

**FACULTÉ
DES SCIENCES**

cnrs

université

Université
de Paris

FCC-ee positron source: *HTS-based matching device*

Fahad A. Alharthi

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab) CNRS, Université Paris-Saclay alharthi@ijclab.in2p3.fr

On behalf of the FCC-ee injector study collaboration

24/10/2024 F.ALHARTHI - The 2024 International Workshop on the High Energy Circular Electron Positron Collider 1

- FCC-ee Injector latest layout.
- Conventional positron source (Target , Matching device , Capture linac)
- Beam dynamics and tracking.
- Crystal-based positron source (Innovative, alternative to the conventional scheme).
- Summary and conclusion.

Future Circular Collider (FCC-ee)

FCC-ee (Z, W, H, $t\bar{t}$) as Higgs factory, electroweak & top factory at highest luminosities.

*Most demanding mode for the positron source due to the high beam current requirement.

Up to 4 interaction points \rightarrow robustness, statistics, possibility of specialised detectors to maximise physics output.

- Key factors for high positron yield:
	- Primary e- energy
	- Target design

- Magnetic strength around the target and capture linac
- Transverse aperture of the capture linac.
- The use of an **HTS solenoid** with a peak field of **~12T** around the target can substantially increase state-of-the-art e+ yield, by one order of magnitude.

Positron source : Target design

• **Conventional scheme (**Well understood and used in current and previous positron sources**)** Bremsstrahlung -> *Pair production*

- Positron production (*high Z-material*)
- Energy deposition (*target heating , cooling requirements*)
- Peak Energy deposition density "PEDD" (*Instantaneous, thermomechanical stress due to temperature gradient*.)
- Radiation around the target (*shielding requirements*)
- Huge emittance /angular divergence (*immediate matching*)

Positron source : Matching Device (Adiabatic matching device)

Matching device => a fast phase space rotation to transform the FC: ILC-BINP small size/high divergence in big sizes/low divergence beam $Max Bz = 5.00 T$ 14 $\frac{1}{2}$ Rz on the target = 0.841 T **HTS solenoid integrated in the cryostat** FC: ILC-KEK Initial e+ beam 12 $Max Bz = 5.07 T$ Bz on the target = 0.749 T Small diameter 10 $FC + BC : FCC-BINP$ & divergent Target exit $Max Bz = 7.50 T$ 5 HTS coils Bz on the target $= 3.502$ T $\frac{1}{4}$ $HTS \cdot FCC$ $Max Bz = 14.94 T$ Bz on the target $= 12.336$ T-**Big diameter** & parallel $FC + BC : SKEKB$ $Max Bz = 4.40 T$ Bz on the target $= 1.144$ T Target locatior *innovative in application for e⁺ capture* 150 -50 Ω 50 100 200 $Z \text{ [mm]} (z = 0 \text{ target exit})$ [1]Compared with classical AMD: • Higher peak field (∼15 T, ∼12 T @Target) The same HTS solenoid design • Larger aperture (\varnothing = 30-60 mm) and cryostat aperture as for $P³$ • Flexible target position and field profile experiment (72 mm). • Axially symmetric solenoid field

Courtesy of N.Vallis (PSI) • DC operation

7

- **RF structures**: 2GHz L-band with aperture $(2a) = 60$ mm, 3m long and 14MV/m.

- **Solenoids**: 10 NC short solenoids surrounding each RF structure to create \sum_{200}^{∞} 0.5T magnetic channel.

- **Chicane**: 4 dipoles (0.2T) to separate e- and e+, with electron stopper at the middle (to be updated).

 $\frac{1}{2}$

 $\frac{1}{4}$ view

Positron linac + Damping Ring (DR)

- PL1 M1 PL2 TO DR 2.86GeV 3000 • Positron linac (PL) under optimization, composed of two sections with one matching 2500 sections : 2000 **PL section 1: 16 RF structures, with solenoids** → **~0.821GeV.**
- **PL section 2**: **52** RF structures, with 2 RF structures per FODO cell → **~2.86 GeV.**
- **New DR is under design and optimization**.
- Energy/time window is used to estimate the accepted yield: ($ΔE: ±2%$, $Δt: 20$ mm/c)

Longitudinal phase space and window acceptance*

^{*} Simplified longitudinal analytical formula used to track the particles in the positron linac

Which positrons are accepted by the DR ?

Momentum : accepted positrons ≤ 100 MeV/c **Primary factor**

• Transverse aperture and divergence: **Secondary factor.**

More positrons in the low energy spectrum with lower divergence => increase the accepted yield.

Crystal-based positron source

- Originally proposed by R. Chehab, A. Variola, V. Strakhovenko and X. Artru [2].
- Several experiments performed: (Orsay[3], WA103@CERN[4] and KEK[5]) in the $1 - 10$ GeV region.
- Three approaches have been studied experimentally.

Use of lattice coherent effects in oriented crystals (W) <111> : channeling and over barrier motion

- Enhancement of photon generation in oriented crystals
- Soft photons will generate the soft positrons \rightarrow easier to capture by matching devices.
- Lower energy deposit and PEDD in target \rightarrow lower heating and thermo-mechanical stress (target reliability)

 \mathcal{C}_ℓ

Efficiency

0.035

 0.03 0.025

0.02 0.015

 0.01 0.005

24/10/2024 F.ALHARTHI - The 2024 International Workshop on the High Energy Circular Electron Positron Collider 11

4 GeV e-

Tungsten Crystal

standard Tungsten Plat

[6]

@ KEKB

Crystal-based positron source: simulation

 $[10]$

The whole setup was simulated through Geant4 toolkit taking advantage of GeantG4ChannelingFastSimModel [8]

> • The simulation environment was benchmarked/validated with experiments at energies of interest for positron sources of future colliders \rightarrow optimization studies for the FCC-ee [9]

Crystal-based positron source: simulation

amorphous tungst target-converter

The whole setup was simulated through Geant4 toolkit taking advantage of GeantG4ChannelingFastSimModel [8]

> • The simulation environment was benchmarked/validated with experiments at energies of interest for positron sources of future colliders \rightarrow optimization studies for the FCC-ee [9]

Thin crystal as a radiator + amorphous target as converter with D optimization Single thick crystal act as radiator and converter

 $e^+e^ \gamma$

 $[10]$

Single crystal thickness optimization

Single crystal thickness optimization

Work in progress *Work in progress*

- The work is in progress to optimize the FCC-ee injector (including the positron source) and maximize the yield (*~3 Ne+/Ne-*)
- New DR is under design and optimization.
- The design of the FCC-ee injector will be finalized by the **end of this year** (*end of FCC-ee feasibility study.***)**
- Conceptual design of crystal-based positron source: **several options were simulated and the results converges to single thick crystal (***35% lower Energy deposition, 16% lower PEDD***),** with potential of proof of principles experiments @ PSI [P3] (phase 2).

This work was done under the auspices of CHART (Swiss Accelerator Research and Technology) Collaboration, https://chart.ch - CHART Scientific Report 2022:<https://chart.ch/reports/>

FCCIS: 'This project has received funding from the European Union's Horizon 2020 research and innovation programme under the European Union's Horizon 2020 research and innovation programme under grant agreement No 951754.'

EU Horizon 2020 GA No 101004730

European Commission |

Horizon 2020 European Union funding for Research & Innovation

24/10/2024 F.ALHARTHI - The 2024 International Workshop on the High Energy Circular Electron Positron Collider

Thank you for your attention!

[1] N. Vallis et al., Proof-of-principle e+ source for future colliders, Phys. Rev. Accel. Beams 27, 013401 – 2024

[2] R. Chehab, F. Couchot, A. R. Nyaiesh, F. Richard, and X. Artru, Proceedings of the 1989 IEEE Particle Accelerator Conference (PAC'89), Chicago, IL, USA, 1989, p. 283.

[3] X. Artru et al., Nucl. Instrum. Methods Phys. Res., Sect. B119, 246 (1996).

- [4] R. Chehab et al., Phys. Lett. B 525, 41 (2002).
- [5] T. Suwada et al., in the 2006 International Linear Accelerator Conference (LINAC'06), Knoxville Convention Center, TN, USA, 2006.
- [6] T. Suwada et al.,Phys. Rev. ST Accel. Beams 10, 073501 Published 10 July 2007
- [7] X. Artru, I. Chaikovska, R.Chehab et al. NIM B 355 (2015)
- [8] A. Sytov et al. JKPS 83 (2023)
- [9] L. Bandiera et al., Eur. Phys. J. C (2022) 82:699

[10] M. Soldani et al., Nucl. Instrum. Methods Phys. Res, A, vol. 1058, p. 168828, (2023)