

Phase Noise and its Measurements

25 Oct 2024 Dr. Hai-chuan Yang Keysight Technologies

Agenda

- Phase Noise Basics
	- What is Phase Noise $\mathcal{L}(f)$?
	- Spectral Density of Phase Fluctuations $s_{\boldsymbol{\phi}}(f)$
		- Relations between SSB PN and RMS phase deviation
	- Jitter and Phase Noise
		- Relations between Jitter and RMS phase deviation
- Phase Noise Measurements
	- Direct-Spectrum Method
	- Phase Detector Method
	- Cross-correlation of 2-Channel Measurements
- Keysight Phase Noise Measurement Solutions

What is Phase Noise?

Ideal versus real-world signals

What is Phase Noise?

How to define phase noise and its measurements

- Phase noise is the phase fluctuation of an oscillator, produced by random noise modulation on its main carrier signal.
- In frequency domain where phase noise is simply noise sidebands or skirt around "ideal" delta function from sinusoidal oscillator, which is symmetrical in magnitude around center frequency, so we can measure a single noise sideband (SSB)
- Three elements:
	- Offset frequency (fm) from carrier frequency (fc)
	- Power spectral density, in 1 Hz BW
	- PSD relative to carrier power in dBc

$$
\mathcal{L}(f) = \frac{P_{SSB}}{P_c} \left(\frac{\text{d} \text{B} c}{Hz} \right)
$$

Spectral Density of Phase Fluctuations

Mean-square Phase Deviation & Phase Noise

• If we can measure phase deviation $(\Delta \phi)$, we can convert mean-square phase deviation measurement (i.e., $\boldsymbol{\phi}^2_{RMS}$) into a spectral density by dividing by the noise bandwidth and normalizing it to 1 Hz BW:

Spectral Density of Phase Fluctuations: ${\cal S}_{\bm{\phi}}(f) = \bm{\phi}^2_{RMS}(\frac{1}{R\bm{\mathsf{E}}})$ $\frac{1}{BW}$) ($rad²$ $\frac{du}{Hz}$)

• In case of small angle PM (where $m = \beta = \phi_{pk} \le 0.2 \, rad$), which like we mentioned above in the case of small noise modulates the carrier with small angle deviation in the phase noise situation:

$$
\frac{P_{SSB}}{P_c} = (\frac{1}{2}\phi_{pk})^2 = \frac{1}{4}(\sqrt{2}\phi_{RMS})^2 = \frac{1}{2}\phi_{RMS}^2 \ (rad^2)
$$

$$
\mathcal{L}(f) = \frac{P_{SSB}}{P_c}
$$
\n
$$
\mathcal{L}(f) \left(\frac{1}{Hz}\right) = \frac{S_{\phi}(f)}{2} = \frac{\phi_{RMS}^2}{2} \left(\frac{1}{BW}\right) \left(\frac{rad^2}{Hz}\right)
$$
\n
$$
\phi_{RMS} (rad) = \left[2 \int_{f} d\phi_{RMS} (rad) \right]
$$

$$
\phi_{RMS} (rad) = \sqrt{2 \int_{f_{start}}^{f_{stop}} \mathcal{L}(f) df}
$$

Jitter and Phase Noise

Jitter definition

- Time-domain RMS phase deviation is called jitter
- Those concerned about jitter frequently deal with clock signals, which are usually the measurements of square wave-type signals rather than sinusoids
- The following relates RMS phase deviation to jitter:

 * f_c is the clock frequency and when viewed in the frequency domain, is equal to the spacing between the spectral lines

Jitter and Phase Noise

Measurement Principles Using a Real-time Oscilloscope

• A **time interval error (TIE) or Jitter** measurement on an oscilloscope will produce a time series of the absolute time error of each edge relative to the ideal clock. To convert to phase (radians), the error is simply multiplied by $2\pi f_c$ where f_c is the clock carrier frequency:

 $\varphi = 2\pi \cdot TIE(t) \cdot f_c$

• A **Time Interval Error (TIE) trend** can be transformed to frequency domain with an FFT to give something called a **Jitter Spectrum**. Most modern oscilloscopes have this capability built in or as an

option:

Agenda

- Phase Noise Basics
	- What is Phase Noise $\mathcal{L}(f)$?
	- Spectral Density of Phase Fluctuations $s_{\boldsymbol{\phi}}(f)$
		- Relations between SSB PN and RMS phase deviation
	- Jitter and Phase Noise
		- Relations between Jitter and RMS phase deviation
- Phase Noise Measurements
	- Direct-Spectrum Method
	- Phase Detector Method
	- Cross-correlation of 2-Channel Measurements
- Keysight Phase Noise Measurement Solutions

Measuring Phase Noise in Frequency Domain

Direct-Spectrum Method Phase Detector Method

• As mentioned earlier, we use spectrum analyzer to measure the SSB PN:

$$
\mathcal{L}(f) = \frac{P_{SSB}}{P_c} \left(\frac{\text{d} \text{B} \text{c}}{\text{Hz}} \right)
$$

- It is far less sensitive than carrier-removal method because of spectrum analyzer's limitations.
	- *Can not separate AM Noise*
	- *Has LO PN, preamp noise, ADC noise, etc.*

(Carrier-removal method)

- Has increased sensitivity obtained by nulling carrier & then amplifying & measuring phase noise of resulting baseband signal with high-gain, low noise figure amplifiers
- It uses a phase detector to convert phase fluctuation into voltage of noise. We are

measuring
$$
S_{\phi}(f) = \phi_{RMS}^2(\frac{1}{BW}) \left(\frac{rad^2}{Hz}\right)
$$

M KEYSIGHT

Phase Detector Techniques

Carrier-removal method

- Phase detector takes two input signals & compares phase
	- Output of phase detector is DC voltage proportional to delta phase of input signals $(\Delta \phi)$
	- Constant of proportionality, K, has units of volts per radian (V/rad) & must be measured
	- When we got the $\Delta \phi(t)$, we FFT it to get

$$
S_{\phi}(f) = \phi_{RMS}^2(\frac{1}{BW}) \left(\frac{rad^2}{Hz} \right) \text{ and } \mathcal{L}(f) \left(\frac{1}{Hz} \right) = \frac{S_{\phi}(f)}{2}
$$

• Phase detectors also tend to suppress AM noise

Cross -Correlation Technique

- We can use two phase detectors to further improve phase noise floor (i.e., sensitivity)
- Two channels are uncorrelated so remove noise from references & system components through computational process.
- DUT signal is common to both channels so is perfectly correlated in both channels & kept as measurement result
- The two -channel cross -correlation technique achieves superior measurement sensitivity without requiring exceptional performance of the hardware components.
- However, the measurement speed suffers when increasing the number of computational correlations.

$$
N_{meas} = N_{DUT} + (N_1 + N_2) / \sqrt{M}
$$
 Assuming N₁ and N₂ are uncorrelated.

DUT noises through each channel are coherent and are not affected by the cross-correlation, whereas the internal noises generated by each channel are incoherent and are diminished by the crosscorrelation operation at the rate of $M^{1/2}$ (M being the number of correlations). This can be expressed as:

$$
N_{meas} = N_{DUT} + (N_1 + N_2) / \sqrt{M}
$$

Agenda

- Phase Noise Basics
	- What is Phase Noise $\mathcal{L}(f)$?
	- Spectral Density of Phase Fluctuations $s_{\boldsymbol{\phi}}(f)$
		- Relations between SSB PN and RMS phase deviation
	- Jitter and Phase Noise
		- Relations between Jitter and RMS phase deviation
- Phase Noise Measurements
	- Direct-Spectrum Method
	- Phase Detector Method
	- Cross-correlation of 2-Channel Measurements
- Keysight Phase Noise Measurement Solutions

Keysight Phase Noise Solution Portfolio

N5511A Phase Noise Test System (PNTS)

Fast and flexible noise measurement at the limit of physics (kT = -177 dBm/Hz)

- Absolute / residual / AM / baseband / pulse / transient
- 50 kHz to 3.0 / 26.5 / 40 GHz
- 0.01 Hz to 160 MHz offset frequency
- Cross correlation
- E5500 replacement (100% code compatible)
- External mixer support for mmWave measurements

Legacy SSA (E5052B) + Downconverter (E5053A)

Feb'24 Release

Building on 35 years of phase noise experience, Keysight solutions provide excellent performance and are economically tailored to fit your needs.

E505xA Signal Source Analyzer (SSA-X)

Everything you need for signal source analysis

- Absolute / residual / 2-port VNA (S-parameters) / AM / baseband / pulse / transient / SA / Clock jitter
- 1 MHz to 8 / 26.5 / 44 / 54 GHz
- > 54 GHz with external mixers (sub-THz)
- 1 mHz to > 1 GHz offset frequency
- Cross correlation

X-series Signal Analyzers

N9068 Phase Noise Measurement Application

- Absolute / residual / AM / baseband / pulse / transient
- Frequency range, offset range and performance depends on X-series model

PNA/PNA-X Network Analyzers

S9303xxB Phase Noise Application

- Absolute / residual / AM / baseband / pulse / transient
- 10 MHz to 70 / 125 GHz
- 0.1 Hz to 10 MHz offset frequency

Infinium / MXR / UXR Oscilloscopes

D90x0JITA Jitter, Vertical and Phase Noise Analysis

- Absolute / residual / AM / baseband / pulse / transient
- Frequency range, offset range and performance depends on oscilloscope model
- Cross correlation
- Best for measurements on digital signals, such as clocks

Ease of Use [www.keysight.com/find/phasenoise](http://www.keysight.com/find)

Thank you