\pi^- J/\psi$	$\pi^{\pm}(D\bar{D}^*)^{\mp}$	$\pi^{\pm}(D^*\bar{D}^*)^{\mp}$
Min	1.7[0.2]	4.6[2.9]	2.5[0.2]	0.02[0.01]	4.0[0.5]	0.29[0.10]	0.22[0.25]	8.6[1.6]	4.8[0.9]
Max	14.6[1.2]			1.64[0.83]	11.9[1.1]	0.42[0.15]	0.53[0.15]	77.4[10.1]	22.4[9.0]

Yuping Guo @ 2024 CEPC Internatinal Workshop

Mass and width from different process

determined with BW parameterization consider possible interference

Measurement of $\sigma [e^+e^-]$

- The first evidence of $e^+e^- \rightarrow \eta h_c$ was found by
- The process $e^+e^- \rightarrow \eta h_c$ was observed for the resonance around 4.2 GeV was observed PR
- New data (15 fb⁻¹) between \sqrt{s} =4.13 to 4.6 GeV has been collected by BESIII

Yuping Guo @ 2024 CEPC Internatinal Workshop

$$\rightarrow \eta h_c$$
]

y CLEO at
$$\sqrt{s}$$
=4.17 GeV [3 σ] PRL 107, 041803 (2011)
e first time at \sqrt{s} =4.226 GeV by BESIII, a hint of a

Measurement of $\sigma[e^+e^-$

Yuping Guo @ 2024 CEPC Internatinal Workshop

4.85

Measurement of $\sigma[e^+e^-$

Yuping Guo @ 2024 CEPC Internatinal Workshop

$$\rightarrow \eta h_{C}$$

$$\Rightarrow \eta h_{C}$$

$$\Rightarrow \sigma^{dressed} = |BW_{1} + BW_{3}e^{i\phi}|^{2} + |BW_{3}|^{2}$$

$$\Rightarrow \sigma^{dressed} = |BW_{1} + |BW_{3} +$$

Observation of Y(4500)

 $M = 4484.7 \pm 13.3 \pm 24.1 \text{ MeV}/c^2$ $\Gamma = 111.1 \pm 30.1 \pm 15.2 \text{ MeV}$

- A 5S-4D mixing state (J. Z. Wang et al. PRD99, 114003 (2019) [Width 2σ larger]
- A heavy-antiheavy hadronic molecule (X. K. Dong et al. Prog. Phys. 41, 65 (2021))

 $M = 4469.1 \pm 26.2 \pm 3.6 \text{ MeV}/c^2$, $\Gamma = 246.3 \pm 36.7 \pm 9.4 \text{ MeV}$

- A $cs\bar{c}\bar{s}$ state from LQCD (T. W. Chiu et al. PRD73, 094510) (2006))
- Solution \cong Assuming structures in *KKJ*/ ψ and πD^*D^* are the same, $B[Y \rightarrow \pi D^* \overline{D}^*]/B[Y \rightarrow K \overline{K} J/\psi] \sim 10^2$, inconsistent with hidden-strangeness tetraquark nature (F. Z. Peng et al. PRD107, 016001 (2023))

New Information from $\sigma[e^+e^- \rightarrow \omega\chi_{c1,2}]$

- New data (11.0 fb⁻¹) between \sqrt{s} =4.3 to 4.95 GeV has been collected by BESIII

• The process $e^+e^- \rightarrow \omega \chi_{c1,2}$ was observed for the first time at $\sqrt{s}=4.6$ GeV or 4.42 GeV by BESIII PRD 93, 011102(R) (2016)

- $M = 4413.6 \pm 9.0 \pm 0.8 \text{ MeV}/c^2$ $\Gamma = 110.5 \pm 15.0 \pm 2.9 \text{ MeV}$
- Significance over PHSP: 10.7σ
- Parameters consistent with $\psi(4415)$, implying the existence of $\psi(4415) \rightarrow \omega \chi_{c2}$

a(Ca)/

 $\alpha(C \alpha)/\lambda$

Production Properties of $D_{s1}(2536)$ **and** $D_{s2}^*(2573)$

• 15 data samples corresponding to a total integrated lum. of 6.6 fb⁻¹ from \sqrt{s} =4.53 to 4.95 GeV

• Fit with $\sigma = |BW_0(\sqrt{s}) + BW_1(\sqrt{s})e^{i\phi_1}|^2$

- In both processes, the first resonance is around 4.6 GeV, with a width of 50 MeV
- Second strucutre is around 4.75 GeV with a width of 25 MeV in $D_s^+ D_{s1}(2536)^-$, around 4.72 GeV with a width of 50 MeV in $D_{s}^{+}D_{s2}^{*}(2573)^{-}$

Production Properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$

• 15 data samples corresponding to a total integrated lum. of 6.6 fb⁻¹ from \sqrt{s} =4.53 to 4.95 GeV

• Fit with $\sigma = |BW_0(\sqrt{s}) + BW_1(\sqrt{s})e^{i\phi_1}|^2$

In both processes, the first resonance is around 4.6 GeV, with a width of 50 MeV

Second strucutre is around 4.75 GeV with a width of 25 MeV in $D_s^+ D_{s1}(2536)^-$, around 4.72 GeV with a width of 50 MeV in $D_{s}^{+}D_{s2}^{*}(2573)^{-}$

Precise Measurement of Open Cham Cross Section

Precise Measurement of $\sigma[e^+e^- \rightarrow D_s^+D_s^-]$

- (E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, T. M. Yan, PRD21, 203 (1980))
- Maximum cross section around 4.02 GeV higher than previous studies using ISR method
- A narrow dip around 4.23 GeV, close to $D_s^{*+}D_s^{*-}$ threshold
- Constant ratio to $D_s^{*+}D_s^{*-}$, where a structure around 4.78 GeV is observed

Yuping Guo @ 2024 CEPC Internatinal Workshop

• 138 data samples corresponding to a total integrated lum. of 22.9 fb⁻¹ from \sqrt{s} =3.94 to 4.95 GeV

Cross section peaks above the threshold, implies the presence of a strong coupled channel effect

Precise Measurement of $\sigma[e^+e^- \rightarrow D_s^+D_s^-]$

- Constant ratio to $D_s^{*+}D_s^{*-}$, where a structure around 4.78 GeV is observed

Yuping Guo @ 2024 CEPC Internatinal Workshop

• 138 data samples corresponding to a total integrated lum. of 22.9 fb⁻¹ from \sqrt{s} =3.94 to 4.95 GeV

Precise Measurement of $\sigma[e^+e^- \rightarrow DD]$

Partial reconstruction

PRL133, 081901 (2024)

• 150 data samples corresponding to a total integrated lum. of 20 fb⁻¹ from \sqrt{s} =3.8 to 4.95 GeV

Precise Measurement of $\sigma[e^+e^- \rightarrow DD]$

Partial reconstruction

PRL133, 081901 (2024)

• 150 data samples corresponding to a total integrated lum. of 20 fb⁻¹ from \sqrt{s} =3.8 to 4.95 GeV

Four-Quark Matter: Z_c

Seen in both charged and neutral modes

Yuping Guo @ 2024 CEPC Internatinal Workshop

Strange Partner of Z_c States: Z_{cs}

Yuping Guo @ 2024 CEPC Internatinal Workshop

19

Yuping Guo @ 2024 CEPC Internatinal Workshop

C-even States

- Small production rate in radiative transition process
- Radiative and hadronic transitions to X(3872) are observed at BESIII
- Several decay modes of X(3872) have been searched: $\pi^0 \chi_{c1}$ [observed], $\pi\pi\chi_{c0,1,2}, \pi\chi_{c0}, \pi\pi\eta, \gamma\psi_2(3823)$
- Found evidence of X(3915)/X(3960) [$\omega J/\psi$ mode], no obvious signal for X(4140), X(4274), X(4500) [$\phi J/\psi$ mode], no evidence of X₂(4013) $[D\bar{D} \text{ mode}]$

C-even States

- Small production rate in radiative transition process
- Radiative and hadronic transitions to X(3872) are observed at BESIII
- Several decay modes of X(3872) have been searched: $\pi^0 \chi_{c1}$ [observed], $\pi \pi \chi_{c0,1,2}, \pi \chi_{c0}, \pi \pi \eta, \gamma \psi_2(3823)$
- Found evidence of X(3915)/X(3960) [$\omega J/\psi$ mode], no obvious signal for X(4140), X(4274), X(4500) [$\phi J/\psi$ mode], no evidence of X₂(4013) [$D\bar{D}$ mode]

Line Shape of X(3872)

- * Effects of the couple-channels and the off-shell D^{*0} are included in the parameterization
- * Line shape mass: $M_X = (3871.63 \pm 0.13^{+0.06}_{-0.05}) \text{ MeV}$
- Weinberg's compositeness: Z=1 pure elemental state; Z=0 -pure bound state

Yuping Guo (郭玉萍) @ 山东物理学会2024年学术会议, 2024.10.19

				Bas
Pa	rameters	BESIII	LHCb	19.8
	g	$0.16 \pm 0.010^{+1.12}_{-0.11}$	$0.108 \pm 0.003^{+0}_{-0}$).005).006
Re	[EI] (MeV)	$7.04 \pm 0.15^{+0.07}_{-0.08}$	7.10	
Im	[EI] (MeV)	$-0.19 \pm 0.08^{+0.14}_{-0.19}$	-0.13	
$\Gamma[\pi^+\pi^-]$	$J/\psi]/\Gamma[D^0\bar{D}^{*0}]$	$0.05 \pm 0.01^{+0.01}_{-0.02}$	0.11 ± 0.03	
FW	HM (MeV)	$0.44_{-0.35-0.25}^{+0.13+0.38}$	$0.22^{+0.06+0.25}_{-0.08-0.17}$	5 7
	Z	0.18	0.15 (0.33)	

- Dedicated scan sample around the resonance

Yuping Guo (郭玉萍) @ 山东物理学会2024年学术会议, 2024.10.19

Summary

- Benefit from the fine scan data samples collected between $\sqrt{s}=3.8$ to 4.95 GeV, good performance of BEPCII and BESIII, the properties of charmonium and charmoniumlike states have been studied
 - Y(4260) has fine structure, the lower one Y(4230) is observed in more than 10 decay modes, including open charm modes Solution Discovered new charmonium-like states Y(4500) and Y(4710)/Y(4790)

 - In the cross-section line shapes are very complicated, more sophisticate d analysis may determine the pole positions of these states better and help to understand their nature
 - \bigcirc Observed four-quark matter Z_c and Z_{cs} states, need to search for partners to establish the spectroscopy
 - Decay and production properties of C-even states have been investigated using clean samples
 - New production mechanism of C-even state has been found, opens a new avenue for study of hadrons
- BEPCII is upgrading, increase the luminosity at \sqrt{s} =4.7 GeV by a factor of 3, and extend the \sqrt{s} up to 5.6 GeV starting from 2028, more exciting results are expected!

Thank You!

60 復旦大學 20 BESIII (2022). $_{18}$ + This work — Fit result $D_{s}^{*} D_{s}^{*-}$ 600 ····· Y(4500) ····· Y(4710) Y(4500) K^+K^-J/ψ (qd) $> 6\sigma$ *Y*(4710)

60

80

200

4.2

4.4

4.6

4.8

s(GeV)

^₄.8

^{1.6}4.6 5

√s(GeV)

• Y(4626) observed in $e^+e^{40} \rightarrow \gamma_{\text{ISR}}D_s^+D_{s1}(2536)^-$, and evidence of Y(4620) in $e^+e^- \rightarrow \gamma_{\text{ISR}}D_s^+D_{s2}^*(2573)^-$ (qd)₀ 20 (qd) 20 26 10 10

X(3872) Decay Property

Yuping Guo @ 2024 CEPC Internatinal Workshop

Ratio	90% C.L Upper Limit
$\frac{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \rightarrow \pi^+ \pi^- J/\psi)}$	3.6
$\frac{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c1})}$	4.5
$\frac{\mathcal{B}(X(3872) \rightarrow \pi^+ \pi^- \chi_{c0})}{\mathcal{B}(X(3872) \rightarrow \pi^+ \pi^- J/\psi)}$	0.56
$\left \frac{\mathcal{B}(X(3872)\to\pi^0\pi^0\chi_{c0})}{\mathcal{B}(X(3872)\to\pi^+\pi^-J/\psi)}\right $	1.7

PRD 105, 072009 (2022)

 $Z_{cs}' in K^+ D^{*0} D_s^{*-}$

Yuping Guo @ 2024 CEPC Internatinal Workshop

Update of $\eta\psi(3686)$ and Search for X(3872)

* 8.9 fb⁻¹ data sample from 4.288 to 4.951 GeV

Yuping Guo @ 2024 CEPC Internatinal Workshop

Future Data Samples

Table 7.1. List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples most column shows the number of required data taking days with the current (T_C) and upgraded (\int_{C} implementation and beam current increase.

Energy	Physics motivations	=
1.8 - 2.0 GeV	R values Nucleon cross-sections	
2.0 - 3.1 GeV	R values Cross-sections	Fine
J/ψ peak	Light hadron & Glueball J/ψ decays	
ψ (3686) peak	Light hadron & Glueball Charmonium decays	0
$\psi(3770)$ peak	D^0/D^{\pm} decays	
3.8 - 4.6 GeV	R values XYZ/Open charm	Fine
4.180 GeV	D_s decay XYZ /Open charm	
4.0 - 4.6 GeV	XYZ/Open charm Higher charmonia cross-sections	16
4.6 - 4.9 GeV	Charmed baryon/XYZ cross-sections	
4.74 GeV	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	
4.91 GeV	$\Sigma_c \overline{\Sigma}_c$ cross-section	
4.95 GeV	Ξ_c decays	

