High Field Magnet R&D for the Next-generation High Energy Particle Accelerators

International Workshop on The High Energy Circular Electron Positron Collider

Qingjin XU for the Superconducting Magnet Group Accelerator Division, IHEP-CAS Oct 2024

$E[GeV] = 0.3 \times B[T] \times \rho[m]$

High Energy Circular Colliders for next decades		FCC Geneva PS LHC Execution Executio		
Proposed institution	IHEP-CAS, China	CERN, Europe		
Proposed dates	2012	2013		
Site of the project	China	Europe		
Baseline technology	IBS 20~24 T to reach 125-150 TeV, Nb ₃ Sn etc as options	Nb ₃ Sn 16 T to reach 100 TeV		
Timeline	Construction at 2040s	Construction at 2050-60s		
Cost	*	**		

Roadmap of the High Field Magnet R&D at IHEP

3

16 T Model Dipole LPF3: Nb₃Sn 13 T (*Common Coil with 55 mm gap*) + HTS 3 T inserts (*Block & CCT*)

16-T 大孔径高场超导二极磁体 LPF3 (Nb₃Sn-13T+HTS-3T) 电磁设计

The Nb₃Sn coils for LPF3

Chengtao Wang et al

4000

时间/s

2023.8.29 Assembly completed

Quench protection of LPF3

Jinrui Shi et al

- Varistor plus CLIQ to protect the Nb₃Sn coils. The maximum hot spot is ~ 230 K
- NI configuration plus dump resistor to protect the 2 HTS insert coils

-9

Wei Li et al

Performance test ongoing from Sep 2023

- The Nb₃Sn coils were trained firstly, maximum current reached ~85% of I_{op} in Dec 2023, but showed an unstable plateau at 11 T due to one of the outmost Nb₃Sn coil, probably due to insufficient pre-stress during assembly
- > HTS block coil was ramped independently to 100% of I_{op} with negligible terminal voltage

Reassembly of the magnet with enhanced pre-stress

Xin Chen et al

Time(min)

Time(min)

The 2nd Performance test in Feb 2024

- The Nb₃Sn coils showed very unstable performance in the 6300-7000 A region due to one of the inner most coils, but finally passed this region and reached ~87% of I_{op} in the beginning of March 2024
- HTS block coil was ramped independently to 120% of I_{op} to test its ultimate performance, but one of the lead was damaged due to the quench.

Accident in Mar 14 2024

- The operator forgot to follow the most important step of the test manual: turn on the quench detection system, and powered the Nb₃Sn coils to high current directly. 2 of 6 Nb₃Sn coils were serious damaged during a quench
- Plan for next months: establish a hardware interlock protection system, and re-fabricate 2 new Nb₃Sn coils and 2
 HTS coils, to reach 16 T by the end of 2024

Fabrication of the new Nb₃Sn & HTS Coils

Reassembly of the LPF3 magnet start from Oct., to be tested in Nov and Dec 2024

已完成新的铌三锡线圈所需的20芯、24芯、26芯及42芯卢瑟福缆的制作,线圈的绕制、热处理及固化

Applied Magnetic Field (T)

The First IBS Solenoid Coil at 32 T background field

Chunyan Li et al

I_c of Φ34mm-17 turns-DPC reached **49** A at **4.2** K and **35** T, world's highest record up to now

Quench propagation study of the IBS tapes and coils

Chunyan Li et al

Quench propagation study of the IBS tapes and coils

Chunyan Li et al

In 15~17K, when the transmission current of ironbased superconductor is 14-179A, the corresponding NZPV value is 0.4–7cm/s

J. Wang et al, Superconductivity 3 (2022) 100019

Development of the kA class IBS transposed cable

Juan Wang et al

J_e of IBS expected to be similar as ReBCO in 5 years with better mechanical properties and lower cost

Development of CCT Magnets for HL-LHC

Milestone of the HL-LHC CCT Magnet Project

Development of CCT Magnets for HL-LHC

Training History of the HL-LHC CCT Coils 550 500 direct-winded: 450 -CB02 **CB03** 40 **CB09** Current (A) -CB12 350 **CB13** -CB14 CB17 250 - CB18 200 wet-winded: ← CB01 150 CB04 CB05 100 •— CB06 50 100 150 200 0

Successful design upgrade to solve the "long training problem", significantly reduced the times of quench during training, ensured the project progress "on track".

Quench Number

400

300

200

-200

-300

-40

-500

Current[A]

Development of CCT Magnets for HL-LHC

Training of MCBRD02 & MCBRD03

Quench number

- AP1(CB12, 25 quenches 526A) reached \pm 422A after 11 quenches.
- AP2(CB09, 33 quenches 530A; after thermal cycle >500A) reached \pm 422A without any quenches.

Development of CCT Magnets for HL-LHC

Training of MCBRD04

Satisfying performance at 4 K for both apertures, tested at IMP-CAS

•

Development of CCT Magnets for HL-LHC

- 6 series CCT magnets have been fabricated, successfully reached the design target and delivered to CERN
- Production rate for the rest of series magnets: every 3 month per magnet; to be completed by Oct 2025

	Coil name		Winding method	Location	Coil stand-alone performance (4.2 K)		Magnet performance at 4.2 K
MCBRD01	AP1	MCBRD_CB01	Wet wind	CEDN	530 A		Both apertures reached ultimate current 422 A, and passed
	AP2	MCBRD_CB03	Direct wind	CERN	410 A		4-hour stability test
MCBRD_CB02		Direct wind	CERN	Failed to reach		he design current	
MCBRD02	AP2	MCBRD_CB04	Wet wind	CERN	422 A 530 A		Both apertures reached ultimate current 422 A, and passed 4*1 hour stability test
	AP1	MCBRD_CB06	Wet wind				
MCBRD_CB05, 07, 08		Wet wind	IHEP				
MCBRD03	AP2	MCBRD_CB09	Direct wind with new channel size	CERN	530 A		Both apertures reached ultimate current 422 A, and passed stability test
	AP1	MCBRD_CB12	Direct wind with new channel size		526 A (25 quenches)		
MCBRD04	AP2	MCBRD_CB13	Direct wind with new channel size	CERN	530 A (20+33 quenches)		Both apertures reached ultimate current 422 A, and passed stability test
	AP1	MCBRD_CB17	Direct wind with new channel size	CLIR (524 A (47 quenches)		
MCBRD_CB10, 11, 15, 16		Shipped to CERN for fabrication					
MCBRD05	AP1	MCBRD_CB18	Direct wind with new channel size	IMP	532 A (42 quenches)		Assembled in April, <u>tested in October</u>
	AP2	MCBRD_CB19	Direct wind with new channel size		530A (68 quenches)		
MCBRD06	MCBRD_CB14		Direct wind with new channel size	BAMA	530 A (30+34 quenches)		<u>Assembled in September,</u> <u>(test @1.9K at CERN)</u>
	MCBRD_CB21		Direct wind with new channel size	BAMA	530 A (119quenches)		
<u>MCBRD07</u>	MCBRD_CB20		Direct wind with new channel size	BAMA	530A (68 quenches)		Assemble in November (test @1.9K at CERN)
	MCBRD_CB22		Direct wind with new channel size	IHEP	<u>Ready for stand-alone test</u>		
<u>MCBRD08</u>	MCBRD_CB23		Direct wind with new channel size	IHEP	Ready for stand-alone test		Assemble in January 2025
	MCBRD_CB24		Direct wind with new channel size	BAMA	Waiting for VPI	VPI in new factory	<u>(test @1.9K_at CERN)</u>
<u>MCBRD09</u>	MCBRD_CB25		Direct wind with new channel size	BAMA	Dividing the SC wires	All these apertures will	<u>Assemble in April 2025</u> (test @1.9K at CERN)
	MCBRD_CB26		Direct wind with new channel size	-	Fabrication in Aug.		
<u>MCBRD10</u>	MCBRD_CB27 MCBRD_CB28		Direct wind with new channel size	-	Fabrication in Oct.	be fabricated in the new	Assemble in July 2025 (test @1.9K at CERN)
			Direct wind with new channel size	-	Fabrication in Dec.	TACLOFY OF DAMIA,	
=	Ν	ICBRD_CB29	Direct wind with new channel size	-	Fabrication in next Feb.		-

- Long-term advanced superconducting magnet R&D for future high-energy accelerators is ongoing at IHEP-CAS
- 16 T (Nb₃Sn+HTS) model dipole has been fabricated at IHEP-CAS and under performance test at 4.2 K. Re-fabrication of damaged coils completed in October 2024, reassembly and test from November 2024
- Strong domestic collaboration for the advanced superconductor R&D (HTS & Nb₃Sn): Stainless-steel-Silver stabilized IBS tape achieved the highest J_e in 2022! IBS coil I_c reached 49A at 35 T. 5kA class transposed cable developed.
- HL-LHC CCT magnets going well, to be installed in the tunnel from 2026

