

國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

Measurements of decay branching fractions of the Higgs boson to hadronic final states at the CEPC

¹Yanping Huang, ¹Xiaotian Ma, ^{1,2}Zuofei Wu

¹Institute of High Energy Physics

²Nanjing University

Contents

- Introduction
- Simulation samples
- Event selection
- Particle Flow Networks
- Model performance
- Measurements of branching fractions
- Summary

Introduction

- The discovery of the Higgs boson by the ATLAS and CMS collaborations at the Large Hadron Collider (LHC) in July 2012 marked a breakthrough in particle physics, providing deeper insights into the Standard Model (SM).
- According to theoretical predictions, the branching fractions for the decay of a 125 GeV Higgs boson into bb, cc, gg, WW*, ZZ* are 57.7%, 2.91%, 8.57%, 21.5% and 2.64%, respectively.

Introduction

- The branching fractions of H → bb/WW*/ZZ* were measured by the ATLAS Collaboration using 139 fb⁻¹ of pp collision data at center-of-mass energy of 13 TeV in LHC to be 0.53 ± 0.08, 0.257^{+0.026}_{-0.024}, 0.028 ± 0.003, respectively.
- The signal strengths of H → bb/WW*/ZZ* were measured by the CMS Collaboration using 138 fb⁻¹ of pp collision data at center-of-mass energy of 13 TeV in LHC to be 1.05^{+0.22}_{-0.21}, 0.97 ± 0.09, 0.97^{+0.12}_{-0.11}, respectively.

Introduction

◆ Previous study performed measurements of decay branch fractions of $H \rightarrow b\bar{b}/c\bar{c}/gg$ in associated $(e^+e^-/\mu^+\mu^-)H$ production at the CEPC with a center-of-mass energy of 250 GeV and integrated luminosity of 5000 fb⁻¹.

 b-jet and c-jet tagging training models for calculating X_B and X_C
 Combined fit with M^{ll}_{recoil}

Chinese Phys. C 44 013001

★ This study focuses on the determination of the branching fractions of $H \rightarrow b\bar{b}/c\bar{c}/gg/WW^*/ZZ^*$ in associated $Z(\mu^+\mu^-)H$ production at the CEPC with a center-of-mass energy of 240 GeV and integrated luminosity of 5600 fb⁻¹. The Particle Flow Network is applied to separate all decay channels simultaneously with high accuracy. 2024/10/24 maxt@ihep.ac.cn

Simulation samples

- Using Whizard 1.95 and Pythia6 for the fragmentation and hadronization.
- Using a Delphes-based software suite for fast detector simulation.
- Signal process: Z decays to a pair of muons and H decays in pairs of bb/cc/ gg/WW*/ZZ*.
- Backgrounds: processes with two-fermion and four-fermion final states.
- ✤ Generated to the expected yields in data with an integrated luminosity of 5600 fb⁻¹.

Process	Higgs decays	Cross section/fb
ZH process	$H \to b \overline{b}$	3.91
	$H \to c \overline{c}$	0.20
	H ightarrow gg	0.58
	$H \to WW^*$	1.46
	$H \to Z Z^*$	0.18

Signal process

Two-fermion background process

Category	Name	Decay modes	${\rm Cross~section/fb}$
		$e^+e^- \to e^+e^-$	24992.21
	$l\overline{l}$	$e^+e^- \rightarrow \mu^+\mu^-$	4991.91
		$e^+e^- \to \tau^+\tau^-$	4432.18
	νī	$e^+e^- \rightarrow \nu_e \bar{\nu}_e$	45390.79
Two-fermion		$e^+e^- \rightarrow \nu_\mu \bar{\nu}_\mu$	4416.30
hackground		$e^+e^- \rightarrow \nu_\tau \bar{\nu}_\tau$	4410.26
background	$q \bar{q}$	$e^+e^- \rightarrow u\bar{u}$	10110.43
		$e^+e^- \rightarrow dd$	10010.07
		$e^+e^- \rightarrow c\bar{c}$	10102.75
		$e^+e^- \rightarrow s\bar{s}$	9924.40
		$e^+e^- \rightarrow b\bar{b}$	9957.70

Event selection

- At least two muons with opposite charge
- ★ Isolation cut: $E_{\text{cone}}^2 < 4E_{\mu} + 12.2 \text{GeV}$, where E_{cone} is the sum of energy within a cone $(\cos\theta_{\text{cone}} > 0.98)$ around the muon
- $M_{\mu\mu}$ in Z-mass window [75 GeV, 105 GeV], if there are more than two muons, choose the muon pair closest to the Z boson mass
- $M_{\mu\mu}^{\text{recoil}}$ in *H*-mass window [110 GeV, 150 GeV] $M_{\mu\mu}^{\text{recoil}} = \sqrt{(\sqrt{s} E_{\mu^+} E_{\mu^-})^2 (\overrightarrow{P_{\mu^+}} + \overrightarrow{P_{\mu^-}})^2}$
- $|\cos\theta_{\mu^+\mu^-}| < 0.996$: to further reduce the two-fermion backgrounds

The cutflow selection efficiency

	$H \to b \overline{b}$		$H \to c \overline{c}$		$H \to gg$		$H \to WW^*$		$H \to Z Z^*$
Muon pair	94.45%		94.24%		94.17%		94.91%		94.43%
Isolation	91.52%		92.81%		93.37%		93.83%		94.04%
Z-mass window	95.34%		95.46%		95.49%		91.89%		94.29%
H-mass window	99.73%		99.74%		99.74%		99.05%		99.46%
$ \cos \theta_{\mu^+\mu^-} < 0.996$	99.65%		99.65%		99.67%		99.65%		99.64%
Total efficiency	81.90%		82.98%		83.46%		80.77%		82.98%
	$l\overline{l}$	$ u \overline{ u}$	$q \overline{q}$	$(ZZ)_h$	$(ZZ)_l$	$(ZZ)_{sl}$	$(WW)_h$	$(WW)_l$	$(WW)_{sl}$
Muon pair	11.95%	0	0.05%	0.08%	46.20%	18.91%	0.00%	11.02%	0.16%
Isolation	91.63%	0	0.40%	2.60%	74.16%	66.47%	0	96.46%	3.75%
Z-mass window	41.28%	0	0	0	66.29%	70.41%	0	30.86%	16.67%
H-mass window	6.42%	0	0	0	14.22%	14.80%	0	57.32%	0.35%
$ \cos \theta_{\mu^+\mu^-} < 0.996$	93.10%	0	0	0	99.07%	99.24%	0	98.40%	98.94%
Total efficiency	0.27%	0.00%	0.00%	0.00%	3.20%	1.30%	0.00%	1.85%	0.00%

Event selection

• $M_{\mu\mu}$ and $M_{\mu\mu}^{\rm recoil}$ distributions for signal and background events, following the muon pair and isolation selection criteria.

The signal is well preserved while background contributions are significantly

suppressed.

Particle Flow Networks

- An end-to-end learning approach, which eliminates the dependency on jet clustering and e/γ isolation.
- Defines a mapping for encoding events $F(\sum_i \Phi(p_i))$, where *p* represents particle features, and $\Phi(p)$ is a latent space representation of those features. The function *F* maps the encoded representations to the network's output.
- The architecture of the PFN model is defined by the number of layers and neurons within both *F* and Φ .

The PFN architecture

maxt@ihep.ac.cn

Particle Flow Networks

- Samples:
 - 300k for each category, (training: validation: test sets) = (8:1:1)
 - Signal: $H \to b\overline{b}, H \to c\overline{c}, H \to gg, H \to WW^*, H \to ZZ^*$
 - Background: $(ZZ)_l$, $(ZZ)_{sl}$, $(WW)_l$, $l\bar{l}$
- Training variables:
 - Energy, momentum, $\cos\theta$, ϕ , PID, D_0 , Z_0
- Training parameters:
 - Φ_sizes: (64, 64, 50), F_sizes: (64, 64, 40)
 - Fully connected layer: ReLU activation function and adam optimizer
 - Output layer: SoftMax activation function
 - loss function: cross-entropy
 - Epoch: 200, Learning rate: 0.001, Batchsize: 1000

maxt@ihep.ac.cn

Model performance

the loss and accuracy curves converge

- training and validation set curves overlap highly
- the model has strong generalization capabilities

ROC curves for signal and background processes

- AUC value for each class is above 0.93
 - strong classification performance
 - the model effectively distinguish between classes

Model performance

The distributions of classifier outputs for nine categories

- In the region where the score exceeds
 0.8, very few events originate from other processes
- The classification is pretty good

Model performance

The migration matrix

	04	X.		Rec	onstr	v. ucted	categ	∿ ^ب Jory	GN.	
		HPD	HCC	400	HIL	AWWW	12	12/51	.NNI	Ń
	ıī -	0.00%	0.00%	0.00%	0.00%	0.00%	0.47%	0.00%	0.83%	98.70%
(N	/W); -	0.00%	0.00%	0.00%	0.26%	0.00%	3.09%	0.00%	96.09%	0.55%
(Z	Z) _{si} -	2.53%	3.36%	2.28%	2.27%	1.68%	0.08%	87.80%	0.00%	0.00%
Ď (2	ZZ)ı -	0.00%	0.00%	0.00%	1.53%	1.60%	84.28%	0.15%	4.05%	8.39%
ы Чорон Поросна	lww -	0.26%	6.04%	8.43%	6.07%	76.26%	1.21%	1.73%	0.00%	0.00%
ess	Hzz -	8.29%	5.76%	9.35%	49.84%	18.78%	2.97%	3.95%	0.86%	0.19%
I	Hgg -	3.08%	6.21%	77.80%	4.55%	6.97%	0.00%	1.38%	0.00%	0.00%
	Hcc -	2.32%	83.73%	3.40%	1.25%	8.08%	0.00%	1.21%	0.00%	0.00%
I	Hbb -	84.30%	8.18%	0.53%	5.35%	0.56%	0.00%	1.08%	0.00%	0.00%

- The reconstructed category refers to the process with the highest score for a given event
 The purity of each category is
- above 76% except for $H \rightarrow ZZ^*$ process
- The migration matrix reflects
 the overall high accuracy of
 the model

0.0

Measurements of branching fractions

- Use the migration matrix method
 - Can be unfolded to represent the generated number of signals
 - Calculated as follows:

$$\begin{bmatrix} N_{s1} \\ N_{s2} \\ \dots \\ N_{b1} \\ N_{b2} \\ \dots \end{bmatrix} = \left(M_{mig}^T M_s \right)^{-1} \times \begin{bmatrix} n_{s1} \\ n_{s2} \\ \dots \\ n_{b1} \\ n_{b2} \\ \dots \end{bmatrix}$$

- n_i and N_i are the expected and generated number of events of class i, where n_i is obtained from simulation samples processed by the PFN model
- M_s is a diagonal matrix containing the selection efficiencies, M_{mig}^T denotes the transposed migration matrix

Measurements of branching fractions

- Use toyMC method to estimate statistical uncertainties
 - Poisson distribution according to the number of events
 - Multinomial distribution according to the migration matrix
 - Least square fit for 50k times

$$Q^2 = \sum_{i=1}^{N} \left(\frac{Y_i - \eta_i}{\sigma_i} \right)^2$$

Fit with gaussian function

15

Measurements of branching fractions

Results of the measured branching fractions with statistical uncertainties:

Higgs boson decay	$H \to b \overline{b}$	$H \to c \overline{c}$	H ightarrow gg	$H \to WW^*$	$H \to Z Z^*$
branching fraction	0.5780	0.0292	0.0858	0.2150	0.0265
statistical uncertainty	$\pm 0.58\%$	$\pm 8.41\%$	$\pm 2.99\%$	$\pm 2.32\%$	$\pm 9.81\%$

 To account for the systematic uncertainty, the resolution of the detector was adjusted by increasing it by 2%.

$$\sigma_{\frac{1}{p_T}} = 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{p \sin^{3/2} \theta} \text{GeV}^{-1}$$

The systematic uncertainties for the branching fractions are estimated to be 1.29%, 9.69%, 0.67%, 2.61% and 1.11% for bb/cc/gg and WW*/ZZ* final states, respectively.

maxt@ihep.ac.cn

Summary

- ♦ The Higgs boson branching fractions into bb/cc/gg and WW*/ZZ*, where the W or Z bosons decay hadronically, via the Z(µ⁺µ⁻)H process are studied using the PFN method at a center-of-mass energy of 240 GeV and a luminosity of 5600 fb⁻¹ at the CEPC.
- ★ The statistical uncertainty of branching fractions of $H \rightarrow b\overline{b}/c\overline{c}/gg/WW^*/ZZ^*$ processes are estimated to be 0.58%, 8.41%, 2.99%, 2.32% and 9.81%, respectively.
- ◆ Compared to a previous analysis which reported statistical uncertainties of 1.1%, 10.5% and 5.4% for the branching fractions of $H \rightarrow b\bar{b}/c\bar{c}/gg$ process, the PFN method achieves higher precision in a single execution, due to its better performance and deeper data exploitation.