

Study of channel radius in beam driven plasma wakfield

Ming Zeng^{*} (曾明) IHEP 2024.10.25 Hangzhou *zengming@ihep.ac.cn

The 2024 international workshop on the high energy Circular Electron Positron Collider

Background

Beam-driven plasma wakefield accelerators (PWFAs)

Review

- In 1985, Pisin Chen *et al.* proposed a new acceleration mechanism driven by charged particles;
- In 2007, people used 85 cm plasma to double the energy of a 42 GeV electron beam, with the maximum acceleration gradient of 52 GeV/m;

Nonlinear wakefield

- In the blowout regime: high current drive electron beam, beam density $n_b \gg$ plasma density n_e ;
- ~100 GeV/m acceleration gradient; ~MT/m transverse focusing field; fs short-period pulses.

10

E (ch)

0

0

Why is the channel radius important

- The wakefield potential scale with the channel radius $\psi_0 \sim r_c^2/4$
- The acceleration and deceleration field depends on the wakefield potential $E_z = \frac{d\psi_0}{d\xi}$
- The E_z distribution is very important for the PWFA design
- For high transformer ratio PWFA, detailed study of r_c and ψ_0 is critical

Hosing instability in the long ion channel

the amplitude increases exponentially with time and distance

69 02 04 08 08

 $in(x_b)$

Ŷ

Hosing instability : a major problem in PWFA.
 for the channel centroid [1]:

$$\frac{\partial^2 X_c(\xi,t)}{\partial \xi^2} + C_r(\xi) C_{\psi}(\xi) \omega_0^2 X_c(\xi,t) = C_r(\xi) C_{\psi}(\xi) \omega_0^2 X_b(\xi,t),$$

where X_c is the channel centroid, X_b is the beam centroid, $\xi = t - z$ is the longitudinal co-moving coordinate, $\omega_0 = 1/\sqrt{2}$ (normalized), $\omega_\beta = 1/\sqrt{2\gamma_b}$ (γ_b is the beam Lorentz factor)

• In the adiabatic nonrelativistic limit in ref. [2], $C_r(\xi)C_{\psi}(\xi) = 1$.

However, it can be found that,

the oscillation frequency of X_c is not ω_0 .

The balancing radius of long ion channel

• Consider narrow electron beam, the linear density $\Lambda(\xi) = \int_0^\infty n_b(\xi, r') r' dr'$

In theory, there are **two forms** of balancing radius:

a) If the electron sheath follows the δ function[1]:

$$\left(\frac{r_{\delta}^{3}}{4}+r_{\delta}\right)\frac{d^{2}r_{\delta}}{d\xi^{2}}+\left(1+\frac{r_{\delta}^{2}}{2}\right)\left(\frac{dr_{\delta}}{d\xi}\right)^{2}+\frac{r_{\delta}^{2}}{4}=\Lambda(\xi),$$

when $dr_{\delta}/d\xi \approx 0$,the balancing radius is $r_{\delta 0} = 2\sqrt{\Lambda}$;

b) For the boundary electrons,

the attractive force from the uniform ion background: $F_{ion} = -\frac{1}{2}r_n$,

the repulsive force from the electron driver: $F_{driver} = \frac{\Lambda}{r_n}$,

the balancing radius is the neutralization radius: $r_n = \sqrt{2\Lambda}$;

Through the simulations by QuickPIC, we find the fact that

the actual balanced channel radius is between r_n and r_{δ} .

Near-adiabatic blowout:

Near-stationary blowout:

Adiabatic sheath model

Maxwell's equations for pseudo-potential

• Quasistatic approximation: $\partial_s \ll \partial_{\xi}$

• Poisson-like equation:
$$-\nabla_{\perp}^{2} \begin{bmatrix} A \\ \phi \end{bmatrix} = \begin{bmatrix} j \\ \rho \end{bmatrix}$$
,

- Pseudo-potential: $\psi = \phi A_z$,
- The source: $S(\xi, r) = \rho j_z = \rho_b + \rho_i + \rho_e j_{bz} j_{ez} = 1 n_e(1 v_z)$, where $j_{bz} \approx \rho_b$

$$n_e = \begin{cases} 0, \ r < r_c(\xi) \\ n_e, \ r \ge r_c(\xi) \end{cases} \quad \text{When } r \ge r_c(\xi), n_e \text{ is to be determined} \end{cases}$$

"b" represents electron beam, "e" represents plasma electrons, v_z is the velocity of plasma electron

$$-\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\psi}{\partial r}\right) = S(\xi,r) = \begin{cases} 1, \ r < r_c(\xi)\\ 1 - n_e(1 - v_z), \ r \ge r_c(\xi) \end{cases}$$

Boundary conditions

$$-\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\psi}{\partial r}\right) = 1 - n_e(1 - v_z)$$

 $\psi|_{r=r_c(\xi)}=\psi_c,$

ψ_c is to be determined

Try to solve $\psi|_{r>r_c(\xi)}$

The velocity of plasma electron

A constant of the motion for any plasma electron : $\gamma(1 - v_z) = 1 + \psi$

• Lorentz factor of the plasma electron: $\gamma = \frac{1}{\sqrt{1 + v_r^2 + v_z^2}} \approx \frac{1}{\sqrt{1 + v_z^2}}$

For $r > r_c$, the transverse motion of plasma electrons is negelected (the adiabatic assumption)

Therefore,
$$v_z(r) = \frac{2}{1+[1+\psi(r)]^2} - 1$$

Forces outside the bubble

wakefieldsdriver beamsheath
$$F_r|_{r>r_c} = -E_r + v_z B_{\theta} = 0$$
Gauss's Law: $E_r(r) = \frac{r}{2}$ $-\frac{\Lambda}{r}$ $-\frac{1}{r} \int_0^r n_e(r') r' dr'$ Stokes' Theorem: $B_{\theta}(r) = -\frac{\Lambda}{r}$ $-\frac{1}{r} \int_0^r n_e(r') v_z(r') r' dr'$

$$n_{e} = 0 \text{ when } r < r_{c}(\xi)$$

Therefore, $F_{r}|_{r>r_{c}} = \frac{1}{r} \left[-\frac{r^{2}}{2} + (1 - v_{z})\Lambda + \int_{0}^{r} n_{e}(r')r'dr' - v_{z} \int_{0}^{r} n_{e}(r')v_{z}(r')r'dr' \right] = 0,$
The balancing radius $r_{c} = \sqrt{2[1 - v_{z}(r = r_{c})]\Lambda} = 2\sqrt{\frac{\Lambda}{1 + \frac{1}{(1 + \psi_{c})^{2}}}}.$

The sheath equations

For $r > r_c$, the coupled equations are:

$$-\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\psi}{\partial r}\right) = 1 - n_e(1 - v_z)$$
$$v_z = \frac{2}{1 + (1 + \psi)^2} - 1$$
$$-\frac{r^2}{2} + (1 - v_z)\Lambda + \int_0^r n_e(r')r'dr' - v_z \int_0^r n_e(r')v_z(r')r'dr' = 0$$

Boundary conditions:

$$\frac{\partial}{\partial r}\psi|_{r=r_c(\xi)} = -\frac{r_c}{2},$$
$$\lim_{r \to \infty} \psi = 0$$

Numerical results of the shooting method

large scale blowout radius 3.0 Numerical integral Fit 2.5 Near-adiabatic Near-stationary 2.0 ¥ 1.5 1.0 -0.5 -0.0 2 8 10 r_c

polynomial fit:

 $\psi_c \approx -0.012r_c^2 + 0.363r_c - 0.044$

"Near-adiabatic" and "Near-stationary" are the simulation results in the nearadiabatic bubble and near-stationary bubble respectively.

This fit is a good estimation for $r_c \leq 8$.

Numerical results in small scale

[1] A. Jeffrey and H.-H. Dai, Handbook of Mathematical Formulas and integrals (Academic Press, Elsevier, 2008) 4th edition.

the balancing radius in adiabatic sheath model

The balancing radius in our model r_c best matches the simulation results.

Conclusion

- For an adiabatic sheath, we have obtained the coupled equations of ψ , v_e and n_e .
- Balancing radius of channel $r_c = 2 \sqrt{\frac{\Lambda}{1 + \frac{1}{(1 + \psi_c)^2}}}$ is between r_n and r_δ .
- We have found ψ and ψ_c for all r:

•
$$\psi(r) = \begin{cases} \psi_c + \frac{r_c^2}{4} - \frac{r^2}{4}, \ r < r_c \\ \frac{r_c^2}{2} K_0(r), \ r \ge r_c, \text{ if } r_c \le 0.3 \end{cases}$$

• If $r_c > 0.3$, $\psi(r)$ can be obtained by numerically solving the coupled equations.

•
$$\psi_c = \begin{cases} \frac{r_c^2}{2} K_0(r_c), & r_c \leq 0.3 \\ -0.012r_c^2 + 0.363r_c - 0.044, & 0.3 \leq r_c \leq 8 \end{cases}$$

Thank you!

The blowout radius

• The blowout radius $r_c(\xi)$ is determined by

(1) the current distribution of the drive beam; (2) the density distribution of sheath electrons.[1];

• the drive beam current $\Lambda(\xi) = \int_0^\infty n_b(\xi, r') r' dr' = \frac{2I}{I_A}$, also represents the normalized linear density,

 n_b – the density, *I* – the instantaneous current, $I_A \approx 17$ kA;

• Existing theories have simplified sheath to square or exponential distributions [2-4].

[1] W. Lu et al., Phys. Plasmas, 13, 056709 (2006) [2] S. A. Yi et al., Phys. Plasma, 20, 013108 (2013)
[3] J. Thomas et al., Phys. Plasma, 23, 053108 (2016) [4] A. A. Golovanov et al., Quantum Electron., 46, 295 (2016)

The sheath equations

- Poisson-like equation: $-\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\psi}{\partial r}\right) = \rho j_z = \begin{cases} 1, \ r < r_c(\xi) \\ 1 n_e(1 \nu_z), \ r \ge r_c(\xi) \end{cases}$
 - n_e density of plasma electrons, v_z longitudinal velocity of plasma electrons.
 - (1) when $r < r_c(\xi)$, $\psi|_{r < r_c(\xi)} = \psi_c + \frac{r_c^2}{4} \frac{r^2}{4}$, where $\psi|_{r = r_c(\xi)} = \psi_c$;
 - (2) Boundary conditions: $\frac{\partial}{\partial r}\psi|_{r=r_c(\xi)}=-\frac{r_c}{2}$, $\lim_{r\to\infty}\psi=0$.
- a constant of plasma electrons motion: $\gamma \gamma v_z = 1 + \psi_{\circ}$
- Gauss'law: $E_r(r) = \frac{r}{2} \frac{\Lambda}{r} \frac{1}{r} \int_0^r n_e(r') r' dr'$, Stokes' Theorem: $B_\theta(r) = -\frac{\Lambda}{r} \frac{1}{r} \int_0^r n_e(r') v_z(r') r' dr'$,

Forces in equilibrium for electrons outside the ion channel:

$$F_r|_{r>r_c} = -E_r + v_z B_\theta = \frac{1}{r} \left[-\frac{r^2}{2} + (1 - v_z)\Lambda + \int_0^r n_e(r')r'dr' - v_z \int_0^r n_e(r')v_z(r')r'dr' \right] = 0.$$