Low-Q cavity BPM with an ultra-high position resolution

Siwon Jang

Group Leader of 4GSR Beam Diagnostics Group

Pohang Accelerator Laboratory, South Korea

Contents

- **1. Introduction**
- **2. Design of Low-Q cavity IPBPM**
- **3. Beam test results of Low-Q cavity IPBPM**
- **4. Feedback system with Low-Q cavity IPBPM**
- **5. Summary**

Introduction

Introduction

A requirement of High resolution cavity BPM for future collider

• Realization of a precise beam handling is strongly required in future accelerators such as linear colliders (LC) and X-ray free electron lasers (XFEL). It goes without saying that a high resolution beam position measurement is the key.

Introduction / Cavity BPM

Principle of cavity BPM

Generates dipole (TM110) and monopole (TM010) modes

Design of Low-Q cavity IPBPM

Design of Low-Q Cavity IPBPM

Key point of cavity BPM design for high beam position resolution

- Usual cavity BPM was designed to cylindrical shape, but our low-Q IPBPM was designed to rectangular shape **to get the more higher beam position resolution in vertical plane.**

$$
U = \frac{V_{totalexc}^2}{\omega(R/Q)} = \frac{\omega}{4}(R/Q)q^2 \exp\left(-\frac{\omega^2 \sigma_z^2}{c^2}\right)
$$
. **m,n,l = mode number**

$$
\frac{R}{Q}(y) = \frac{8LT^2}{\omega \epsilon_0 ab} \left(\frac{2\pi}{b}\right)^2 y^2
$$

$$
V_{out0} \propto \sqrt{R/Q}
$$

Bunch length *σz = 8 mm, typical value for ATF beam, is assumed. Also, cavity length in Z direction L* **is fixed. The output power would be maximum at C-Band region, approximately 5 ~** *7 GHz.*

$$
\omega = 2\pi f = ck
$$
, resonant frequency is represented as

$$
f = \frac{1}{2\pi}c\sqrt{k_x^2 + k_y^2 + k_z^2} = \frac{c}{2\pi}\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{l\pi}{L}\right)^2}.
$$

Since the electron beam is synchronized with the ATF DR's accelerating frequency of 714 MHz, it is practical to design f_0 as an **integer multiple of 714 MHz. Therefore, f0 is set to 5.712 GHz (714 MHz** × **8) for the X direction and 6.426 GHz (714 MHz** × **9) for the Y direction.**

Design of Low-Q Cavity IPBPM

Determine of resonant frequency of Low-Q cavity BPM

• **The rectangular design is determined since f0 for TM210 or TM120, which is mainly determined by cavity** size in X and Y direction, a and b. From simulation and measurements of test cavities, $a = 60.85$ mm and b = **48.55 mm were determined. 60.85**

Figure 1: Dimension of cavity

The cavity length L has to be shortened in order to reduce angle sensitivity. However, shorter L decreases R/Q, which reduces position sensitivity also. To recover position sensitivity, Rp is required to be small, in order to prevent leakage of the field from the cavity.

Design of Low-Q Cavity IPBPM

Results of 3D physics simulation 11cm AL ver. 11cm AL ver.

The Fabrication of Low-Q IPBPM

Fabricated Low-Q cavity BPM

- **BPM body: Aluminum (2kg for double block)**
	- **Precise surface machining within 4um.**
	- **IPBPM A & B are fabricated together in same block.**
	- **IPBPM C was fabricated to single block.**
	- **These BPM are installed inside vertical vacuum chamber**

Reference Cavity BPM Design

Reference cavity BPM for Low-Q cavity BPM

- **- For the charge normalization**
- **- Ref. signal strength only depends on beam charge**
- **- Phase of Low-Q cavity BPM are locked by beam**
- **- Material of BPM: Stainless steel (SUS304)**

Output signal strength = 22 ~ 5dB (1.6nC ~ 0.32nC)

Electronics for Low-Q Cavity IPBPM

Heterodyne electronics for Low-Q cavity IPBPM

Total Gain from combiner to Detector : 40 + var.att + DC-amp

Beam test results of Low-Q cavity IPBPM

Low-Q Cavity IPBPM System Installation

Installation of Low-Q cavity BPM inside vertical vacuum chamber

Beam Position Resolution Measurements

I-Q tuning of cavity BPM

(c) Cavity height aligned

I-Q tuning was performed by using oscilloscope. When I signal shows the maximum position, Q signal was set to minimum position by using phase shifter.

Beam Position Resolution Measurements

Geometrical factor between three Low-Q cavity IPBPMs.

Differences are expressed by :

$$
f_1 = I_1 - \frac{I_2 Z_{13} - I_3 Z_{12}}{Z_{23}} = \frac{I_1 Z_{23} - I_2 Z_{13} + I_3 Z_{12}}{Z_{23}}
$$

\n
$$
f_2 = I_2 - \frac{I_3 Z_{12} + I_1 Z_{23}}{Z_{13}} = \frac{-I_1 Z_{23} + I_2 Z_{13} - I_3 Z_{12}}{Z_{13}}
$$

\n
$$
f_3 = I_3 - \frac{I_2 Z_{13} - I_1 Z_{23}}{Z_{12}} = \frac{I_1 Z_{23} - I_2 Z_{13} + I_3 Z_{12}}{Z_{12}}
$$

\n
$$
f_0 = I_1 Z_{23} - I_2 Z_{13} + I_3 Z_{12}
$$

\n
$$
f_1 = \frac{f_0}{Z_{23}}, \quad f_2 = \frac{f_0}{Z_{13}}, \quad f_3 = \frac{f_0}{Z_{12}}
$$

\n
$$
\frac{\partial f_0}{\partial I_1} = Z_{23}, \quad \frac{\partial f_0}{\partial I_2} = -Z_{13}, \quad \frac{\partial f_0}{\partial I_3} = Z_{12}
$$

\nre expressed by ;

$$
\begin{pmatrix}\n\Delta f_1^2 \\
\Delta f_2^2 \\
\Delta f_3^2\n\end{pmatrix} = \begin{pmatrix}\n1 & (\frac{213}{Z_{23}})^2 & (\frac{212}{Z_{23}})^2 \\
(\frac{Z_{23}}{Z_{13}})^2 & 1 & (\frac{Z_{12}}{Z_{13}})^2 \\
(\frac{Z_{23}}{Z_{12}})^2 & (\frac{Z_{13}}{Z_{12}})^2 & 1\n\end{pmatrix} \begin{pmatrix}\n\sigma_1^2 \\
\sigma_2^2 \\
\sigma_3^2\n\end{pmatrix} = A \begin{pmatrix}\n\sigma_1^2 \\
\sigma_2^2 \\
\sigma_3^2\n\end{pmatrix}
$$

Since det A is zero,
$$
\sigma_1 = \sigma_2 = \sigma_3 \equiv \sigma
$$

Residuals a

$$
\sigma=\Delta f_1/\sqrt{1+(\frac{Z_{13}}{Z_{23}})^2+(\frac{Z_{12}}{Z_{23}})^2}=\Delta f_2/\sqrt{(\frac{Z_{23}}{Z_{13}})^2+1+(\frac{Z_{12}}{Z_{13}})^2}=\Delta f_3/\sqrt{\frac{Z_{23}}{Z_{12}})^2+(\frac{Z_{13}}{Z_{12}})^2+1}
$$

Beam position measurement and prediction

Beam Position Resolution Measurements

Position residual calculation by using three Low-Q cavity IPBPM

Predicted position(ADC counts) for IPA was calculated as follow equation,

- **Predicted position of IPA-YI' = a1*IPB-YI'+ a2*IPB-YQ'+a3*IPC-YI'+ a4*IPC-YQ'+ a5*Ref-Y+a6*IPB-XI'+ a7*IPB-XQ'+a8*IPC-XI'+ a9*IPC-XQ'+ a10*Ref-X+a11**
- **Residual of IPC-YI' = Measured IPCx-YI' – Predicted IPC-YI'**
- **The beam position resolution proportional to 1/(beam charge).**

Beam Position Resolution of Low-Q IPBPM

Feedback system with Low-Q cavity IPBPM

Low-Q IPBPM Beam Orbit Feedback Study

Feedback On Nanosecond Timescales(FONT) system developed by Oxford.

- The fast beam orbit feedback study was performed by using FONT system.
- **The test was performed under two bunch operation mode with 150ns bunch spacing.**

Low-Q IPBPM Beam Orbit Feedback Study

Feedback study results with FONT & Low-Q IPBPM system

Beam jitter w/o feedback: 370nm. Beam jitter with feedback: 67nm ~82% beam jitter was reduced and well focused orbit feedback.

K1B2offsetScan1 -500

Summary

- **11cm AL. Low-Q cavity IPBPM was developed and fabricated to achieve 2nm beam position resolution with wide dynamic range. The beam test was performed at the Interaction point of ATF2.**
- **Beam position resolution measurements of low-Q IP-BPMs was performed. The measured beam position resolution was 10nm with 87% beam charge, which resolution corresponds to 8nm of normalized beam position resolution.**
- **The feedback study by using IP-BPM was also performed and we reduced beam jitter ~82%.**
- **The use of such high-resolution beam position monitors and feedback systems is expected to greatly benefit the CEPC (Circular Electron Positron Collider) as well.**

Thank you !!

