Observation of $\gamma\gamma \rightarrow \tau\tau$ in pp collisions and probing tau g-2 at CMS

Dayong Wang Peking University, on behalf of CMS Collaboration CEPC workshop, Hangzhou, 2024.10.25

Lepton anomalous magnetic moment

- Spin and magnetic moment of lepton related via gyromagnetic factor g
- Dirac equation predicts g=2
- In QED, quantum effects modify the value of g, giving rise to an anomalous magnetic moment:

 $a_l = (g-2)/2$

- NLO prediction (Schwinger, 1948): $a_l = \frac{\alpha}{2\pi} \cong 0.00116$
- Further corrections calculated

Measurements of a_l

- measurements of a_e in Penning traps are the "most precise in physics"
- measurements of a_{μ} in storage rings are in longstanding tension with theoretical computations
- constraints on a_{τ} in e⁺e⁻ or PbPb collisions:
 - $-0.052 < a_{\tau} < 0.013$, 95% CL (<u>DELPHI@LEP</u>)
 - $-0.088 < a_{\tau} < 0.056$, 68% CL (<u>CMS HIN</u>)
 - $-0.057 < a_{\tau} < 0.024$, 95% CL (<u>ATLAS HIN</u>)
- If BSM effects scale with the m_l^2 , deviations from SM could be 280 times larger than for a_{μ}

Constraint on tau electromagnetic moments a_{τ} & d_{τ}

- a_{τ} & electric dipole moment d_{τ} can be probed from $\gamma \tau \tau$ vertex
 - $\begin{cases} \gamma & & \gamma & & \tau^+ \\ g-2 & & \tau & & \tau^+ \\ \end{array}$

- contraints on electromagnetic moments $a_{\tau} \& d_{\tau}$ from form factors or SMEFT
- in the SM: $d_{\tau} \sim 10^{-37}$ ecm via CP violation in CKM, but could be much larger in BSMs

• $\gamma\gamma \rightarrow \tau\tau$ process contains 2 $\gamma\tau\tau$ vertices

Photon-induced processes

CMS: PRL 131 (2023) 151803

- Photon-induced process: two charged particles (e.g. protons or ions) pass each other at relativistic velocities, they generate intense electromagnetic fields → photon-photon collisions can happen
- Cross section proportional to Z⁴ → huge enhancement in Pb-Pb runs compared to pp runs
- ATLAS and CMS has observed γγ → ττ process in Pb-Pb collisions and constrain tau g-2 → but still worse than LEP measurements

 $v \approx c$

 τ γ $\tau^$ e^-

LEP: DELPHI, L3, ...

 $e^+e^- \rightarrow e^+e^- \tau^+\tau^-$

EPJC 35 (2004) 159 PLB 407 (1997) 341

$\gamma\gamma \rightarrow \tau\tau$ study at CMS

$\gamma\gamma \rightarrow \tau\tau$ signature

• 2 τ leptons

- opposite charge sign
- back-to-back: $|\Delta \phi| \approx \pi$
- $\underline{\tau}$ decays: $\underline{\tau\tau}$ decays:

 no hadronic activity close to *ττ* vertex

Background in signal region

MC simulation

- Drell–Yan $(Z/\gamma^* \rightarrow \ell \ell)$: dominant at low mass
- exclusive $\gamma\gamma \rightarrow ee$, $\mu\mu$, WW production
- inclusive WW production (small)
- data-driven: misidentified hadronic jets
 - $j \rightarrow \tau_{\rm h}$: $e\tau_{\rm h}$, $\mu\tau_{\rm h} \& \tau_{\rm h}\tau_{\rm h}$ channels
 - $j \rightarrow e/\mu$: $e\mu$ channels

8

Strategy for $\gamma\gamma \rightarrow \tau\tau$ in pp

- select events with opposite sign $\tau^+\tau^-$
 - \succ combine 4 $\tau\tau$ final states: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$
 - > exclusivity cuts:
 - back-to-back: $A = 1 \frac{|\Delta \phi|}{\pi} < 0.015$

- use $\mu\mu$ events (Z $\rightarrow \mu\mu$, $\gamma\gamma \rightarrow \mu\mu$) to measure corrections to simulation
- measure $\gamma \gamma \rightarrow \tau \tau$ from observed $m_{\tau \tau}$ shape & yield in 50 < $m_{\tau \tau}^{vis}$ < 500 GeV:
 - above e^+e^- & PbPb ($m_{\tau\tau} \lesssim 50$ GeV)
 - $m_{\tau\tau}^{\rm vis} \lesssim 500 \,{\rm GeV}$ to ensure unitarity in signal samples

 \mathbf{ee}

N_{tracks} corrections

derive obs. / sim. corrections in Z $\rightarrow \mu\mu$ events at Z peak, $|m_{\mu\mu} - m_Z| < 15$ GeV:

- pileup tracks: compare N^{PU}_{tracks} distributions in 0.1 cm z windows (far away from μμ vertex) → applied to all simulations
- hard scattering tracks: compare N_{tracks}^{HS} distributions in 0.1 cm *z* window around $\mu\mu$ vertex \rightarrow applied to Drell-Yan process

Elastic rescaling

- signal samples: only elastic-elastic (ee) process generated by gammaUPC (Shao&d'Enterria_2207.03012, JHEP 09 (2022) 248)
- single-dissociative (sd) and double-dissociative (dd) processes not included
 - have larger cross section
 - can have an exclusive signature
- estimate dissociative contributions (incl. higher-order corrections) by rescaling elastic-elastic $\gamma\gamma \rightarrow \mu\mu$ signal in $\mu\mu$ data

 $\Rightarrow \text{measure rescaling factor} = \frac{(ee+sd+dd)_{obs}}{(ee)_{sim}}$

Elastic rescaling

- rescaling factor measured in $m_{\mu\mu}$ distribution in dimuon events with A < 0.015 and N_{tracks} = 0 or 1
- inclusive background (mostly Drell–Yan)
 - estimated from data in $3 \le N_{\text{tracks}} \le 7$ region
 - normalized to Z peak
- elastic $\gamma\gamma \rightarrow \mu\mu$ /WW "signal"
 - contributes significantly $m_{\mu\mu}$ > 150 GeV
 - rescale to data to estimate nonelastic contribution
- fits:
 - **linear fit** applied as nominal corrections to all elastic simulation ($\gamma\gamma \rightarrow ee, \mu\mu, \tau\tau, WW$)
 - flat fit (~2.7) used to obtain uncertainty (conservative)

applied to photon-induced simulation ($\gamma\gamma \rightarrow \&\&$, WW)

12

SR with N_{tracks} = 0

- after maximum-likelihood fit to observed data
- assuming SM $a_{\tau} \& d_{\tau}$
- signal clearly visible in high $m_{\rm vis}(au au)$ bins

N_{tracks} distributions

- same selections as SR, but
 - allowing $N_{\text{track}} < 10$
 - *m*_{vis} > 100 GeV
- combination of
 - all 4 $\tau\tau$ channels
 - all 3 data-taking years
- very nice modeling of N_{tracks} !
- signal clearly visible

First observation of $\gamma \gamma \rightarrow \tau \tau$ in pp collisions!

- combined observed significance of 5.3σ (6.5 σ expected) assuming SM a_{τ}
 - \Rightarrow *first* observation of $\gamma\gamma \rightarrow \tau\tau$ in pp !
- combined signal strength

r = 0.75 + 0.21 - 0.18

- w.r.t. gammaUPC elastic prediction \times rescaling measured in $\mu\mu$ data
- Fiducial cross section: 12.4^{+3.8}-3.1 fb
- dominant systematic uncertainties:
 - elastic rescaling to $\gamma\gamma \rightarrow \tau\tau$
 - N^{HS}_{tracks} corrections to Drell–Yan

ττ channel	Observed	Expected
eμ	2.3σ	3.2σ
$e\tau_h$	3.0σ	2 .1 <i>σ</i>
$\mu au_{ m h}$	2 .1 <i>σ</i>	3.9σ
$ au_{\rm h} au_{\rm h}$	3.4σ	3.9σ
Combined	5.3σ	6.5σ

CMS Experiment at the LHC, CERN Data recorded: 2018-May-01 13:53:45.602112 GMT Run / Event / LS: 315512 / 65277407 / 69

 $\pi^+\pi^-\pi^+$

Constraints on $a_{ au}$

Constraints on $a_{ au}$

- SM: **α**_τ = 0.001 177 21(5)
- DELPHI: $a_{\tau} = -0.018 \pm 0.017$
- ATLAS: $a_{\tau} = -0.041 + 0.012 0.009$
- CMS HIN: $a_{\tau} = 0.001 + 0.055 0.089$
- this result: a_{τ} = 0.0009 +0.0032 -0.0031

>5x better than LEP !

Constraints on $d_{ au}$

- SM: $d_{\tau} \simeq 10^{-37}$ ecm (due to CPV in CKM)
- Belle: $-1.85 < d_{\tau} < 0.61 \times 10^{-17} \text{ ecm (95\%)}$
- this result: $-1.70 < d_{\tau} < 1.70 \times 10^{-17} \text{ ecm (68\%)}$

approaching Belle !

Constraints on Wilson coefficients

recast results to make exclusion of $C_{\tau B}/\Lambda^2$ vs. $C_{\tau W}/\Lambda^2$:

Observed 95% CL

 $C_{\tau B}^{Re}/\Lambda^2$ [TeV⁻²]

 $C_{\tau B}^{lm}/\Lambda^2$ [TeV⁻²] 21

138 fb⁻¹ (13 TeV)

- Observed 95% CL

-2

Summary

- Tau g-2 and EDM has a strong potential to probe new physics
- CMS made the first observation of $\gamma\gamma \rightarrow \tau\tau$ in pp collisions(5.3 σ)
 - Full Run-2 data analyzed in 4 $\tau\tau$ final states
 - Published at <u>Reports on Progress in Physics 87 (2024) 107801</u>
- The measurement is used to constrain the tau electromagnetic moments with an EFT approach
 - Large improvement on tau g-2
 - Tau EDM result is at the same order as the best measurement