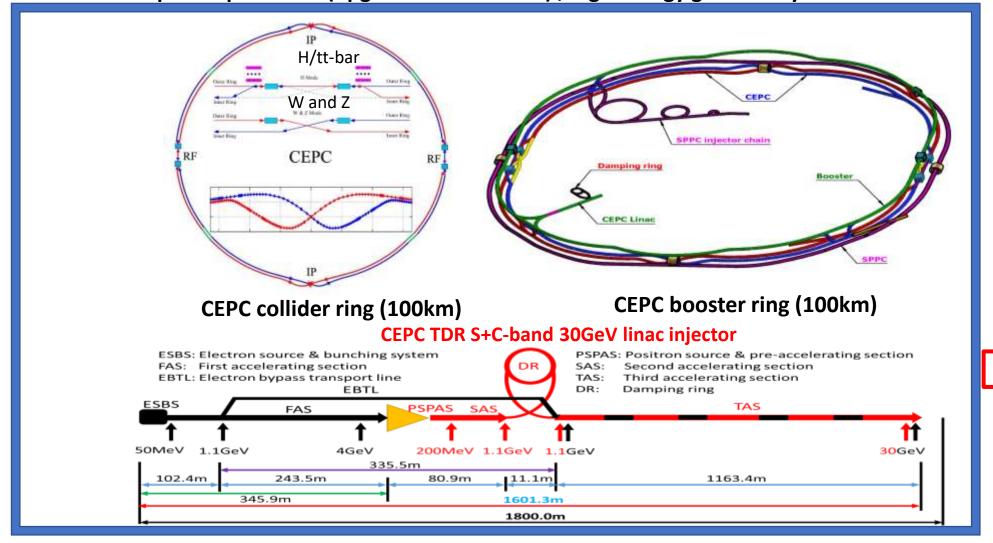
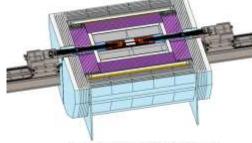


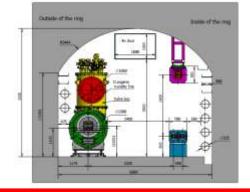
CEPC Accelerator EDR and Key Issues

J. Gao

IHEP


Contents

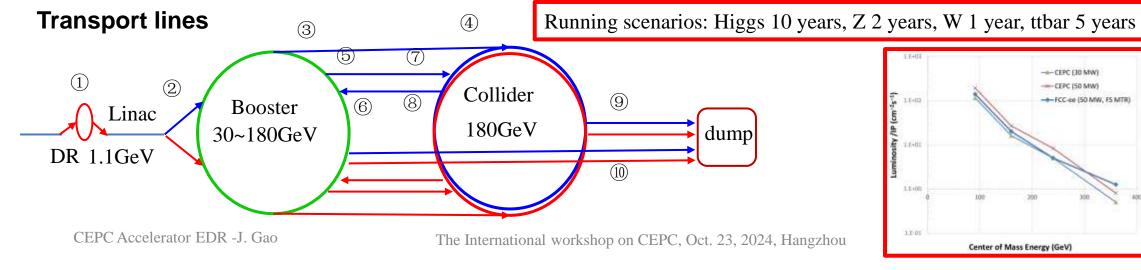

- Introduction
- CEPC Accelerator Design and Key Hardware R&D in TDR as Start of EDR
- CEPC EDR Goals, Scope, Plan, Progress status
- CEPC Site Implementation in EDR and Construction Plans
- CEPC technology Industrial preparations and international collaboration in EDR
- Summary

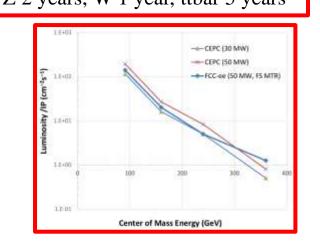

CEPC Higgs Factory and SppC Layout in TDR/EDR

CEPC as a Higgs Factory: H, W, Z, upgradable to ttbar, followed by a SppC (a Hadron collider) ~125TeV 30MW SR power per beam (upgradable to 50MW), high energy gamma ray 100Kev~100MeV

TUNNEL CROSS SECTION OF THE ARC AREA

CEPC/SppC in the same tunnel


CEPC Accelerator System Parameters in TDR/EDR


Linac **Booster** Collider

Parameter	Symbol	Unit	Baseline
Energy	E_e / E_{e+}	GeV	30
Repetition rate	f_{rep}	Hz	100
Bunch number per pulse			1 or 2
Bunch charge		nC	1.5 (3)
Energy spread	σ_E		1.5×10 ⁻³
Emittance	\mathcal{E}_r	nm	6.5

		tt	H	Ī	W		\overline{Z}	
		Off axis injection	Off axis injection	On axis injection	Off axis injection	Off axis	injection	
Circumfer.	km		-	-	100			
Injection energy	GeV		30					
Extraction energy	GeV	180	12	0	80	4	5.5	
Bunch number		35	268	261+7	1297	3978	5967	
Maximum bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81	
Beam current	mA	0.11	0.94	0.98	2.85	9.5	14.4	
SR power	MW	0.93	0.94	1.66	0.94	0.323	0.49	
Emittance	nm	2.83	1.2	26	0.56	0	.19	
RF frequency	GHz		-		1.3			
RF voltage	GV	9.7	2.1	7	0.87	0	.46	
Full injection from empty	h	0.1	0.14	0.16	0.27	1.8	0.8	

	Higgs	Z	W	$tar{t}$
Number of IPs		2	2	
Circumference (km)		10	0.0	
SR power per beam (MW)		3	0	
Energy (GeV)	120	45.5	80	180
Bunch number	268	11934	1297	35
Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7
Beam size at IP σ_x/σ_y (um/nm)	14/36	6/35	13/42	39/113
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9
Beam-beam parameters ξ_x/ξ_y	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1
RF frequency (MHz)	650			
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5

Luminosity from Colliding Beams

For equally intense Gaussian beams

Collision frequency.

Expressing luminosity in terms of our usual beam parameters

$$L = f \frac{N_b^2}{4\pi\sigma_x \sigma_y} R$$

Particles in a bunch

Geometrical factor:

- crossing angle
- hourglass effect

ICFA mini workshop: Beam-Beam Effects in Circular Colliders BB24. Sept. 2-5. 2024. EPFL. Switzerland

https://indico.cern.ch/event/1344947/sessions/518431/#20240902

Transverse beam size (RMS)

Beam-beam effect is an important issue for colliders

Luminosity of Circular Colliders

$$L[\text{cm}^{-2}\text{s}^{-1}] = 2.17 \times 10^{34} (1+r) \xi_y \frac{E[\text{GeV}]I[\text{A}]}{\beta_v[\text{cm}]}$$

In ACO it is found that ξ_y has a maximum value

where

$$\xi_{y} = \frac{r_{e} N_{e} \beta_{y}}{2\pi \sigma_{y} (\sigma_{x} + \sigma_{y})}:$$

For exampe, for BEPCII at 1.89 $\xi_{ymax} = 0.04$

Analytical expression for the maximum value of $\xi_{y,max}$ is the keystone of a circular colliders both for lepton and hadron one the lateral local workshop on CEPC, Oct. 23, 2024,

$$\xi_y = \frac{r_e N_e \beta_y}{2\pi\sigma (\sigma + \sigma)} :$$

 $\xi_y = \frac{r_e N_e \beta_y}{2\pi\sigma_x(\sigma_x + \sigma_y)}$: Maximum Beam-beam tune shift analytical expressions for

lepton and hadron circular colliders For example: BEPCII@

1.89GeV $\xi_{\rm v} = 0.04$

For lepton collider (flat beam and head-on):

$$\xi_{y, \max} = \frac{2845}{2\pi} \sqrt{\frac{T_0}{\tau_y \gamma N_{IP}}} \quad \xi_{y, \max} = \frac{2845 \gamma}{1} \sqrt{\frac{\frac{r_e}{e}}{6\pi R N_{IP}}} \quad \begin{cases} \gamma \text{ is normalized energy} \\ R \text{ is the dipole bending radius} \\ N_{IP} \text{ is number of interaction points} \end{cases}$$

 r_e is electron radius

 $\xi_{\rm x, max} = \sqrt{2}\xi_{\rm y, max}$

For hadron collider (round beam

and hean-on):

J. Gao, Emittance growth and beam lifetime limitations due to beam-beam effects in e+e- storage rings, Nuclear Instruments and Methods in Physics **Research A** 533 (2004) 270–274

J. Gao, Nuclear Instruments and Methods in Physics Research A 463 (2001) 50-61

 $\xi_{\text{max}} = \frac{2845\gamma}{f(x)} \sqrt{\frac{r_{p}}{6\pi RN_{1D}}} \times \frac{4}{3}\sqrt{2}$

J. Gao, "Review of some important beam physics issues in electron positron collider designs",

Keystones r_p is proton radius where

Modern Physics Letters A, Vol. 30, No. 11 (2015)

1530006 (20 pages)

For example: SppC@ 62.5TeV $\xi_{\rm y,max} = 0.015$

 $f(x) = 1 - \frac{2}{\sqrt{2\pi}} \int_{0}^{x} \exp(-\frac{t^2}{2}) dt$

J. Gao, et al, "Analytical estimation of maximum beam-beam tune shifts for electron-positron and hadron circular colliders", Proceedings of ICFA Workshop on High Luminosity Circular e+e-Colliders - Higgs Factory, 2014

 $x^{2} = \frac{4f(x)}{\pi \xi_{\text{max}} N_{IP}} = \frac{4f^{2}(x)}{2845\pi \gamma} \sqrt{\frac{6\pi R}{r_{D}N_{IP}}}$

CEPC Accelerator EDR -J.

Analytical formulae for the luminosity of electron-positron circular collider with <u>flat beam crab-waist crossing</u>

By using following relations One could get more equivalent formulae:

Ib=Pb/Uo

 $U_0=C\gamma E^4/R$ $C\gamma=8.85*10^-5mGeV^-3$

 $R = r_0 C_0 / 2\pi$

where R is local bending radius, ro is dipole filling factor, Co is collider circumference

$$L[\text{cm}^{-2}\text{s}^{-1}] = 2.17 \times 10^{34} (1+r) \xi_{y_{\text{max}}} \frac{E[\text{GeV}]I[\text{A}]}{\beta_{y}[\text{cm}]} e^{\frac{\sqrt{\Phi p}}{3.22}} (1 + 0.000505 * \Phi p^{2}) \qquad \text{Eq. A}$$

$$L_{\rm max}[{\rm cm^{-2}s^{-1}}] = \frac{0.158 \times 10^{34} (1+r)}{\beta_y^* [{\rm mm}]} I_b[{\rm mA}] \sqrt{\frac{U_0[{\rm GeV}]}{N_{\rm IP}}} e^{\frac{\sqrt{\Phi p}}{3.22}} \ (1 + 0.000505 * \Phi p^2) \ {\rm Eq. \ B}$$

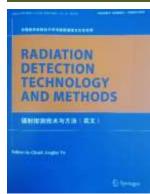
$$L_{\rm max}[{\rm cm}^{-2}{\rm s}^{-1}] = \frac{0.158 \times 10^{34} (1+r)}{\beta_y^* [{\rm mm}]} \sqrt{\frac{I_b[{\rm mA}] P_b[{\rm MW}]}{N_{\rm IP}}} \cdot e^{\frac{\sqrt{\Phi p}}{3.22}} \ (1 + 0.000505 * \Phi p^2) \ {\rm Eq. \ C}$$

$$\text{Lmax} \ [cm^{-2} \ s^{-1}] = 0.158 \times 10^{34} \frac{(1+r)}{\beta_y [\text{mm}]} \sqrt{\frac{R[m]}{c_{\gamma} [mGeV^3] N_{IP}}} (P_b [\text{MW}] / E[GeV]^2) e^{\frac{\sqrt{\Phi_p}}{3.22}} \ \ (1+0.000505*\Phi_p^2)$$
 Eq. [

Φp is Piwinski angle = (σ_z / σ_x)tan(Θ/2), and Θ is the crossing angle

Eq. A, B, C, D are equivalent for isomagnetic lattice

where $r = \sigma_{y,*}/\sigma_{x,*}$, N_b is the number of bunches inside a beam, I_b is the average current of a bunch, and $I_{\text{beam}} = N_b I_b$.


Eqs. A, B, C and D are formulae with crab-wait corrections of J. Gao, have not yet been published

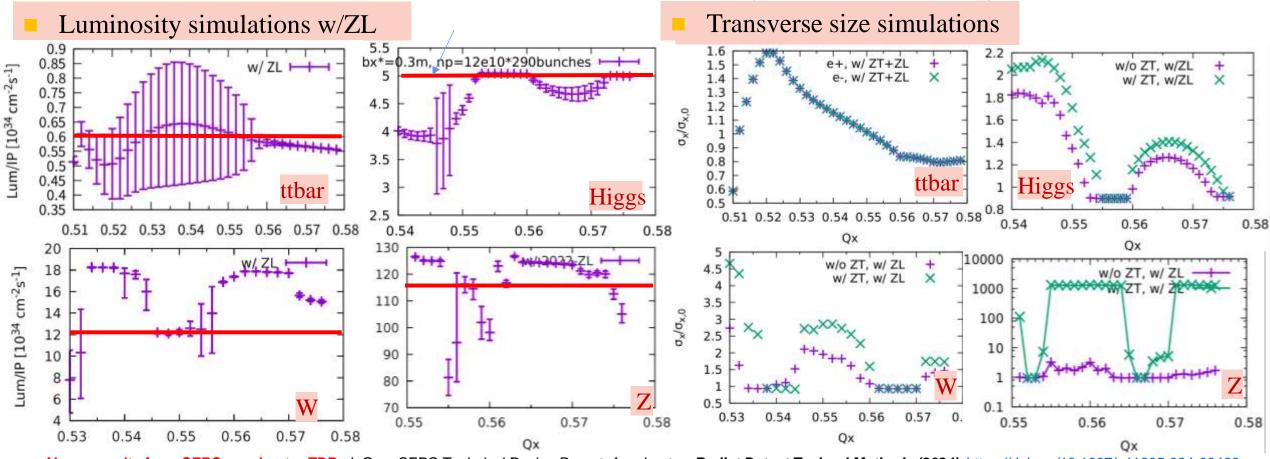
CEPC TDR Parameters (30MW and 50MW SR/beam)

Table 4.1.1: CEPC baseline parameters in TDR

	Higgs	Z	W	tī		
Number of IPs	2					
Circumference (km)	100.0					
SR power per beam (MW)		3	0			
Half crossing angle at IP (mrad)		16	5.5			
Bending radius (km)		10).7	655		
Energy (GeV)	120	45.5	80	180		
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1		
Damping time $r_z/r_c/r_z$ (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.6		
Piwinski angle	4.88	24.23	5.98	1.23		
Bunch number	268	11934	1297	35		
Bunch spacing (ns)	591 (53% gap)	23 (18% gap)	257	4524 (53% gap)		
Bunch population (10 ¹¹)	1.3	1.4	1.35	2.0		
Beam current (mA)	16.7	803.5	84.1	3.3		
Phase advance of arc FODO (°)	90	60	60	90		
Momentum compaction (10 ⁻⁵)	0.71	1.43	1.43	0.71		
Beta functions at IP β_x^*/β_y^* (m/mm)	0.3/1	0.13/0.9	0.21/1	1.04/2.7		
Emittance &/& (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7		
Betatron time v _k /v _k	445/445	317/317	317/317	445/445		
Beam size at IP σ_{i}/σ_{i} (um/nm)	14/36	6/35	13/42	39/113		
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9		
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.13	0.07/0.14	0.15/0.20		
Energy acceptance (DA/RF) (%)	1.6/2.2	1.0/1.7	1.05/2.5	2.0/2.6		
Beam-beam parameters 5, 15,	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1		
RF voltage (GV)	2.2	0.12	0.7	10		
RF frequency (MHz)		6.5	50	0.0		
Longitudinal tune v _i	0.049	0.035	0.062	0.078		
Beam lifetime (Bhabha/beamstrahlung) (min)	40/40	90/2800	60/195	81/23		
Beam lifetime requirement (min)	18	77	22	18		
Hourglass Factor	0.9	0.97	0.9	0.89		
Luminosity per IP (1034 cm-2 s-1)	5.0	115	16	0.5		
Luminosity per IP (10^34 cm^-2s^-1) from formula	5	115	12	0.59		

Luminosity results calculated From J. Gao's Eqs. A, B, C, D on previous page 8

Table 4.1.2: CEPC main parameters with 50 MW upgrade


New York Control	Higgs	Z	W	tī		
Number of IPs			2			
Circumference (km)	100.0					
SR power per beam (MW)	50					
Half crossing angle at IP (mrad)		10	5.5			
Bending radius (km)		10).7			
Energy (GeV)	120	45.5	80	180		
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1		
Damping time r _i /r _i /r _i (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.0		
Piwinski angle	4.88	29.52	5.98	1.23		
Bunch number	446	13104	2162	58		
Bunch spacing (ns)	355 (53% gap)	23 (10% gap)	154	2714 (53% gap)		
Bunch population (10 ¹¹)	1.3	2.14	1.35	2.0		
Beam current (mA)	27.8	1340.9	140.2	5.5		
Phase advance of arc FODO (°)	90	60	60	90		
Momentum compaction (10 ⁻⁵)	0.71	1.43	1.43	0.71		
Beta functions at IP β _x */β _y * (m/mm)	0.3/1	0.13/0.9	0.21/1	1.04/2.7		
Emittance &/s, (nm/pm)	0.64/1.3	0.27/1,4	0.87/1.7	1.4/4.7		
Betatron tune 15/15	445/445	317/317	317/317	445/445		
Beam size at IP σ _i /σ _j (um/nm)	14/36	6/35	13/42	39/113		
Bunch length (natural/total) (mm)	2.3/4.1	2.7/10.6	2.5/4.9	2.2/2.9		
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.15	0.07/0.14	0.15/0.20		
Energy acceptance (DA/RF) (%)	1.6/2.2	1.0/1.5	1.05/2.5	2.0/2.6		
Beam-beam parameters 🙊 👍	0.015/0.11	0.0045/0.13	0.012/0.113	0.071/0.1		
RF voltage (GV)	2.2	0.1	0.7	10		
RF frequency (MHz)		. 6	50			
Longitudinal tune 1/2	0.049	0.032	0.062	0.078		
Beam lifetime (Bhabha/beamstrahlung) (min)	40/40	90/930	60/195	81/23		
Beam lifetime requirement (min)	20	81	25	18		
Hourglass Factor	0.9	0.97	0.9	0.89		
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	8.3	192	26.7	0.8		
Luminosity per IP (10^34 cm^-2s^-1) from formula	8.4	192	21	0.97		

CEPC parameter tables come from: J. Gao, CEPC Technical Design Report: Accelerator. Radiat Detect Technol Methods (2024). https://doi.org/10.1007/s41605-024-00463-y

Beam-Beam Effects in CEPC

Red lines are results from J. Gao's formulae (Eqs. A, B, C, or D on page 7)

Above results from CEPC accelerator TDR: J. Gao, CEPC Technical Design Report: Accelerator. Radiat Detect Technol Methods (2024). https://doi.org/10.1007/s41605-024-00463-y

Beam-beam simulation results are consistent with the TDR parameter tables.

- Luminosity & Lifetime is evaluated by strong-strong simulation
- X-Z instability is well suppressed even considering Potential Well Distortion
- Lifetime optimization with both beam-beam\lattice nonlinearity is done

Hadron collider beam-beam limit formulae (pp, round beam)

Eq. I
$$\xi_{h,y,\text{max}} = \frac{H_0 \gamma}{f(x_*)} \sqrt{\frac{r_h}{6\pi R N_{\text{IP}}}} \times \frac{4}{3} \sqrt{2}$$

 $H_0 \sim 2845$,

Eq. II
$$\xi_{h,y,\text{max}} = \frac{H_0}{2\pi f(x_*)} \sqrt{\frac{T_0}{\tau_y \gamma N_{\text{IP}}}} \times \frac{4}{3} \sqrt{2}$$

$$f(x) = 1 - \frac{2}{\sqrt{2\pi}} \int_0^x \exp\left(-\frac{t^2}{2}\right) dt$$

$$x^2 = \frac{4f(x)}{\pi \xi_{y,\text{max}} N_{\text{IP}}}$$

 x_* in $f(x_*)$ could be solved by the following equation

$$x_*^2 = \frac{4f(x_*)^2}{H_0 \pi \gamma} \sqrt{\frac{6\pi R}{r_h N_{\rm IP}}}$$

 $f(x_*)=1$ corresponds electron positron colliders

Eq. I and Eq. II are equivalent for isomagnetic lattice

Eqs. I and II are formulae of J. Gao, have not yet been published

Machine	E(TeV)	R(m)	NIP	ξ y,max (analytical result)	ξ y,max experimental result)	ξ y,max design result)
LHC	7	2801	3	0.0045	0.0045	0.005
SppC	62.5	10415	2	0.0147	-	0.015

- J. Gao, "Emittance Growth and Beam Lifetime due to Beam-Beam Interaction in a Circular Collider", Personal note, 2004 (LAL, Orsay)
- J. Gao, "Review of some important beam physics issues in electron positron collider designs", **Modern Physics Letters A** Vol. 30, No. 11 (2015) 1530006 (20 pages)
- J. Gao[†], M. Xiao, F. Su, S. Jin, D. Wang, Y.W. Wang, S. Bai, T.J. Bian, "ANALYTICAL ESTIMATION OF MAXIMUM BEAM-BEAM TUNE SHIFTS FOR ELECTRON-POSITRON AND HADRON CIRCULAR COLLIDERS", **HF2014 Proceedings** (2014)

SppC Collider TDR Parameters

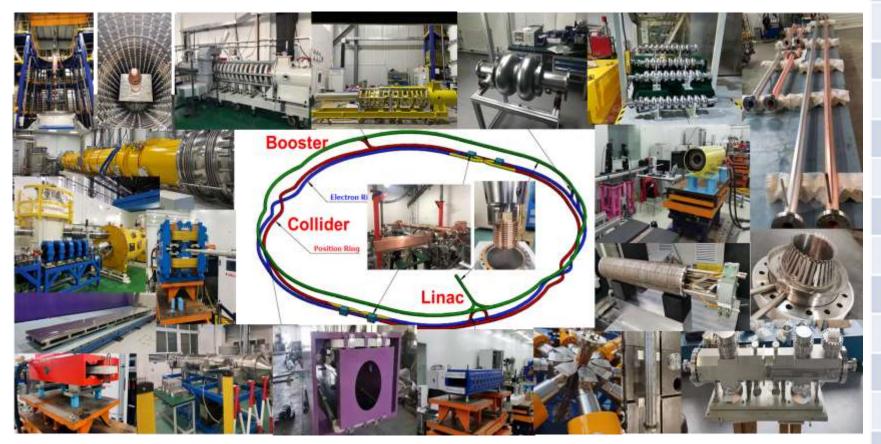
Table 8.2.1: Main parameters of the SPPC

Parameter	Value	Unit
General design parameters		
Circumference	100	km
Beam energy	62.5	TeV
Lorentz gamma	66631	
Dipole field	20.3	T
Dipole curvature radius	10258.3	m
Are filling factor	0.79	
Total dipole magnet length	64.455	km
Arc length	81.8	km
Number of long straight sections	8	
Total straight section length	18.2	km
Energy gain factor in collider rings	19.53	
Injection energy	3.2	TeV
Number of IPs	2	
Revolution frequency	3.00	kHz
Physics performance and beam parameters	•	
Initial luminosity per IP	4.3×10 ³⁴	cm ⁻² s ⁻¹
Beta function at collision	0.50	m
Circulating beam current	0.19	Α
Nominal beam-beam tune shift limit per IP	0.015	
Beam-beam tune shift calculated from Eqs. I or II	0.0147	

Bunch separation	25	ns
Number of bunches	10082	
Bunch population	4.0×10 ¹⁰	
Accumulated particles per beam	4.0×10 ¹⁴	
Normalized rms transverse emittance	1.2	μm
Beam lifetime due to burn-off	8.1	hours
Total inelastic cross section	161	mb
Reduction factor in luminosity	0.81	
Full crossing angle	73	μrad
rms bunch length	60	mm
rms IP spot size	3.0	μm
Beta at the first parasitic encounter	28.6	m
rms spot size at the first parasitic encounter	22.7	μm
Stored energy per beam	4.0	GJ
SR power per beam	2.2	MW
SR heat load at arc per aperture	27.4	W/m
Energy loss per turn	11.6	MeV

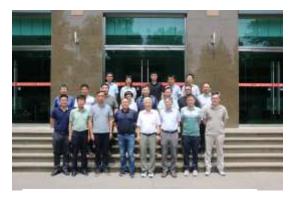
SppC parameter table comes from: J. Gao, CEPC Technical Design Report: Accelerator. **Radiat Detect Technol Methods** (2024). https://doi.org/10.1007/s41605-024-00463-y

Beam-beam tune shift result calculated from J. Gao's formulae of Eqs. I or II on previous page 10


CEPC Key Technology R&D Status in TDR

Prototype Manufactured 💙

Key technology R&D in TDR spans all component lists in CEPC CDR

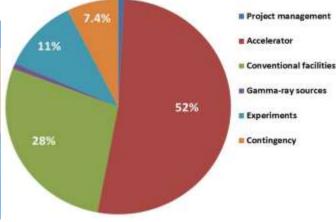

	21
Accelerator	Fraction
✓ Magnets	27.3%
✓ Vacuum	18.3%
RF power source	9.1%
✓ Mechanics	7.6%
✓ Magnet power supplies	7.0%
✓ SC RF	7.1%
Cryogenics	6.5%
Linac and sources	5.5%
✓ Instrumentation	5.3%
Control	2.4%
Survey and alignment	2.4%
✓ Radiation protection	1.0%
SC magnets	0.4%
✓ Damping ring	0.2%
	1.0

CEPC Accelerator International TDR Review and Cost Review June 12-16, and Sept. 11-15, 2023, in HKUST-IAS, Hong Kong

CEPC Accelerator TDR Review June 12-16, 2023, Hong Kong

Domestic Civil Engineering Cost Review, June 26, 2023, IHEP

CEPC Accelerator TDR Cost Review Sept. 11-15, 2023, Hong Kong



9th CEPC IAC 2023 Meeting Oct. 30-31, 2023, IHEP

CEPC Accelerator TDR completion was announced during the ICFA Seminar from Nov. 28-Dec.1, 2023, DESY, Hamburg, Germany

Distribution of CEPC Project total TDR cost of 36.4B RMB (~5.2USD)

CEPC accelerator TDR has been completed and formally released on December 25, 2023:

http://english.ihep.cas.cn/nw/han/y23/202312/t20231229_654555.html

CEPC accelerator TDR has been published formally in Journal Radiation Detection Technology and Methods (RDTM) on June 3, 2024:

DOI: 10.1007/s41605-024-00463-y

https://doi.org/10.1007/s41605-024-00463-y

CEPC Milestones, Timeline and Human Resources

2012 2013 2015 2017 2018 2023 2025 2027 2030 2035 Year ~50 ~100 ~200 ~300 ~500 ~2800 ~2500 **Human resources**

Year	Accelerator human resource	Accumulated accelerator spending Billion RMB	Accumulated	Proposal (2025) for CEPC entering 15th five year plan
2015	50	-	Investment pe	
2018	100	-	westru	
2023	200	0.2	1 //	
2025	300	0.3		Year 36.4B RMB
2027	500	0.4		Total construction
2031	2800	9		Conceptual Design Report Technical Design Report Assert-botters
2035	2500	20	CEPCAPPC	
СЕРС	kickoff meeting in	Sept. 2013		CEPC EDR site study and civil engineering design Will be completed by June 2025

2012.9 2013.9 2015.3 2017.4 2018.11

2023.12 2024

~ 2027

~2035

CEPC proposed Pre-CDR Progress report CDR

TDR

EDR start of construction

Completion

CEPC Engineering Design Report (EDR) Goal

2012.9 CEPC proposed

2015.3 Pre-CDR

2018.11 CDR

2023.10

TDR CEPC Proposal
CEPC Detector
reference design

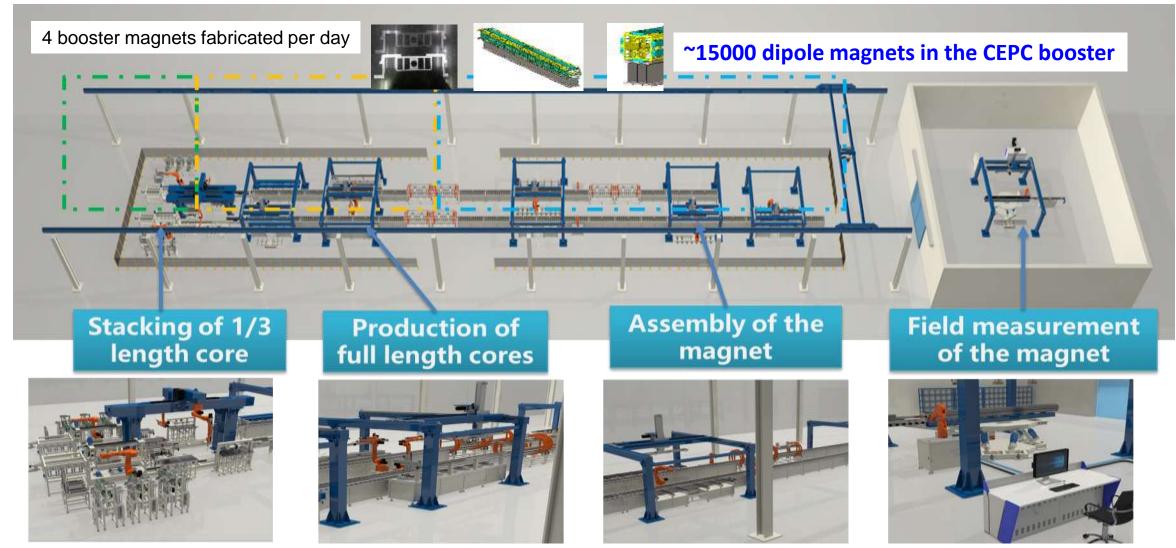
2025

2027 15th five year plan

EDR Start of construction

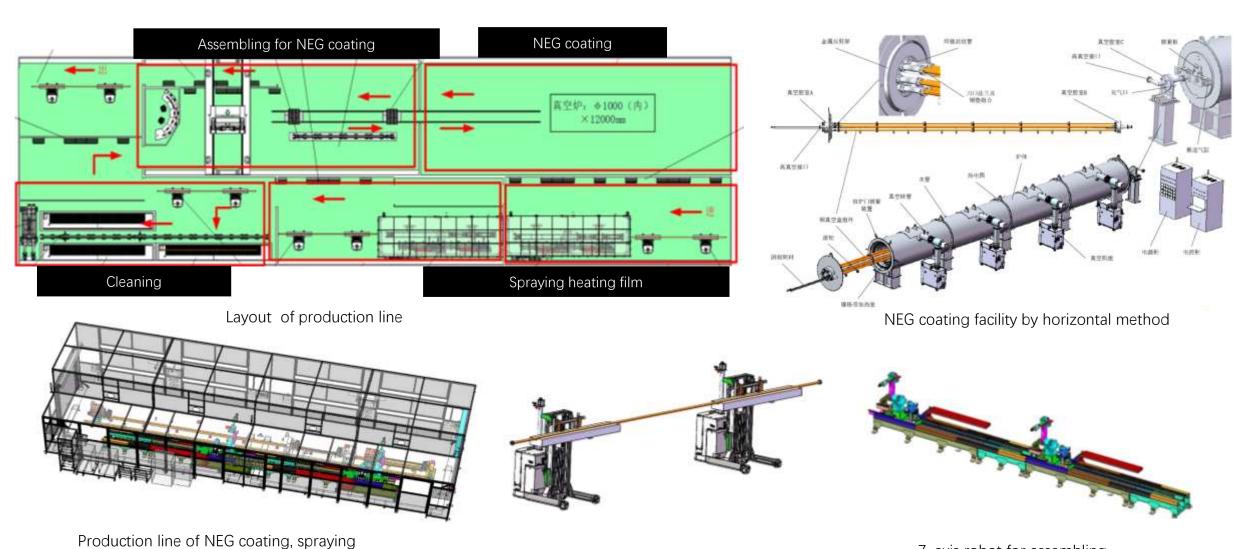
CEPC EDR Phase General Goal: 2024-2027

After completion CEPC accelerator TDR in 2023, CEPC accelerator will enter into the Engineering Design Report (EDR) phase (2024-2027), which is also the preparation phase with the aim for CEPC proposal to be presented to and selected by Chinese government around 2025 for the construction start during the "15th five year plan (2026-2030)" (for example, around 2027) and completion around 2035 (the end of the 16th five year plan).


CEPC EDR includes accelerator and detector (TDRrd)

CEPC detector TDR reference design (rd) will be released by June 30, 2025

CEPC Accelerator EDR Phase goals, scope and the working plan (preliminary) of 35 WGs summarized in a documents of 33 pages to be reviewed by IARC in Spet. 18-20, 2024

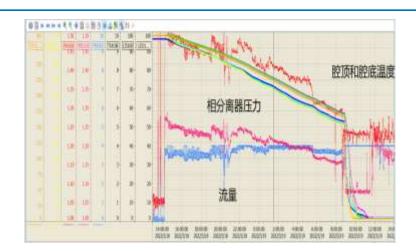

CEPC Magnet Automatic Production Line in EDR

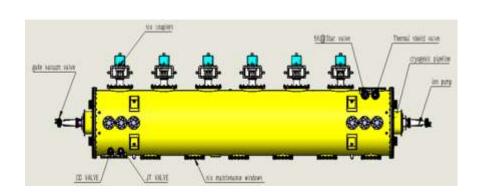
Plan: Technical design review has been done. To be completed in 2025

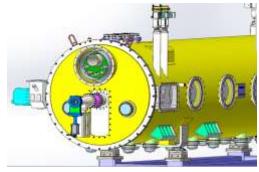
CEPC NEG Coated Vacuum Chamber (200km) Automatic Production Line in EDR

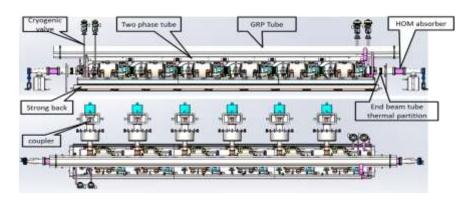
AGV(Automatic Guided Vehicle) transport

Plan: Technical design review has been done. To be completed in 2025


7-axis robot for assembling


CEPC Accelerator SRF Development in EDR



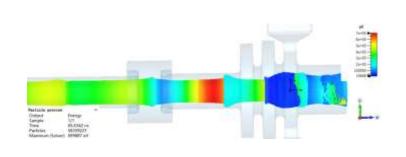


CEPC collider ring 650MHz 2*cell short test module has been completed in TDR phase

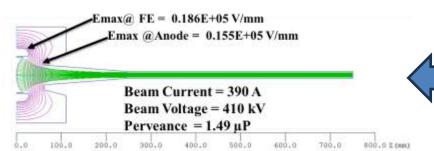
The collider Higgs mode for 30 MW SR power per beam will use 32 units of 11 m-long collider cryomodules will contain six 650 MHz 2-cell cavities, and therefore, a full size 650 MHz cryomodule will be developed in EDR

Plan: Technical design review has been done. To be completed in 2025

CEPC Accelerator Main EDR Development: Klystrons



Parameters	Value
Frequency	5720 MHz
Output Power	80MW
Pulsed width	2.5us
Repetition rate	100Hz
Gain	54 dB
Efficiency	47%
3dB bandwith	±5MHz
Beam voltage	420 kV
Beam current	403 A
Focusing field	0.28 T


C band 5720MHz 80MW Klystron

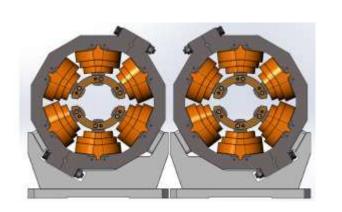
C band 5720MHz 80MW Klystron design completed

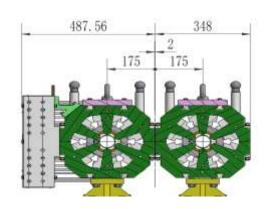
Technical assessment has been done on August 12, 2024, start construction Soon, to be completed on 2025

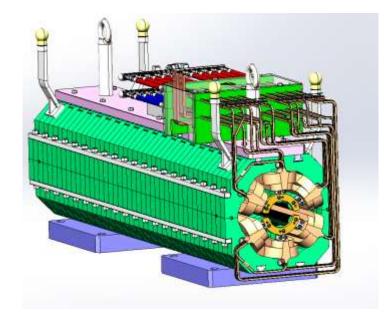


CEPC Accelerator EDR -J. Gao

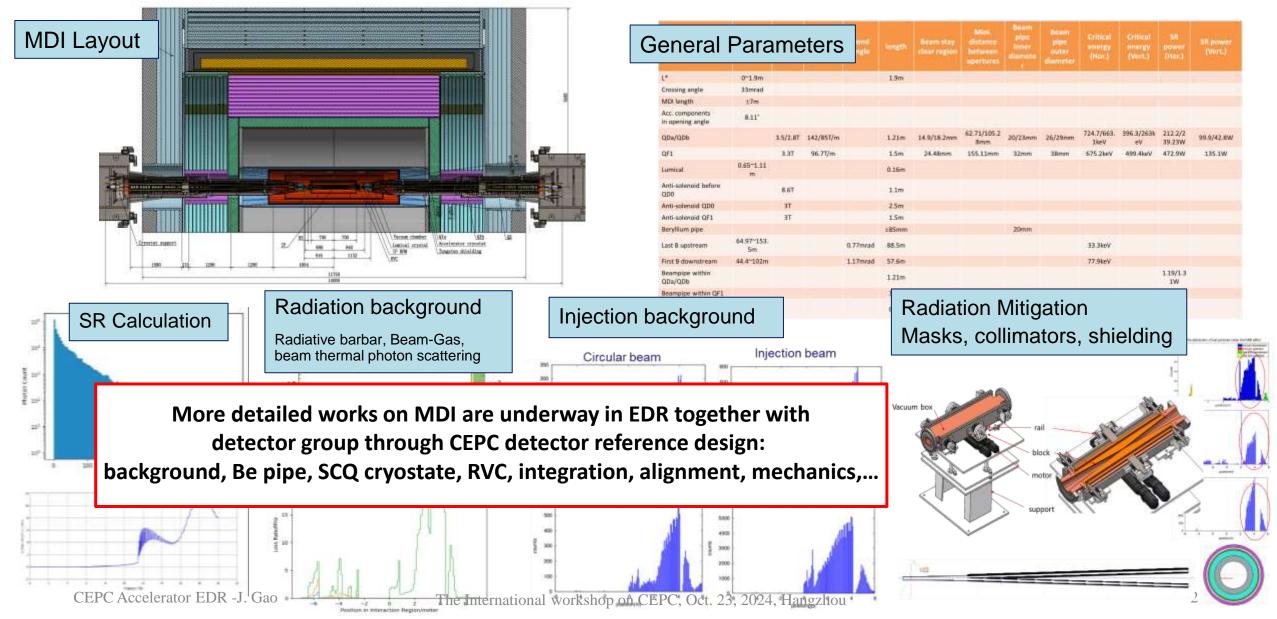
The International workshop on CEPC, Oct. 23, 2024, Hangzhou



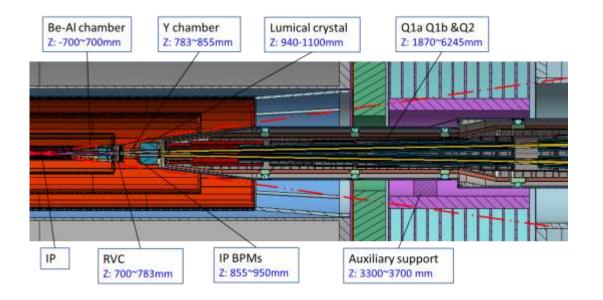


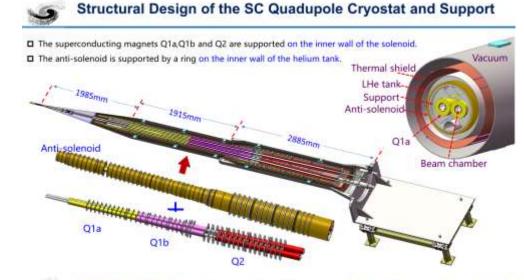

Correctors: mechanical design completed

Dual aperture quadrupole: block iron core and new cooling and power line design in EDR

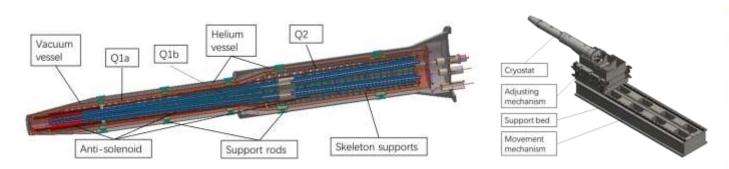


Sextupole magnets under design


CEPC MDI in EDR

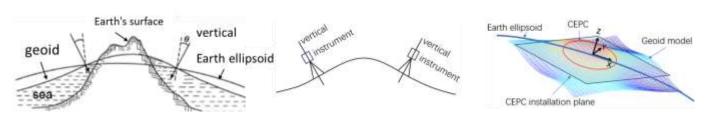


CEPC MDI Development in EDR

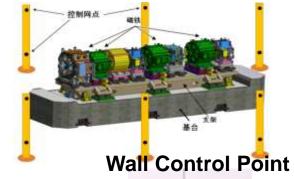

Haijing Wang, Yinshun Zhu_ Rui Ge/Mei Li

CEPC SC Quadrupole Magnet Design with CCT Coil

Design parameters of Q1a, Q1b, Q2 magnet with CCT coil @ Higgs mode


Magnet name	Qla	Q1b	Q2
Field gradient (T/m)	142.3	85.4	96.7
Magnetic length (mm)	1.21	1.21	1.5
Excitation current (A)	780	650	770
Conductor (HTS or LTS)		0.8 or 0.7mm in d	iameter
Maximum dipole field in aperture (Gs)	226	124	127
Stored energy (KJ)	16.7	15.2	22.9
Peak field in coil (T)	4.3	3.4	4.5
Integrated field harmonics		<2×10 ⁻⁴	
(Single aperture) Coil inner radius (mm)	20	26	31
(Single aperture) Coil outer diameter (mm)	30.5	39	44
Magnet mechanical length (m)	1.22	1.23	1.53
Net weight (kg)	25	32	43
Total weight of Q1a, Q1b, Q2 (kg)		100	
(For comparison, old net weight with iron option (kg))	Q1a: 93, Q1b:124, Q2: 235 Total weight of Q1a, Q1b, Q2: 452		

CEPC Alignment and Installation Plan in EDR


Alignment accuracy requirement

Component	Δx (mm)	Δy (mm)	$\Delta\theta_{z}$ (mrad)
Dipole	0.10	0.10	0.10
Arc Quadrupole	0.10	0.10	0.10
IR Quadrupole	0.10	0.10	0.10
Sextupole	0.10*	0.10*	0.10

Component Pre-alignment

GPS receiver Bedrock pile Embedded board cast point

*implement beam-based alignment

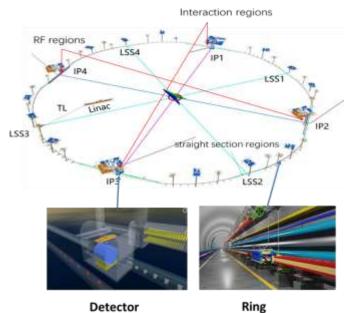
Surface Control network (14Points) Permanent point

Ground Control Point

Backbone Control network

(short line:300m; long line 600m)

t. 23, 202 (interval of 6 meters)


Tunnel Control network

CEPC Accelerator EDR -J. Gao

CEPC Installation Study in EDR

Linac: 1.6km
TL:1.5km
Circumference of ring tunnel:100km
Collider: 100km
Booster: 100km

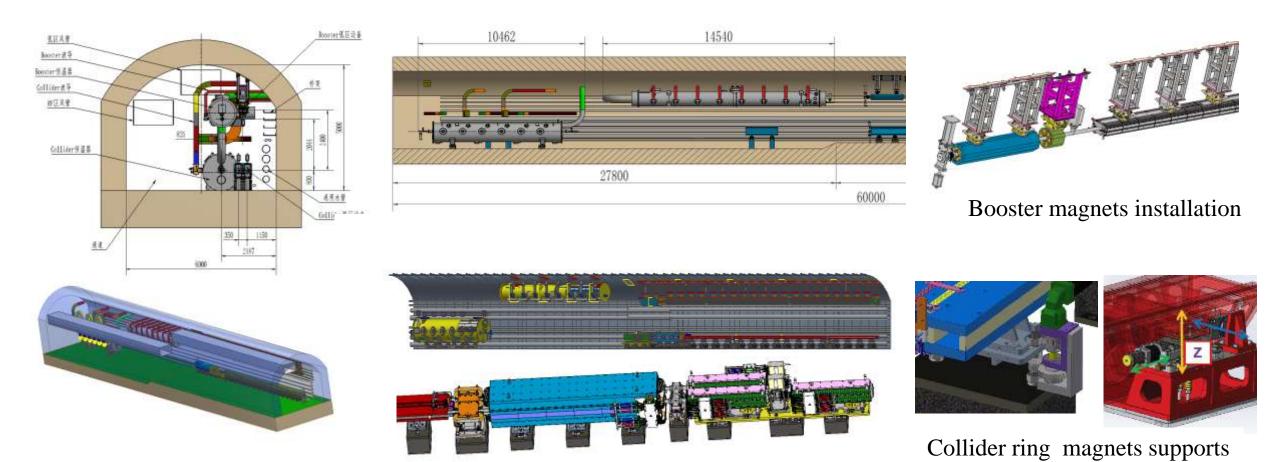
Tunnel cross section: 6X5m

Dusside of the erry

Dusside of the erry

Dusside of the erry

Dougle of the erry


Dou

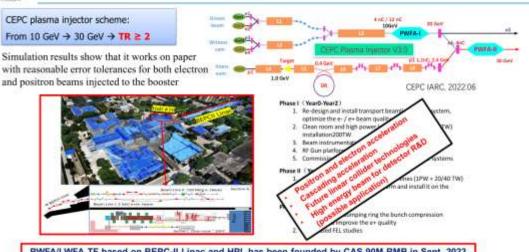
Component	Collider Ring	Booster	Linac, DR, TL	Total
Dipole	16258	14866	135	31259
Quadrupole	4148	3458	714	8320
Sextupole	3176	100	72	3348
Corrector	7088	2436	275	9799
BPM 、 PR 、 DCCT 、 kicker	3544	2408	180	6132
Septum Magnet	68	32	2	102
Kicker	8	8	2	18
Cryomodule	32	12		44
Electrostatic separator	32			32
Collimator dump	36		8	44
Superconducting	4			4
Magnets				0.7
Solenoid			37	37
Accelerating structure			577	577
Cavity			4	4
Electron Source			1	1
Positron Source			1	1
Detector	2			2
Total	34396	23320	2008	59724

CEPC Tunnel Mockup for Installation in EDR

Haijing Wang

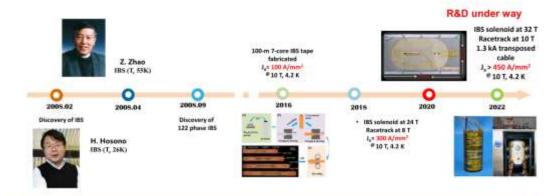
A 60 m long tunnel mockup, including parts of arc section and part of RF section

To demonstrate the inside tunnel alignment and installation, especially for booster installation on the roof of the tunnel

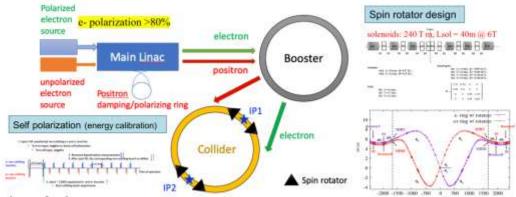

Plan: Technical design review has been done. To be completed in 2025

Advanced Technologies Development in Progress

9


CEPC Plasma Injector (alternative option) and TF Plan

PWFA/LWFA TF based on BEPC-II Linac and HPL has been founded by CAS 90M RMB in Sept. 2023 Under development in the experimental hall #10 of BEPC-II

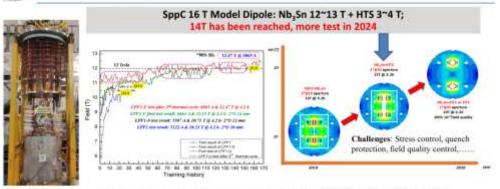

IBS Technology for High Field Magnets

J_e of IBS expected to be similar as ReBCO in 2020s with better mechanical properties and lower costready for mass applications in ultra high field magnets

9

CEPC Polarized Beam Studies(alternative option)

Key issues of study:


- Energy calibration in collider ring with transverse polarization (self polarization & inj. polarization)
- Longitudinal polarization for collision
- · Polarization beam injection, positron polarization and ramping in booster

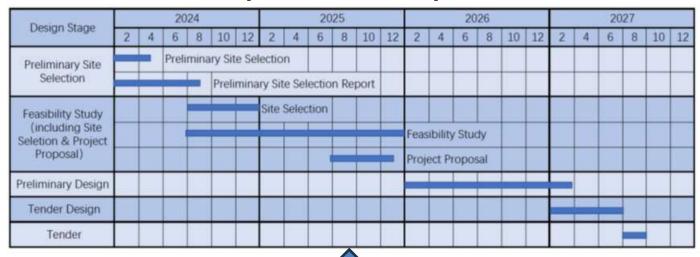
CEPC Accelerator EDICSorps, Plan and Status of Cites The CEPC LARC Morning in 2024, Sept. 18-28, 2024, IHEP

Key technology development for polarized electron beam generation, measurement and manipulation have been started

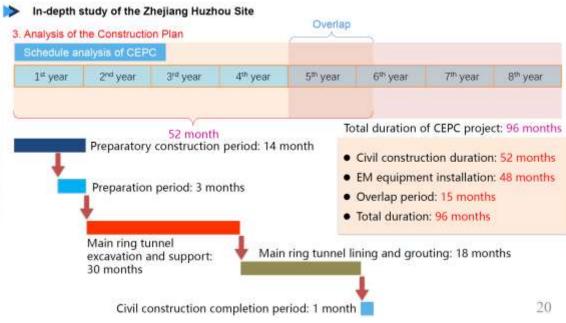
9

SppC HF Magnet Development

Picture of LPF1-U


Dual aperture superconducting dipoles achieve 12T@4.2 K and 14T@4.2K entirely fabricated in China. The next step is reaching 16-20T

CSPC Accelerator (CSR Scripe, Plot prof. States -) Line


CEPC Site Implementation and Construction Plans

CEPC site implementation plan in EDR

The EDR site selection and the site dependent civil engineering design works has been started.

CEPC construction plan

Participating and Potential Collaborating Companies in China (CIPC) and Worldwide

System Magnet Power supplier 3 Vacuum **Mechanics RF** Power 6 SRF/RF Cryogenics Instrumentation Control Survey and 10 alignment Radiation 11 protection

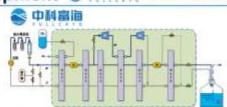
e-e+Sources

CEPC Industrial Promotion Consortium (CIPC, established in Nov. 2017)

Potential international collaborating suppliers worldwide

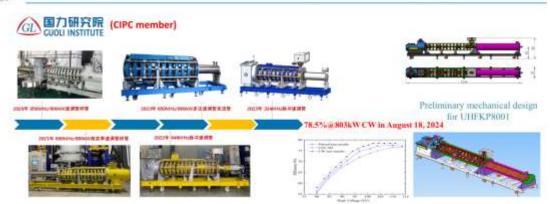
CEPC Industrial Preparation

Large-scale Cryogenic Refrigeration



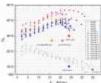
(CIPC member)

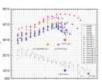
CEPC 650MHz 800kW CW High Efficiency Klystrons


First 18kW@4.5K helium refrigerator fabricated in in China passes inspection

- -It was developed by the Institute of TIPC, CAS, and integrated and manufactured by Fullcryo.
- -The super large horizontal cold box with a length of 28m and a diameter of 4.2m achieves ultra-high vacuum and extremely low leakage.
- -The horizontal cold box at megawatt-level is the largest of its kind in China and even in the world.
- -The horizontal cold box system has exceeded the set targets.
- On-site testing: 1. The airtightness test of each internal channel revealed a pressure drop of 0, surpassing the target value of 0.02 bar. 2. The overall leakage rate is 9.1×10⁻¹⁰ Pa.m³/s, surpassing the target value of 1×10-7 Pa.m3/s.
- -Expected Goals: Achieving 3 operational mode adjustments: the cooling capacity ≥ 18kW@4.5K; the cooling capacity in the superfluid helium temperature range ≥4kW(a/2K).

北京中科富海低温科技有限公司 Beijing Sinoscience Fullcryo Technology CO., Ltd. (CIPC member)


Kumhan National Research Institute has successively developed 650MHz/800KW klystron sample tubes, 650MHz/800KW high-efficiency klystron sample tubes, 648MHz pulse klystron tubes, 650MHz/800KW multi-injection klystron beam tubes, and the latest 324MHz pulse ldystron tubes Electro vacuum products for 50 years. Provide high power thyristor of GL1536A in batches for BEPCII in 2012.


HE-RACING Technology and OTIC on SRF Technologies (CIPC members)

High RRR Nb sheet

1.3GHz cryomodule assembly

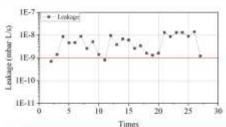
High RRR Nb ingod High RRR large grain Nb

(CIPC member)

2012 Michigan State University - FRIB 888250 Nb. 8.3 tors, 70% of the project 2014 Fermilab - LCLS I

BRR300 Nb: 5 tons, 50% of the project 2017 INFN and STFC - ESS

RRR300 Nb: 12.5 tons, 100% of the project


2019 185 - RISP, CERN - HL-LHC, Fermilab - PIP-II, Shanghai - SHINE 888300 nioblum material procurement in progress

CEPC booster and colliders: 2GeV 1.3GHz and 650MHz SRF accelerators (Higgs); 10GeV L3GHz and 650MHz SRF accelerators (ttar)

RF Shielding all Metal Gate Vacuum Valve

- Two prototypes of RF shielding All metal gate valve have been developed, and the leakage of one of them have been tested.
- The delivery inspection leakage test results for two valves , conducted by the manufacturer, were found to be < 1×109 mbar -L/s (30 times open and closed).
- The difference of leakage by IHEP & manufacture will be checked and retested in next.

 Tested by IHEP Expectation leakage < 1×10-3 mbar -L/s

CIPC Parallel Sessions

There are 19 CIPC talks covering a wide spectrum of CEPC-SppC related accelerator technologies and industrial production capabilities in China

Nov. 23, 2024, Room 289 Nov. 24, 2024, Room 289

https://indico.ihep.ac.cn/event/22089/sessions/14178/#20241023

International Industrial Connection Session

Nov. 25, 2024, Room 289

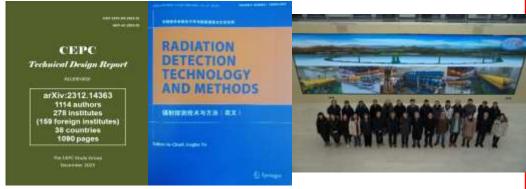
NUV. A	25, 2024, K00III 269	昌 Print	PDF	Exit Full Screen	Detailed view	Filt	er
11:00	CAEN on Detector High Voltage						All
	Room 289				11:00	- 11:15	
	Design and Development of Thin-Walled Vacuum Chambers and High-Pressure Chambers for Applications in Physics Ex	xperiments (应用	于物理实验的	薄壁真空室和高气压室设计研	制) Yunte	o Shen	2
	Room 289				11:15	- 11:30	A
	SIPM readout ASIC from Microparity				Mr We	el Shen	A
	Room 289				11:30	- 11:45	
	Imdetek on Advanced Detector Material						3
	Room 289				11:45	- 12:00	
00	High Energy Physics and Medical Imaging (United-Imaging)				Mr Pengi	wei Xk	0
	Room 289				12:00	- 12:15	ill
	NCAP on Advanced Packaging Technology						0
	Room 289				12:15	- 12:30	An I

14:00	New Generation Software-defined Modular Instrument Platform	Likun Xie
	Room 289	14:00 - 14:15
	Intelligent special power supply service provider from Fullde Electronics	Ms Qiuping Li
	Room 289	14:15 - 14:30 E
	talk12 - TBD	6
	Room 289	14:30 - 14:4.
	Keysight for High-end Instruments for Precision Measurement	
	Room 289	14:45 - 15:00
15:00	NAT Europe on MicroTCA Crates & Standard (TBD)	
	Room 289	15:00 - 15:15
	SAMTEC on Advanced Interconnections & Sockets (TBD)	
	Room 289	15:15 - 15:30

CEPC in Synergy with other Accelerator Projects in China 32

Project name	Machine type	Location	Cost (B RMB)	Completion time
CEPC	Higgs factory Upto ttar energy	Led by IHEP, China	36.4 (where accelerator 19)	Around 2035 (starting time around 2027)
BEPCII-U	e+e-collider 2.8GeV/beam	IHEP (Beijing)	0.15	2025
HEPS	4 th generation light source of 6GeV	IHEP (Huanrou)	5	2025
SAPS	4th generation light source of 3.5GeV	IHEP (Dongguan)	3	2031 (in R&D, to be approved)
HALF	4th generation light source of 2.2GeV	USTC (Hefei)	2.8	2028
SHINE	Hard XFEL of 8GeV	Shanghai-Tech Univ., SARI and SIOM of CAS (Shanghai)	10	2027
S3XFEL	S3XFEL of 2.5GeV	Shenzhen IASF	11.4	2031
DALS	FEL of 1GeV	Dalian DICP	-	(in R&D, to be approved,)
HIAF	High Intensity heavy ion Accelerator Facility	IMP, Huizhou	2.8	2025
CIADS	Nuclear waste transmutation	IMP, Huizhou	4	2027
CSNS-II	Spallation Neutron source proton injector of 300MeV	IHEP, Dongguan	2.9	2029

The total cost of the accelerator projects under construction:39B RMB more than CEPC cost of 36.4B RMB



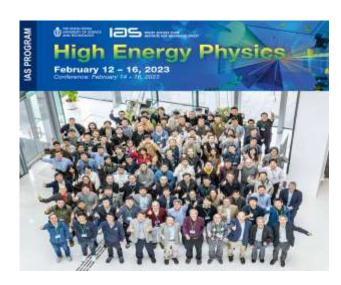
CEPC International Collaboration-1

CEPC attracts significant International participation and collaborations

Accelerator TDR report: 1114 authors from 278 institutes (including 159 International Institutes, 38 countries) Published in Radiation Detection Technology and Methods (RDTM) on June 3, 2024:

DOI: 10.1007/s41605-024-00463-y https://doi.org/10.1007/s41605-024-00463-y

- More than 20 MoUs have been signed with international institutions and universities
- CEPC International Workshop since 2014
- EU-US versions of CEPC WS since 2018
- Annual working month at HKUST-IAS (mini workshops and HEP conference) since 2015



CEPC International Collaboration-2

HKIAS23 HEP Conference, Feb. 14-16, 2023

https://indico.cern.ch/event/1215937/

The 2024 HKUST IAS Mini workshop and conference were held from Jan. 18-19, and Jan. 22-25, 2024, respectively.

https://indico.cern.ch/event/1335278/timetable/?view=standard

The 2025 HKUST IAS HEP conference: Jan. 13-17, 2025.

CEPC Workshop EU Edition (Barcelona, Spain), May 5-8, 2024

The 2023 International Workshop on Circular Electron Positron Collider, EUEdition, University of Edinburgh, July 3-6, 2023

https://indico.ph.ed.ac.uk/event/259/overview

The 2024 international workshop on the high energy Circular Electron Positron Collider (CEPC) are held from Oct. 23-27, 2024, Hangzhou, China https://indico.ihep.ac.cn/event/22089/ The 2023 international workshop on the high energy Circular Electron Positron Collider (CEPC)

https://indico.ihep.ac.cn/event/19316/

Professor Peter Higgs passed away on **April 8, 2024**. We miss him.

The 2024 international workshop of CEPC, EU-Edition were held in Marseille, France, April 8-11, 2024. https://indico.in2p3.fr/event/20053/overview

FCPPNL, Bordeaux, France, June 10-14, 2024 https://indico.in2p3.fr/event/20434/overview

CEPC IARC EDR Review-2024 (Oct. 18-20)

Meeting of the CEPC International Accelerator Review Committee September 18-20, 2024, IHEP, Beijing

Charge

Charge

The CEPC Study Group, hosted by the Institute of High Energy Physics (IHEP), has been working on the design and development of a forefront e'e' collider as a Higgs factory that can extend to energies corresponding to the Z, WW and the top quark pairs, with the upgrade potential to a high energy pp collider. The CEPC represents a grand plan proposed, studied, and to be constructed by Chinese scientists in close collaboration with international partners. The CEPC Accelerator Technical Design Report was released in December, 2023, which documents the design, the outcomes of the R&D of key technologies, the technical systems, and the cost estimate of the e'e' collider.

Report

First CEPC IARC EDR Review Report

CEPC IARC EDR Review Committee

11 October 2024

The CEPC Study Group, hosted by the Institute of High Energy Physics (IHEP), has been working on the design and development of a forefront e⁺e⁻ collider as a Higgs factory that can extend to energies corresponding to the Z, WW and top-quark-pair production, with the upgrade potential to a high-energy pp collider. The CEPC represents a grand plan proposed, studied, and to be constructed by Chinese scientists in close collaboration with international partners. The CEPC Accelerator Technical Design Report, which documents the design, the outcomes of the R&D of key technologies, the technical systems, and the cost estimate of the e⁺e⁻ collider, was released in December, 2023. Going beyond the TDR and preparing CEPC for construction, which may begin in 2027-8, the CEPC Study Group has initialized the Engineering Design Study which will be documented in a formal report (EDR). In 2025, a CEPC proposal will be submitted to Chinese government aiming for CEPC be included into the 15th five year plan: The International Accelerator Review Committee (IARC), chaired by Dr. Maria Enrica Biagini (INFX, Frascati) has been asked to conduct the first review on the development of the CEPC accelerator technical systems within the context of the EDR study. The Committee is specifically asked to review and comment on the following aspects:

Agenda

Totally, there are 18 talks

Sep 18th 2024Be	eijing time	CET time	Talk t	im:Speaker	Title
Wednesday	9:00	3:00	5'	Yifang Wang	Welcome
	9:05	3:05	25'	Xinchou Lou	CEPC general status
	9:30	3:30	30'	Jie Gao	CEPC accelerator EDR general scope, plan and status
	10:00	4:00	30'	Coffee break	
	10:30	4:30	30'	IARC preparation	meeting (closed)
	11:00	5:00	30'	Wen Kang/Mei Yang	CEPC Magnets (both collider & booster)
	11:30	5:30	30'	Cai Meng/Jingru Z	han CEPC Linac EDR plan and status
	12:00	6:00	30'	Dou Wang	CEPC booster and damping ring (DR) EDR plan and status
	12:30	6:30	90'	Lunch	
	14:00	8:00	30'	Yiwei Wang	CEPC collider ring beam dynamics EDR plan and status
	14:30	8:30	30'	Sha Bai	CEPC MDI EDR plan and status
	15:00	9:00	30'	Haijing Wang	CEPC Interaction Region engineering design status
	15:30	9:30	30'	Coffee break	
	16:00	10:00	30'	Guangyi Tang	Radiation in the tunnel and its mitigation for CEPC EDR
	16:30	10:30	60'	IARC discussion	and Q/A with CEPC accelerator speakers
	17:30	11:30	30'	IARC members	Closed session
Sep 19th 2024	9:00	3:00	30'	Yingshun Zhu	CEPC SC quadrupoles development plan in EDR and status
Thursday	9:30	3:30	30'	Haijing Wang	CEPC Mechanical system EDR plan and status
Illuisuay					
	10:00	4:00	30'	Yongsheng Ma	CEPC Vacuum system EDR plan and status
	10:30	4:30	30'	Coffee break	
	11:00	5:00	90'		and Q/A with CEPC accelerator speakers (partly closed in
	12:30	6:30	90'	Lunch	
	14:00	8:00	30'		Sha CEPC SRF (both collider & booster) EDR plan and status
	14:30	8:30	30'	Rui Ge/Mei Li	CEPC cryogenic system EDR plan and status
	15:00	9:00	30'	Zusheng Zhou	CEPC RF power sources and power distribution EDR plan an
	15:30	9:30	30'	Coffee break	
	16:00	10:00	60'		and Q/A with CEPC accelerator speakers
	17:30	11:30	60'	IARC members	Closed session
	18:30		180'	Banquet	
Sep 20th 2024	0.00		002	V: 1 W	OPPO 1:
	9:00	3:00	30	X1aolong Wang	CEPC alignment and installation EDK plan and status
Fridav	9:00 9:30	3:00 3:30	30' 30'	Xiaolong Wang Yanfeng Sui	CEPC alignment and installation EDR plan and status
Friday	9:30	3:30	30'	Yanfeng Sui	CEPC accelerator instrumentation EDR plan and status
Friday	9:30 10:00	3:30 4:00	30' 30'	Yanfeng Sui Yuhui Li	
Friday	9:30 10:00 10:30	3:30 4:00 4:30	30' 30' 30'	Yanfeng Sui Yuhui Li Coffee break	CEPC accelerator instrumentation EDR plan and status CEPC sustainable development issues
Friday	9:30 10:00 10:30 11:00	3:30 4:00 4:30 5:00	30' 30' 30' 60'	Yanfeng Sui Yuhui Li Coffee break IARC discussion	CEPC accelerator instrumentation EDR plan and status
Friday	9:30 10:00 10:30	3:30 4:00 4:30	30' 30' 30'	Yanfeng Sui Yuhui Li Coffee break IARC discussion Lunch	CEPC accelerator instrumentation EDR plan and status CEPC sustainable development issues and Q/A with CEPC accelerator speakers (partly closed in
Friday	9:30 10:00 10:30 11:00 12:30	3:30 4:00 4:30 5:00 6:00	30' 30' 30' 60'	Yanfeng Sui Yuhui Li Coffee break IARC discussion Lunch	CEPC accelerator instrumentation EDR plan and status CEPC sustainable development issues
	9:30 10:00 10:30 11:00 12:30 14:00	3:30 4:00 4:30 5:00 6:00 8:00	30' 30' 30' 60' 90'	Yanfeng Sui Yuhui Li Coffee break IARC discussion Lunch Adjourn and visi	CEPC accelerator instrumentation EDR plan and status CEPC sustainable development issues and Q/A with CEPC accelerator speakers (partly closed in t to HEPS facility
Sep ** 2024 (TBD)	9:30 10:00 10:30 11:00 12:30	3:30 4:00 4:30 5:00 6:00	30' 30' 30' 60'	Yanfeng Sui Yuhui Li Coffee break IARC discussion Lunch	CEPC accelerator instrumentation EDR plan and status CEPC sustainable development issues and Q/A with CEPC accelerator speakers (partly closed in

Visiting PAPS and HEPS's commission 40mA stored beam

Summary

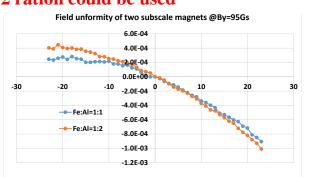
- The CEPC TDR optimizations designs with high luminosity (30MW and 50MW) operations for all four energies (Higgs, W/Z and ttbar) satisfy the CEPC scientific goals.
- CEPC accelerator TDR international review and cost review were held from June 12-16, 2023 and Sept. 11-15, 2023, respectively, and endorsed by IAC meeting held from Oct. 30-31, 2023. CEPC Accelerator TDR has be released formally on December 25, 2023 and published in Journal Radiation Detection Technology and Methods (RDTM) on June 3, 2024: DOI: 10.1007/s41605-024-00463-y https://doi.org/10.1007/s41605-024-00463-y
- EDR site selection and site dependent engineering design have already been started
- Detailed preparation of CEPC EDR phase (2024-2027) before construction working plan and beyond have been established with the aim for CEPC proposal to be presented to and selected by Chinese government around 2025 for the construction start during the "15th five year plan (2026-2030)" (for example, around 2027) and completion around 2035.
- CEPC Accelerator EDR have progressed well with corresponding EDR budgets and EDR human resources, and has been reviewed by IARC in Sept. 18-20, 2024 at IHEP.
- A beam driven PWFA experimental program has been initialized and started at IHEP to address the cascade and e+ accelerations aiming on future plasma injector for CEPC and future linear colliders.
- International collaboration and participation are warmly welcome.

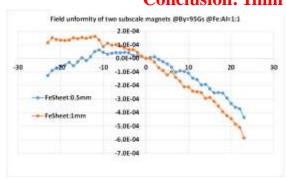
Acknowledgements

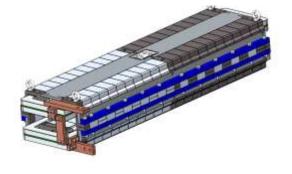
Thanks go to CEPC-SppC accelerator team's hard works, international and CIPC collaborations

Special thanks to CEPC IB, SC, IAC, IARC and TDR review (+cost) committee's critical advices, suggestions and supports

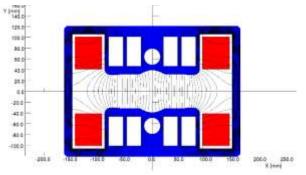
Thanks for your attention

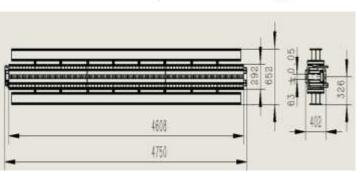

CEPC Booster Dipole Magnets in EDR

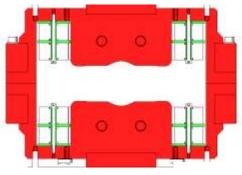

A) Studies on silicon steel: aluminum (plastic) ration studies 1:1 and 1:2

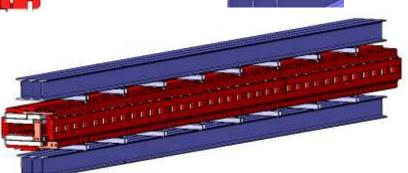

Conclusion: 1:2 ration could be used

B) Studies on silicon steel sheet thickness studies: 0.5mm and 1mm Conclusion: 1mm thickness sheet could be used



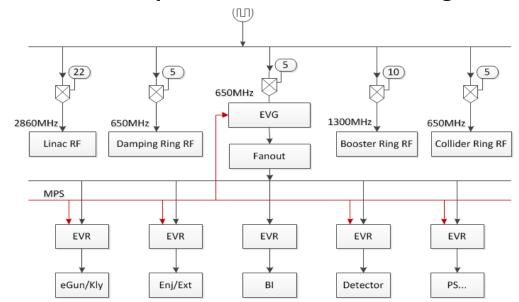


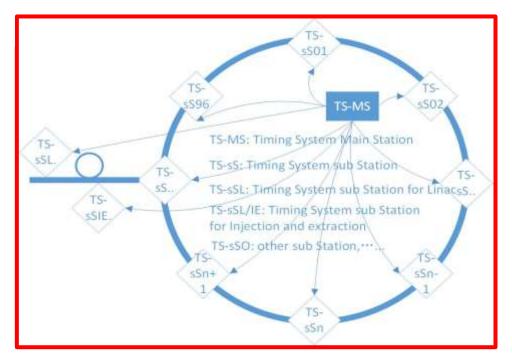




C) Studies on dipole+sextupole combined booster magnet: design and mechanical design completed

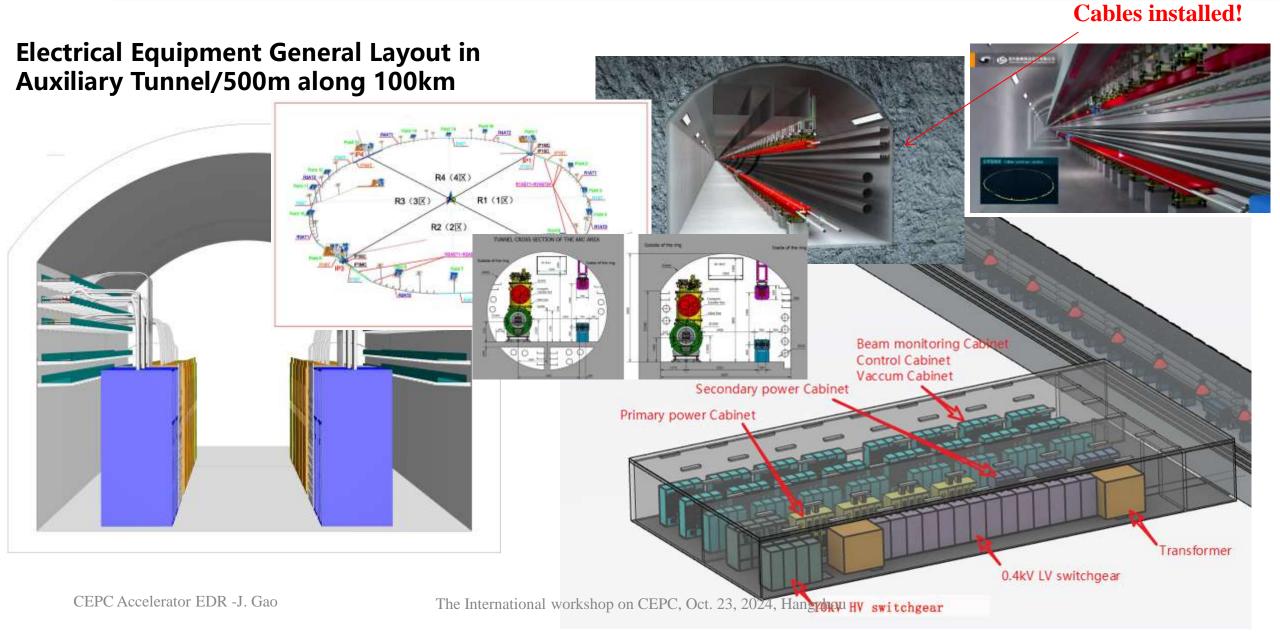
CEPC Accelerator Control and Timing in EDR


The basic structure of Timing System


- Event system and RF transmission system
- Event system: Trigger signal and Low frequency clock signal
- RF transmission system: Transmit high stability RF signal

In EDR phase CEPC high precision timing and control technology will be developed

Temperature variation induced drift compensation


0.7ns for 10km optical fiber with 1 °C change normally

CEPC Conventional Facility and Civil Engineering in EDR

