

Institute of High Energy Physics, Chinese Academy of Sciences

Lithium vapour

Wakefield acceleration

IHEP PBA study status (2017—2024)

Dr. Dazhang Li Institute of High Energy Physics On behalf of on IHEP-THU-BNU Team

- Introduction
- PWFA and CEPC plasma injector (CPI)
- Recent LWFA studies at IHEP
- IHEP PBA TF proposals and current status
- Summaries and prospects

[•] Plasma Based Acceleration (PBA): > 1000 E_{acc.}

CEPC International Work Shop @ Hangzhou

2024-10-25

Plasma/Laser wakefield accelerator (PWFA/LWFA)

- Driver: Conventional Accelerator
 - Higher average power
 - Higher WP to DB efficiency, DB to
 WB efficiency, Higher repetition rate

- Driver: Ultra intense and ultra short laser
 - Real tabletop accelerator
 - Have potential to increase efficiency and laser's repetition rate

Worldwide attentions & great progress in the last 20 years

IHEP PBA studies since 2005

CEPC International Work Shop @ Hangzhou

2024-10-25

Introduction

- PWFA and CEPC plasma injector (CPI)
- Recent LWFA studies at IHEP
- IHEP PBA TF proposals and current status
- Summaries and prospects

CEPC Plasma Injector (CPI)

IHEP-THU-BNU Collaborated team on CPI (since 2017)

CEPC International Work Shop @ Hangzhou

2024-10-25

CPI design V3.0 and key issues for CPI

CEPC International Work Shop @ Hangzhou

S

e- PWFA and long distance acc. hosing instability

- In simulation, TR ~ 2 is stable enough
- Hosing instability may lead to emittance growth
- BNS damping may mitigate hosing instability, ion motion, for example
- Other damping sources exist in a real PBA, but not included in the simulations

Mini Workshop on Green Accelerators and Colliders @ HKUST

Preliminary error tolerance analysis

Tilt angle	10 µrad	100 µrad	1 mrad
Bunch charge [nC]	1.197	1.197	0.903
Energy [GeV]	30.01	30.01	30.24
RMS energy spread	0.41	0.41	0.65

CEPC International Work Shop @ Hangzhou

A "perfect" wakefield means:

- > Flat longitudinal wakefield, particles at different position experience same Ez
- > Transverse wakefield can provide focusing forces to the accelerated particles

So, the blowout wakefield in uniform plasmas is quite fit for e- acceleration, while unfit for e+ acceleration

- High efficiency 60%
- Low energy spread ~0.5%
- **Small emittance growth**
- Need e- driver, e+ trailer and plasma channel exactly coaxial

Shiyu Zhou, W. Lu et al., CEPC Conceptual Design Report (2018)

e+ PWFA studies

e+ PWFA studies

Plasma pa	arameters		
Density (cm ⁻³)	1.13	33e15	
Inner radius (µm)	158		
Outer radius (µm)	711		
Beam parameters	Driver	Trailer	
Charge (nC)	6.45	1.1	
Energy (GeV)	30	3	
Transverse size (µm)	32 6		
Normalized emittance ϵ_n (mm·mrad)	32	16	
Length (µm)	237	153	
Energy spread δ_E (%)	0	0	
Beam longitudinal distance (µm)	885		

Positron beam parameters			
Charge (nC)	1.1		
Energy (GeV)	30.1		
Normalized emittance	41.6 (x)		
ϵ_n (mm·mrad)	18.7 (y)		
Energy spread δ_E (%)	0.68		
Acceleration properties			
Acceleration length (m)	20.8		
Acceleration gradient (GV/m)	1.3		
Beam loading efficiency (%)	22.6		

CEPC Internation	onal Work Sh	ιop @ Hangzhoι
-------------------------	--------------	----------------

e+ PWFA studies--energy spread compression

Parameter	Symbol	Unit	Value	Parameter	Symbol	Unit	Value
Beam charge	Q _{e+}	nC	1.1	Beam Charge	Q _{e+}	nC	1.05
Beam energy	E_{e^+}	GeV	30.1	Beam energy	F.	GeV	30.0
Energy spread	σ_{e}	%	0.68	Energy annead	−e+	0/	0.156
Emittance	٤ _n	mm·mrad	151(x) / 35.1(y)	Energy spread	0 _e	%0	0.150
Bunch length	σ_{l}	mm	0.322(rms)	Emittance	tance ε _n	mm·mrad	131 (x)
Peak Current	I	kA	0.647	Emittance			76.2 (y)

CEPC International Work Shop @ Hangzhou

2024-10-25

Linac design for CPI

Parameter	Driver	Trailer	Total
Energy E (GeV)	11.23	10.94	11.16
Normalized emittance ϵ_n (mm-mrad) (H/V)	20.6/20.2	10.6/10.2	18.8/18.0
Bunch length (µm)	339.9	88.9	599.2
Beam size (µm) (H/V)	192/132	178/97	189/124
Charge (nC)	3.87	1.19	5.06
Energy spread	1.14%	0.34%	1.5%
Beam distance (µm)	170).4	/

CEPC International	Work S	hop @	Hangzhou
---------------------------	--------	-------	----------

Final Focus design for CPI

Parameter	Driver	Trailer
Energy E [GeV]	11.23	10.94
Normalized emittance ϵ_n [mm-mrad] (H/V)	20.6/20.2	10.6/10.2
Target beam size [µm]	3.89	2.75
Energy spread [%]	1.14	0.34
Beta functions at the focal point β^* [cm]	1.	63
Distance from last quadrupole to the focal point L* [m]	3	3

Driver's transverse emittance need further optimization. Plasma matching section as in e+ PWFA can be helpful

	BCI	BCII	BCIII
Initial energy (MeV)	400	400.1	405
δinj (%)	0.054	0.367	2.17
Initial $\sigma z \pmod{mm}$	4.4	600	100
f_{RF} (GHz)	2.860	5.712	5.712
Voltage(GV)	0.0056	0.12	4.18
Gradient (MV/m)	20	40	40
L (m)	0.28	3	104
ϕ_{RF} (degree)	89	88	61.5
R ₅₆ (mm)	1200	27.6	5.5
Final energy(MeV)	400.1	405	2400
δext (%)	0.367	2.17	1.83
final σz (µm)	600	100	20

Beam distribution @ FF (~20µm)

• Superconducting wiggler \rightarrow shorter damping time & smaller equilibrium emittance

CEPC International Work Shop @ Hangzhou

Plasma dechirper experiment \rightarrow lower energy spread

Yipeng, Wu et al., PRL 122 204804 (2019); Dr. Shuang Liu's PhD Thesis (2020)

CEPC International Work Shop @ Hangzhou

Energy spread and stability optimization

2% / 1.2% → 0.1%/0.5% @ 500 pC

2.04

1.20

CEPC International Work Shop @ Hangzhou

(b)

(c)

(d)

0.45

(e)

Published in partnership

of Physics

with: Deutsche Physikalische

Gesellschaft and the Institute

21

(f)

Progress on key issues of CIP

Кеу	issues	Preliminary study/ Conceptual design	Detailed and convincing simulations / designs	Experiment test / Prototype
	HTR	\checkmark	\checkmark	×
e- PWFA	Beam quality preservation	\checkmark	\checkmark	×
	Error analysis	\checkmark	×	×

Biggest uncertainty: lack of experimental test

Need a dedicated PWFA test facility for CPI!

	• •			
Conv. acc. physics and techniques	Beam merging	\checkmark	×	×
	Instrumentation	\checkmark	×	×
	Timing synchronization	\checkmark	×	×
	Positron beamline	\checkmark	\checkmark	×
Plasms source and beam manipulation	Plasma dechirper	\checkmark	\checkmark	\checkmark
	Plasma lens	×	×	×
	Plasma sources	\checkmark	\checkmark	×
	Staging	\checkmark	×	×

CEPC International Work Shop @ Hangzhou

2024-10-25

- Introduction
- PWFA and CEPC plasma injector (CPI)
- Recent LWFA studies at IHEP
- IHEP PBA TF proposals and current status
- Summaries and prospects

Injection Scheme study @ IHEP \rightarrow eff. \uparrow energy spread \downarrow

- Introduction
- PWFA and CEPC plasma injector (CPI)
- Recent LWFA studies at IHEP
- IHEP PBA TF proposals and current status
- Summaries and prospects

CAS program on PWFA (approved in sept. 2023, 90M RMB)

CEPC International Work Shop @ Hangzhou

Hall #10 @ IHEP was used for detector calibration

CEPC International Work Shop @ Hangzhou

2024-10-25

Test facility based on BEPCII linac design V1.0

CEPC International Work Shop @ Hangzhou

2024-10-25

Test facility based on BEPCII linac design V2.0

CEPC International Work Shop @ Hangzhou

2024-10-25

Lab construction and beamline installation is ongoing

CEPC International Work Shop @ Hangzhou

2024-10-25

Lab construction and beamline installation is ongoing

CEPC International Work Shop @ Hangzhou

- Introduction
- PWFA and CEPC plasma injector (CPI)
- Recent LWFA studies at IHEP
- IHEP PBA TF proposals and current status
- Summaries and prospects

- > Conceptual design of CPI has been carried out since 2017
- > Simulation studies during the last 5-6 years, no showstoppers till now
- > We'll focus on the TF construction in the next 2-3 years
- > The new TF is NOT only for PBA, but also for conventional accelerator R&D
- > The new TF is NOT only for CPI, but also for a real plasma-based accelerators

Thank you and welcome to IHEP