Low-Q cavity BPM with an ultra-high position resolution

Siwon Jang

Group Leader of 4GSR Beam Diagnostics Group

Pohang Accelerator Laboratory, South Korea

Contents

- 1. Introduction
- 2. Design of Low-Q cavity IPBPM
- 3. Beam test results of Low-Q cavity IPBPM
- 4. Feedback system with Low-Q cavity IPBPM
- 5. Summary

Introduction

Introduction

A requirement of High resolution cavity BPM for future collider

• Realization of a precise beam handling is strongly required in future accelerators such as linear colliders (LC) and X-ray free electron lasers (XFEL). It goes without saying that a high resolution beam position measurement is the key.

Introduction / Cavity BPM

Principle of cavity BPM

coupling slot

wave quide

Dipole mode selectable coupler

Generates dipole (TM110) and monopole (TM010) modes

4. Normalization from different signal (monopole mode).

Design of Low-Q cavity IPBPM

Design of Low-Q Cavity IPBPM

Key point of cavity BPM design for high beam position resolution

- Usual cavity BPM was designed to cylindrical shape, but our low-Q IPBPM was designed to rectangular shape to get the more higher beam position resolution in vertical plane.

$$U = \frac{V_{totalexc}^2}{\omega(R/Q)} = \frac{\omega}{4} (R/Q) q^2 \exp\left(-\frac{\omega^2 \sigma_z^2}{c^2}\right), \quad \text{m,n,l} = \text{mode number}$$

$$a,b,L = x,y,z, \text{ length}$$

$$\frac{R}{Q}(y) = \frac{8LT^2}{\omega\epsilon_0 ab} \left(\frac{2\pi}{b}\right)^2 y^2 \bigvee V_{out0} \propto \sqrt{R/Q}$$

Bunch length $\sigma z = 8 mm$, typical value for ATF beam, is assumed. Also, cavity length in Z direction L is fixed. The output power would be maximum at C-Band region, approximately 5 ~ 7 GHz.

$$\omega = 2\pi f = ck$$
, resonant frequency is represented as

$$f = \frac{1}{2\pi}c\sqrt{k_x^2 + k_y^2 + k_z^2} = \frac{c}{2\pi}\sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 + \left(\frac{l\pi}{L}\right)^2}.$$

Since the electron beam is synchronized with the ATF DR's accelerating frequency of 714 MHz, it is practical to design f_0 as an integer multiple of 714 MHz. Therefore, f_0 is set to 5.712 GHz (714 MHz × 8) for the X direction and 6.426 GHz (714 MHz × 9) for the Y direction.

Design of Low-Q Cavity IPBPM

Determine of resonant frequency of Low-Q cavity BPM

The rectangular design is determined since f0 for TM210 or TM120, which is mainly determined by cavity size in X and Y direction, a and b. From simulation and measurements of test cavities, a = 60.85 mm and b = 48.55 mm were determined.

Figure 1: Dimension of cavity

The cavity length L has to be shortened in order to reduce angle sensitivity. However, shorter L decreases R/Q, which reduces position sensitivity also. To recover position sensitivity, Rp is required to be small, in order to prevent leakage of the field from the cavity.

Design of Low-Q Cavity IPBPM

Results of 3D physics simulation

11cm AL ver.

f₀ (GHz)	Δf (MHz)	QL	Decay time(ns)	S21(dB)	S21	β	Qo	Qext
6.4270	11.10	579	14.34	-1.36	0.855	5.9	3996	677
5.7148	7.4	772	21.51	-1.85	0.808	4.2	4021	956

Output signal for Y-port (11cm AL ver.) **Parameter** Value Unit 15 Voltage [uV] Voltage [uV] 5 2nm offset q (charge) ~ 1.6 nC 10 0 Beam 5 1.3 GeV -5 energy 50 100 150 200 250 300 Bunch -20 2 0 4 -48 mm length Time [ns] Beam offset [nm]

The Fabrication of Low-Q IPBPM

Fabricated Low-Q cavity BPM

- BPM body: Aluminum (2kg for double block)
 - Precise surface machining within 4um.
 - IPBPM A & B are fabricated together in same block.
 - IPBPM C was fabricated to single block.
 - These BPM are installed inside vertical vacuum chamber

Reference Cavity BPM Design

Reference cavity BPM for Low-Q cavity BPM

- For the charge normalization
- Ref. signal strength only depends on beam charge
- Phase of Low-Q cavity BPM are locked by beam
- Material of BPM: Stainless steel (SUS304)

Output signal strength = 22 ~ 5dB (1.6nC ~ 0.32nC)

Port	f ₀ (GHz)	β	Q_0	Q _{ext}	Q_L	τ (ns)
X-port	5.712	0.00964	1201.20	124578	1189.73	33.157
Y-port	6.426	0.01528	1228.83	80421.2	1210.34	30.029

Electronics for Low-Q Cavity IPBPM

Heterodyne electronics for Low-Q cavity IPBPM

Total Gain from combiner to Detector : 40 + var.att + DC-amp

Beam test results of Low-Q cavity IPBPM

Low-Q Cavity IPBPM System Installation

Installation of Low-Q cavity BPM inside vertical vacuum chamber

Beam Position Resolution Measurements

I-Q tuning of cavity BPM

(c) Cavity height aligned

I-Q tuning was performed by using oscilloscope. When I signal shows the maximum position, Q signal was set to minimum position by using phase shifter.

Beam Position Resolution Measurements

Geometrical factor between three Low-Q cavity IPBPMs.

Differences are expressed by ;

$$\begin{split} f_1 &= I_1 - \frac{I_2 Z_{13} - I_3 Z_{12}}{Z_{23}} = \frac{I_1 Z_{23} - I_2 Z_{13} + I_3 Z_{12}}{Z_{23}} \\ f_2 &= I_2 - \frac{I_3 Z_{12} + I_1 Z_{23}}{Z_{13}} = \frac{-I_1 Z_{23} + I_2 Z_{13} - I_3 Z_{12}}{Z_{13}} \\ f_3 &= I_3 - \frac{I_2 Z_{13} - I_1 Z_{23}}{Z_{12}} = \frac{I_1 Z_{23} - I_2 Z_{13} + I_3 Z_{12}}{Z_{12}} \\ f_0 &\equiv I_1 Z_{23} - I_2 Z_{13} + I_3 Z_{12} \\ f_1 &= \frac{f_0}{Z_{23}}, \quad f_2 = \frac{f_0}{Z_{13}}, \quad f_3 = \frac{f_0}{Z_{12}} \\ \frac{\partial f_0}{\partial I_1} &= Z_{23}, \quad \frac{\partial f_0}{\partial I_2} = -Z_{13}, \quad \frac{\partial f_0}{\partial I_3} = Z_{12} \\ \end{split}$$
Residuals are expressed by ;

$$\begin{pmatrix} \Delta f_1^2 \\ \Delta f_2^2 \\ \Delta f_3^2 \end{pmatrix} = \begin{pmatrix} 1 & (\frac{213}{Z_{23}})^2 & (\frac{212}{Z_{23}})^2 \\ (\frac{Z_{23}}{Z_{13}})^2 & 1 & (\frac{Z_{12}}{Z_{13}})^2 \\ (\frac{Z_{23}}{Z_{12}})^2 & (\frac{Z_{13}}{Z_{12}})^2 & 1 \end{pmatrix} \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \\ \sigma_3^2 \end{pmatrix} = A \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \\ \sigma_3^2 \end{pmatrix}$$

Since det A is zero,
$$\sigma_1 = \sigma_2 = \sigma_3 \equiv \sigma$$

$$\sigma = \Delta f_1 / \sqrt{1 + (\frac{Z_{13}}{Z_{23}})^2 + (\frac{Z_{12}}{Z_{23}})^2} = \Delta f_2 / \sqrt{(\frac{Z_{23}}{Z_{13}})^2 + 1 + (\frac{Z_{12}}{Z_{13}})^2} = \Delta f_3 / \sqrt{\frac{Z_{23}}{Z_{12}})^2 + (\frac{Z_{13}}{Z_{12}})^2 + 1 + (\frac{Z_{13}}{Z_{13}})^2} = \Delta f_3 / \sqrt{\frac{Z_{23}}{Z_{12}}} =$$

Beam position measurement and prediction

	IPBPM-A	IPBPM-B	IPBPM-C
	(Interpolated by IPBPM-B and C)	(Interpolated by IPBPM-A and C)	(Interpolated by IPBPM-A and B)
Geometrical factor	0.531065	0.802629	0.271567

Beam Position Resolution Measurements

Position residual calculation by using three Low-Q cavity IPBPM

Predicted position(ADC counts) for IPA was calculated as follow equation,

- Predicted position of IPA-YI' = a1*IPB-YI'+ a2*IPB-YQ'+a3*IPC-YI'+ a4*IPC-YQ'+ a5*Ref-Y+a6*IPB-XI'+ a7*IPB-XQ'+a8*IPC-XI'+ a9*IPC-XQ'+ a10*Ref-X+a11
- Residual of IPC-YI' = Measured IPCx-YI' Predicted IPC-YI'
- The beam position resolution proportional to 1/(beam charge).

Beam Position Resolution of Low-Q IPBPM

Feedback system with Low-Q cavity IPBPM

Low-Q IPBPM Beam Orbit Feedback Study

Feedback On Nanosecond Timescales(FONT) system developed by Oxford.

- The fast beam orbit feedback study was performed by using FONT system.
- The test was performed under two bunch operation mode with 150ns bunch spacing.

Low-Q IPBPM Beam Orbit Feedback Study

Feedback study results with FONT & Low-Q IPBPM system

Beam jitter w/o feedback: 370nm. Beam jitter with feedback: 67nm ~82% beam jitter was reduced and well focused orbit feedback.

K1B2offsetScan1_-500

Summary

- 11cm AL. Low-Q cavity IPBPM was developed and fabricated to achieve 2nm beam position resolution with wide dynamic range. The beam test was performed at the Interaction point of ATF2.
- Beam position resolution measurements of low-Q IP-BPMs was performed. The measured beam position resolution was 10nm with 87% beam charge, which resolution corresponds to 8nm of normalized beam position resolution.
- The feedback study by using IP-BPM was also performed and we reduced beam jitter ~82%.
- The use of such high-resolution beam position monitors and feedback systems is expected to greatly benefit the CEPC (Circular Electron Positron Collider) as well.

Thank you !

