

LHCb analyses and prospects for decays involving t

Bo Fang (方勃) **University of Chinese Academy of Sciences On behalf of the LHCb collaboration**

The 2024 International Workshop on the High Energy Circular Electron Positron Collider Oct 22-27, 2024, Hangzhou

Outline

- Motivation: τ and new physics
- The LHCb detector
- Physics results involving τ from LHCb
- Challenges and prospects
- Summary

Motivation: τ and new physics

• In the same year for observation of the Higgs boson, Babar collaboration reported a 3.4σ tension for $R(D^{(*)})$

$$R(D^{(*)}) = \frac{\mathscr{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathscr{B}(B \to D^{(*)}\ell\nu_{\ell})} (\ell = e,$$

- As an accidental symmetry in SM, lepton flavour universality expects the same coupling between gauge bosons and three charged leptons.
- Physics beyond the SM could introduce enhancement for processes involving different charged leptons, especially the heavier third generation *τ*-lepton.
- The tension in $R(D^{(*)})$ stimulates a lot of explorations for new physics, like LFU tests with semitauonic decays, LFV searches with rare decays... LFL

LFU: lepton flavour universality LFV: lepton flavour violation

Int. J. Mod. Phys. A 30(2015)153002 The LHCb detector (Run1&2) JINST 3(2008)S08005

A single-arm forward spectrometer, designed for the study of heavy flavour physics

- **Excellent vertex**, IP and decay-time resolution
- Very good momentum resolution \bullet
- Good hadron and muon identification
- $2 < \eta < 5$ range (LHCb acceptance): $\sim 3 \times 10^4 / s b\bar{b}$ pairs@ 7 TeV ~x2 yield@ 13 TeV

PV

 $\overline{B}{}^0
ightarrow D^{*+} au^- \overline{
u}_{ au}$

Different reconstruction methods of τ -lepton at LHCb

- Direct measurement of $R(X_c)$
- High statistics
- Backgrounds from \boldsymbol{D} meson must be controlled well
- Sensitive to $D^{**}\mu^-\bar{\nu}_{\mu}$

Bo Fang, UCAS 25/10/2024

- Detached τ^+ decay position to suppress dominant backgrounds
- High purity sample
- Specific dynamics of $\tau^+ \to 3\pi^{\pm}(\pi^0)\bar{\nu}_{\tau}$
- $R(X_c)$ calculation requires external inputs
- Lower statistics

Muonic decays of τ

 $\mathscr{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}) = (17.39 \pm 0.04) \%$

Supersede

- $R(D^*)$, Run1 3fb⁻¹ [PRL 115(2015)111803]
- $R(D^0)$ & $R(D^*)$, Run1 3fb⁻¹ [PRL 131(2023)111802]
- $R(D^+)$ & $R(D^{*+})$, part. Run2 2fb⁻¹ [LHCb-PAPER-2024-007]

• $R(J/\psi)$, Run1 3fb⁻¹ [PRL 120(2018)121801]

• $R(D^0)$ & $R(D^*)$, Run1

- - τ channel will be background for μ channel
- Large statistics, low purity
- Main backgrounds from double-charm process and misID

• Signal and normalisation channels have the same final states

• $R(D^*)$, part. Run2 [PRD 108(2023)012018] (Erratum [PRD 109(2024)119902])

- Normalise to $B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+$
 - External input for getting $R(D^*)$
- Lower statistics, higher purity
- Main backgrounds from $B \rightarrow D^{*-}D_{c}(X)$

Current $R(D) - R(D^*)$ scenario

- $R(D) \& R(D^*)$ tension with SM: 3.3 σ
- Theory predictions are quite precise ~ 1%
- Belle & Belle II results dominated by statistical uncertainty
- LHCb results have $\sigma_{syst} > \sigma_{stat}$

Bo Fang, UCAS 25/10/2024

- LHCb^a: Muonic R(D) & $R(D^*)$, Run1
- LHCb^b: Hadronic $R(D^*)$, Run1+part. Run2
- LHCb^c: Muonic $R(D^+)$ & $R(D^{*+})$, part. Run2

• $R(D^{**})$, Run1+Run2 [LHCb-PAPER-2024-037], in preparation

 $D_{1,2}^{**0}$: $D_1(2420)^0$ and $D_2^*(2460)^0$

• First evidence of $B^- \to D^{**0} \tau^- \bar{\nu}_{\tau} ~~ 3.5\sigma$

$$\frac{\mathscr{B}(B^- \to D_{1,2}^{**0} \tau^- \bar{\nu}_{\tau})}{\mathscr{B}(B^- \to D_{1,2}^{**0} D_s^{(*)-})} = 0.19 \pm 0.05$$

- With external input of $\mathscr{B}(B^- \to D_{1,2}^{**0}(D_s^- + D_s^{*-}))$ and $\mathscr{B}(B^- \to D_{1,2}^{**0} \mu^- \bar{\nu}_{\mu})$: $R(D_{12}^{**0}) = 0.13 \pm 0.03(stat) \pm 0.01(syst) \pm 0.02(ext)$
- Consistent with SM prediction: 0.09 ± 0.02
- Measured signal yields can be used to constrain $B \rightarrow D^{**}\tau^- \bar{\nu}_{\tau}$ background in $R(D^*)$ measurement

 $N_{D_{12}^{**0}\tau^-\bar{\nu}_{\tau}} = 123 \pm 23(stat) \pm 14(syst)$ $N_{(D_{1,2}^{**0} + D_{1}^{'})\tau^{-}\bar{\nu}_{\tau}} = 220 \pm 34(stat) \pm 25(syst)$

Rare decays involving τ at LHCb

Lepton flavour violating decays

- $B_s^0 \rightarrow \phi \mu^{\pm} \tau^{\mp}$, Run1+Run2 9fb⁻¹ [arXiv: 2405.13103]
- $B^0 \rightarrow K^{*0} \tau^{\pm} \mu^{\mp}$, Run1+Run2 9fb⁻¹ [JHEP 06(2023)143]
- $B^+ \rightarrow K^+ \mu^- \tau^+$, Run1+Run2 9fb⁻¹ [JHEP 06(2020)129]

 $N \rightarrow \tau^+ \tau^-$ measurement • $Z \rightarrow \tau^+ \tau^-$ production, $\sqrt{s} = 7,8$ TeV [JHEP 01(2013)111, JHEP 09(2018)159]

1,2fb⁻¹ •
$$B_{(s)}^{0} \rightarrow \tau^{+}\tau^{-}$$
, Run1 3fb⁻¹
] [PRL 118(2017)251802]

Representative results of rare decays

 $\mathscr{B}(B^0 \to K^{*0} \tau^- \mu^+) < 8.2 \times 10^{-6}$ at 90% CL $< 9.8 \times 10^{-6}$ at 95% CL

 $\mathscr{B}(B^+ \to K^+ \mu^- \tau^+) < 3.9 \times 10^{-5}$ at 90% CL $< 4.5 \times 10^{-5}$ at 95% CL

Representative results of rare decays

Bo Fang, UCAS 25/10/2024

•
$$B_{(s)}^0 \to \tau^+ \tau^-$$
, Run1 3
[PRL 118(2017)25180

Theory prediction with NP enhancement: $\mathscr{B}(B_s^0 \to \tau^+ \tau^-) = (7.73 \pm 0.49) \times 10^{-7}$ $\mathscr{B}(B^0 \to \tau^+ \tau^-) = (2.22 \pm 0.19) \times 10^{-8}$ 10^{4} 10^{3} Candidates 10² 🔶 Data — Total ─ −1 × Signal Background 10 Pull 0.5 0.6 0.7 0.2 Neural network output Assuming no $B_s^0 \rightarrow \tau^+ \tau^ \mathscr{B}(B^0 \to \tau^+ \tau^-) < 2.1 \times 10^{-3}$ at 95% CL Assuming no $B^0 \rightarrow \tau^+ \tau^-$

Challenges

- Physics challenges
 - Theoretical challenges
 - Form factors
 - Predictions for double charm BFs, especially for excited states, which are more complicated to measure experimentally
 - Precise prediction for BFs of rare decays
 - Experimental challenges: how to handle systematics
 - Pile-up will lead to complexity of PV match
 - Increased data statistics require corresponding massive simulation events
 - Background with low BFs will become more and more significant...

Challenges

- Challenges in other aspects
 - - Reconstruction of PV
 - Detector performance
 - Computing resources
 - Lack of humanpower...

mu: average *pp* interactions per bunch crossing

Pile-up: mu ~ 1 for Run1&2; mu ~ 5 for Run3&4; mu ~ 40 for Run5&6

Upgrade of LHCb experiment

Run1 & Run2 (2011-2018)

Pure software trigger

The goal is to collect much more data and in the meantime keep the same or even better performance than Run1&Run2

Bo Fang, UCAS 25/10/2024

See talk from <u>Peilian Li</u> and <u>Ao Xu</u> Now

See talk from **Zhiyang Yuan** Future

Run3 & Run4 (2022-2032(?))

Run5 & Run6 (~2035-2040)

Timing info will be added

LHCb data-taking

2024 > Run1+Run2 !!

• In 2022,

the Upstream Tracker was not installed and commissioning took long time

• In 2023,

VELO was kept open due to a vacuum incident

- In 2024, VELO is back, UT is installed and working well !
- The target for end of Upgrade I(~2032): 50fb^{-1}
- The target for end of Upgrade II(~2040): 300fb⁻¹

Prospects of semitauonic decays

- More statistics
 - Analyses including Run2 \bullet 6 fb⁻¹ data samples ongoing
 - Data taking in Run3 \bullet
- Control of systematics

- New technologies (fast simulation, multivariate selection...) \bullet
- Inputs from other experiments and theorists lacksquare
- Probe into various observables
 - $R(D_s^+), R(\Lambda_c^+), R(J/\psi) \dots$
 - Polarisation measurement
 - Angular analyses \bullet

Bo Fang, UCAS 25/10/2024

[Rev. Mod. Phys. 94, 015003]

-1.0 $\cos(\theta_L)$ $B \rightarrow D^*D^0(X)$ 0.10 χ [rad]

[JHEP 11(2019)133] Prospects of angular analysis of $B^0 \to D^{*+} \tau^- \bar{\nu}_\tau$ with full Run1+Run2 data sample from simulation

Prospects of rare decays involving τ

•
$$B^0_{(s)} \rightarrow \tau^+ \tau^-$$

•
$$\mathscr{B}(B_s^0 \to \tau^+ \tau^-)$$
:

Upper limit 1.3×10^{-3} (Upgrade I, 50fb^{-1}) ~ 5 times improvement

• Inputs about resonant structure in $\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}$ from Belle II would help to reduce systematic limitation

•
$$B^0_{(s)} \rightarrow \tau^{\pm} \mu^{\mp}$$

- $\mathscr{B}(B^0 \to \tau^{\pm} \mu^{\mp})$:
- Upper limit $\sim 10^{-5}$ (Run1+Run2, 3fb^{-1}) ~ 5 times improvement Upper limit 3×10^{-6} (Upgrade II, 300 fb^{-1}) ~ 3 times improvement
- improvement in the tracking system required.

[arXiv: 1808.08865]

<Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era>

Upper limit 5.0×10^{-4} (Upgrade II, 300fb^{-1}) ~ 2.6 times improvement \checkmark

• Mass reconstruction depends heavily on primary and τ vertices resolution,

Prospects of rare decays involving τ

•
$$B \to K^{(*)} \tau^{\pm} \mu^{\mp}$$

- Sensitivity scales almost linearly with so for Upgrade II (300 fb^{-1}) :
 - Upper limit for $\mathscr{B}(B^+ \to K^+ \tau^{\pm} \mu^{\mp}) \sim 6.2 \times 10^{-6}$ at 90% CL
 - Upper limit for $\mathscr{B}(B^0 \to K^{*0}\tau^{\pm}\mu^{\mp}) \sim 1.4 \times 10^{-6}$ at 90% CL

•
$$\tau^- \rightarrow \mu^- \mu^+ \mu^-$$

- NP theory prediction: $\mathscr{B}(\tau^- \rightarrow \mu^- \mu^+ \mu^-)$ in $10^{-9} 10^{-8}$
- LHCb during Upgrade II would probe down to $\mathcal{O}(10^{-9})$
- FCNC processes like $B \to K^{(*)}\tau^+\tau^-$,
 - Analyses ongoing, hopefully results will be revealed in the near future
 - Precision expected ~ $\mathcal{O}(10^{-5}) \mathcal{O}(10^{-3})$

arXiv: 1808.08865]

<Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era>

$$\sqrt{\mathscr{L}}$$
,

• P_R from reconstruction of $\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$ or $B_{s2}^{*0} \to BK$ can give complementary info

• Current experimental limit: $\mathscr{B}(\tau^- \rightarrow \mu^- \mu^+ \mu^-) < 1.2 \times 10^{-8}$ (LHCb & B Factories)

$$\Lambda_b^0 \to p K^- \tau^+ \tau^- \dots$$

Summary

- LHCb has reported a lot of physics results involving τ -lepton: • For LFU tests using semitauonic decays, precisions are comparable with results from
 - **B** Factories
- For rare decays, searches for LFV have pretty good sensitivity $\sim O(10^{-5})$ • For both sides, LHCb also provides valuable measurements for $B_s^0, B_c^+, \Lambda_h^0 \dots$ • With more data taken(even existing data), more results are expected: • Improving precision for published results: $R(X_c)$, $\mathscr{B}(\tau^- \to \mu^- \mu^+ \mu^-)$,
 - $\mathscr{B}(B^0_{(s)} \to \tau^{\pm} \mu^{\mp})...$
- Looking at other observables: $\mathscr{B}(H_b \to H_s \tau^+ \tau^-)$, angular observables of $R(X_c)$... Many challenges ahead, but also many gains and pleasures !

Thank you for listening!