CEPC Computing Platform Design and Vision

Xiaowei Jiang On behalf of CEPC computing team and IHEP-CC October 26, 2024 The 2024 CEPC International Workshop

Contents

- Status of CEPC Distributed Computing
- CEPC Distributed Computing Infrastructure (CEPC DCI)
 - Distributed Computing System
 - Distributed Storage System
 - Network and Data Transfer
 - User Authentication and Authorization
 - Other systems

Summary

CEPC Distributed Computing Status

DIRAC is chosen as distributed computing framework

- Originally from LHCb, now used for many new experiments: BELLEII, ILC, CTA, SKA.....
- CVMFS for software distribution
 - stratum0 operated @IHEP : /cvmfs/cepc.ihep.ac.cn/, stratum1 @IHEP and @RAL
- VOMS for managing CEPC users
 - VOMS hosted @IHEP : https://voms.ihep.ac.cn:8443/voms/cepc/
 - CEPC users can access resources everywhere with web or client
 - Web sites: https://dirac.ihep.ac.cn
 - IHEPDIRAC Client in cvmfs: /cvmfs/dcomputing.ihep.ac.cn/dirac/IHEPDIRAC/

Resources and Sites

- About 4600 cores in the system
 - IHEP has dedicated resources
 - CPU: 2000 cores (640 cores shared with ILC in grid)
 - Several thousands of CPU cores will be added next year
 - Storage: 3.7 PB
 - Several PBs would be added next year
- Five joint sites from UK and other China universities
 - − ~2600 CPU cores
 - Shared with other experiments
- Network
 - A shared network link with 100 Gbps bandwidth between China and Europe

CEPC Distributed Computing Infrastructure

- CEPC Distributed Computing Infrastructure (CEPC DCI) is responsible for CEPC data processing
 - Data processing -> Distributed computing system
 - Data access -> Distributed storage system
 - Data distribution -> Network and data transfer system
 - Data privilege management -> Authentication and authorization system
 - Receive data from detector and also engineering data, support data processing, scientific research and international collaboration of grid computing etc.

CEPC Data Processing Requirements (1)

- CEPC experiment is an international collaborative experiment, the data processing needs across different regions and multiple data centers
 - Unified data storage across data centers
 - All types of data are stored in IHEP
 - Data replicas in the regional center
 - Coordinated and shared storage usage among data centers
 - Data transfer between data centers
 - IHEP: RAW and reconstruction
 - Regional center and Chinese center: RAW or reconstruction
 - Among normal sites: mainly simulation data
 - Computing resources sharing and collaborative scheduling of computing tasks across multiple data centers
 - Computing resources (CPU and GPU) are managed by a unified computing platform and allocated based on the characteristics of CEPC data processing task
 - Computing tasks are submitted from a unified entrance with the standard methods

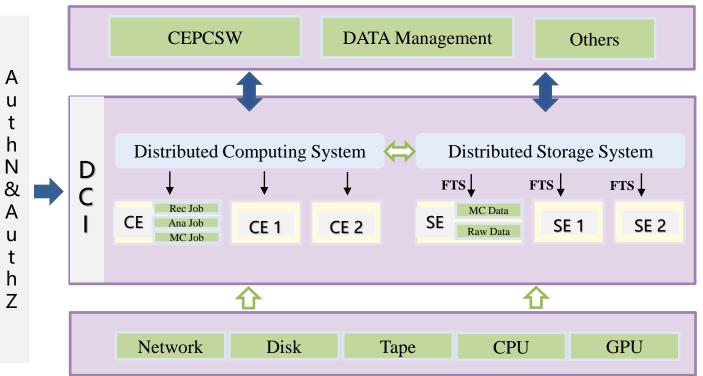
CEPC Data Processing Requirements (2)

CEPC experiment is an international collaborative experiment, the data processing needs across different regions and multiple data centers

- User authentication and authorization
 - Uniformly manage the identities of users in the CEPC collaboration, providing a standard method for joining CEPC collaboration
 - Unified management of permissions for information service, computing, storage, data systems, etc.
- Information services
 - Including documentation, meetings, code repositories, websites and visualization

• A set of distributed computing software suites should be developed and deployed in CEPC DCI

Tier Model of CEPC DCI


Inspired by WLCG Tier Model

- T0 -> T1 -> T2 -> T3
- Tier-0 sites: Central site
 - IHEP: All types data storage and data distribution source
- Tier-1 site: Regional center site
 - SIM and REC data storage, computing resources
- Tier-2 site: SIM data processing
 - SIM and ANA
- Tier-3 site
 - Basically local sites

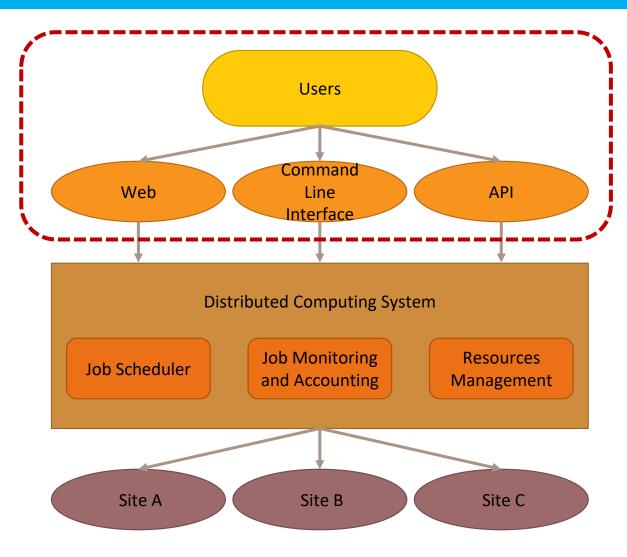
Structure of CEPC DCI

Software in CEPC DCI

- Distributed Computing System
- Distributed Storage System
- Network and Data Transfer
- AuthN & AuthZ
- Other Systems
 - Software publish/deployment
 - Unified DCI software distribution

Distributed Computing System

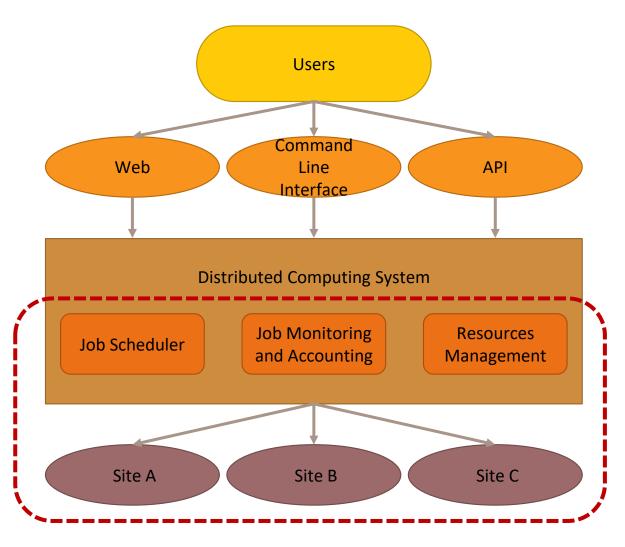
- CEPC computing system serves:
 - Official data processing
 - SIM and REC data production
 - User analysis data processing
 - Special computing tasks
 - tasks on supercomputing sites, GPU sites, etc.
- CEPC computing system manages:
 - Distributed computing sites around the world, by distributed computing system
 - For official data processing and special tasks
 - Computing resources from sites, by site computing service
 - For user analysis


CEPC Distributed Computing System

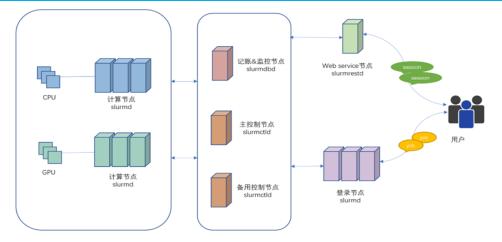
Distributed Computing System

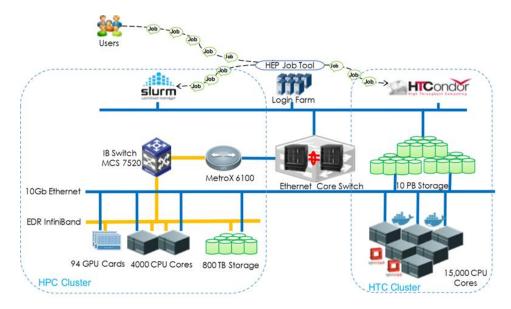
- To manage the distributed computing resources from the world
- Mainly for official data processing

For Users:


- To unify computing sites with heterogeneous computing systems
 - HTCondor, Slurm, Cloud computing, supercomputing, local cluster, etc.
- To supply unified job management interface
 - For users and production system
 - By Web, Command line interface and APIs

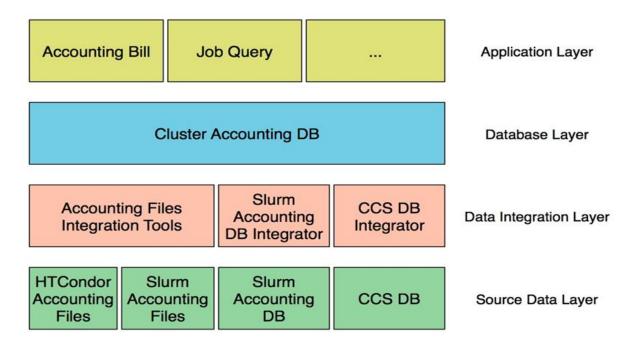
CEPC Distributed Computing System


For Sites:


- To schedule jobs to computing resources
- Optimize jobs distribution among sites
- Monitoring computing resources status
- Generate site reports and accounting sites usage

Site Computing Service

- Type of CEPC computing jobs
 - Single-core job or multi-core job within one node: simulation, reconstruction, analysis
 - Multi-core job on multi nodes or GPU job: part of reconstruction, AI training
- CEPC site computing service is based on HTCondor/Slurm
 - HTC service for single-core job or multi-core job within one node
 - Support 1,000,000 jobs queuing and 100,000 jobs running
 - HPC service for big multi-core job or GPU job
 - Support big-scale parallel job and GPU
- Service components
 - Resource management and allocation
 - Computing task management


Job Accounting and Monitoring

Architecture

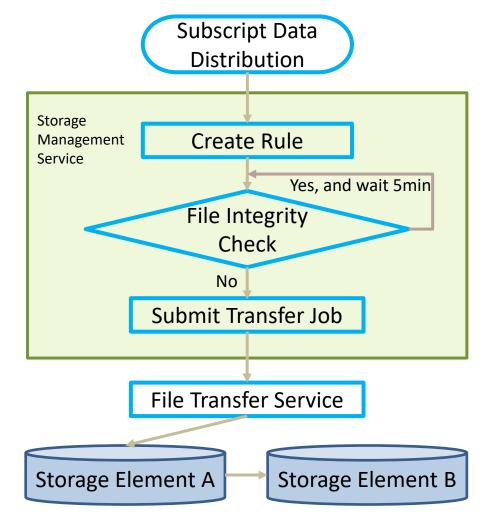
 data source layer, data integration layer, database layer and application layer

Metrics

- users, groups, and experiments
- CPU, memory, walltime,...
- Support for multiple sites and multiple computing services

CEPC Distributed Storage Management

- CEPC distributed storage management
 - To produce and distribute data from distributed computing and storage sites
 - To manage distributed data access requests from other data systems or users
 - Based on Rucio system, a popular grid data management system in HEP
- Storage management services manages data production
 - RAW data distribution, IHEP Tier0 site
 - SIM and REC data distribution, replicate among Tier1 and Tier2 sites
 - Official data adding, deleting, modifying, querying in distributed storage sites
- For normal users
 - Supply data access in developed CEPC Storage APIs and client

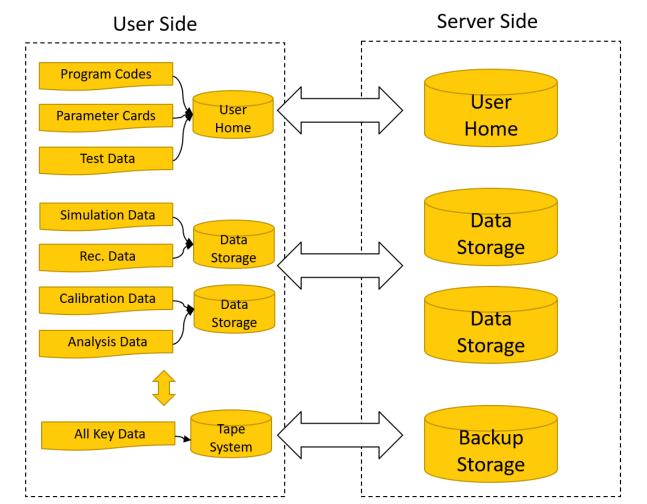

Distributed Storage Workflow

When a data distribution subscripted

- (1) A replication rule created in database
- ② File Integrity check daemon scans database and find incomplete files
- Submit new transfer jobs to file transfer service for incomplete rule
- (4) If all file completed, waits for 5 min and restarts scan then

Database and Daemon design

- Multi-threads to exceeds rule processing
- Avoid status loss in message system


Storage Access Permission Management

User permission is authorized by AuthZ service

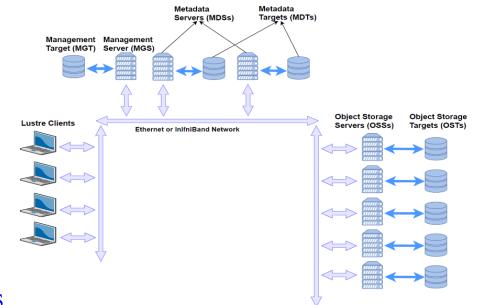
- Only production group user could add, delete, modify data in CEPC
- Fine-grained permission is managed by CEPC permission policy
 - Could be managed by user group and user name
 - Could manage every single file execution command and system command

Site Storage Services

- All the CEPC data physically stores in the storage system
- CEPC experiment data
 - sim/rec/cali/ana/...
 - Large size (GB per file, PB in total)
 - Huge amount of files (hundreds of millions)
- User Personal data
 - codes/parameter/test data
 - Small size but big number of files
- Key data needs backup
 - Part of experiment data for permanent backup
 - Personal data backup periodically

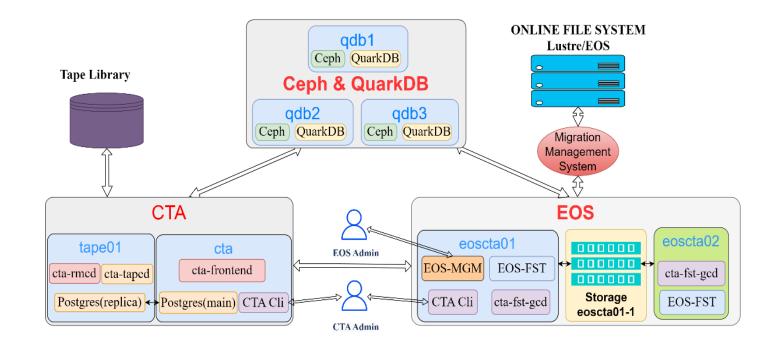
Site Storage – Disk Service

User home storage is developed based on Lustre


- Lustre is open-source and support for massive data storage

Development and deployment

- Service development over Lustre
 - Lustre client/management service/accounting/monitoring/...
- Deploy an independent user home storage instance for CEPC
 - MGT/MGS/MDS/MDT/...


Data storage is developed based on EOS

- EOS is open-source and popular data storage in high energy physics
- Large-scale of disk storage: hundreds of storage servers
 - Dedicated storage pool for CEPC
 - Service development
 - External APIs for CEPC: Production system/Job system/...
 - Support for xrootd protocol and http protocol

Site Storage – Tape Service

- CEPC key data archives in tape system for long-term data storage (backup)
 - Tape is cheaper than disk and good for long-term storage
- CEPC backup system is developed based on EOS-CTA
- Tape system components
 - Tape buffer/Tape server/Tape library
- Integrate external software
 - ceph/quarkdb/postgre/eos/xrootd/...
- API developments
 - Throughput monitoring and optimization
 - API for external systems
 - DMS/Production system/...

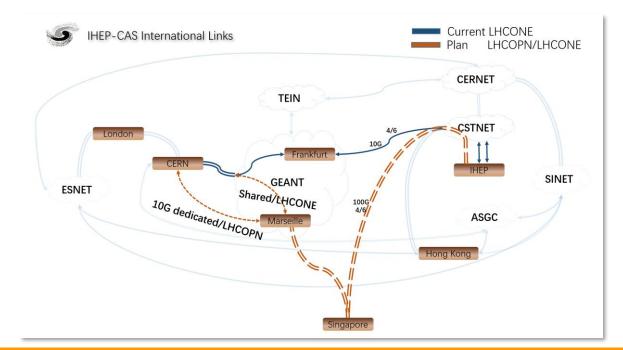
CEPC Data Transfer System (1)

• CEPC needs to transfer official RAW, MC, REC data among sites

- MC data flow: Basically T2 -> T1
- REC data flow: Basically T1 -> T2, T2->T1

Data Transfer needs:

- Support Grid transfer among IHEP and other T1, T2 and T3. Transfer job submitted by CEPC storage management system
- Support Token-based TPC transfer
- Data Transfer is an infrastructure service, cannot be used by normal user

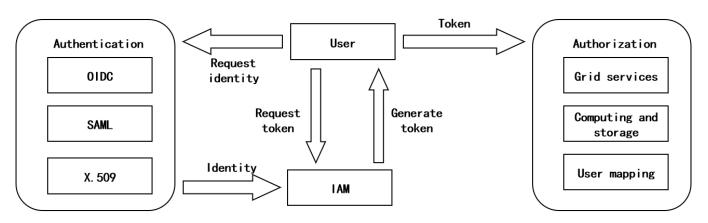

CEPC Data Transfer System (2)

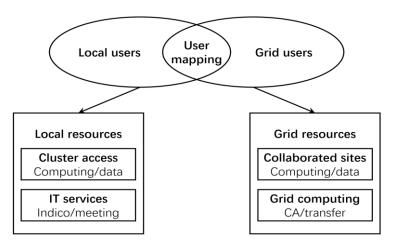
- Token-based protocols
 - Root (xrootd): Origin from ROOT framework and good support for ROOT file
 - HTTP (WebDav): Common protocol in Internet and support for more systems and services
- TPC transfers
 - Directly from site A to site B, no Client as temporary middle storage
 - Root and HTTP has already supported TPC copy
- Transfer Tools
 - FTS3 and Gfal2, Grid transfer standard tools
 - Monitoring and accounting will be set at IHEP for transfer

Network System

CEPC data transfer and information interaction depends on network system

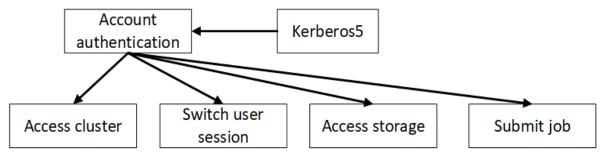
- Especially data transfer need a stable network link with enough bandwidth
- Network Topology should be established between CEPC data centers
 - Establish international export links between IHEP and other sites

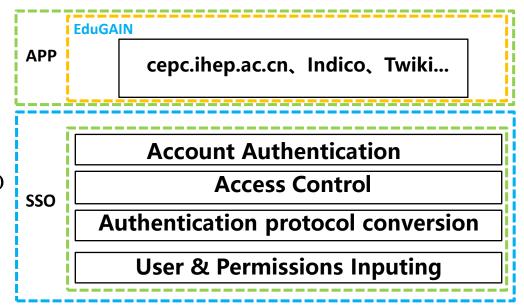

User AuthN&AuthZ System


- CEPC member users should have an identity in CEPC DCI
 - A certain identity to safely access the multiple systems of CEPC
 - The identity is obtained from a unified identity authentication system
- Different roles of CEPC user should have different permissions of accessing different system or service
 - Data permissions (who can read/modify/delete what data)
 - Resource permissions (who can submit jobs to request resources)
 - Other service permissions: indico/gitlab/docs/...
- CEPC user authn&authz system covers two types of users
 - Grid users and local users

User AuthN&AuthZ System – Grid User

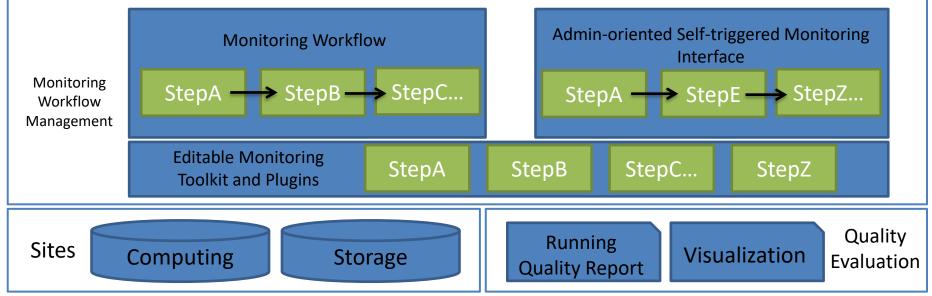
Certificate and Token are the main authz&authn methods in grid computing


- Many HEP sites have supported certificates and WLCG SCIToken in their site services
- IHEP grid sites also support certificate and token to do authentication and authorization
- CEPC user authz&authn system is built and developed based on IAM
 - It is the suggested grid user management system by WLCG
 - Support user management, Access control, Authentication, Auditing and monitoring
 - Will be highly integrated to data processing with grid resources
 - Already support user authentication by INFN and IHEP SSO with eduGain



User AuthN&AuthZ System – Local User

- CEPC local user has two types of identity: computing and SSO accounts
- Computing account for local computing
 - Application, approval, creation, locking, password change, permission change
 - Ticket management based on Kerberos5 Token
- SSO account for public services
 - Implement by integrated in IHEP SSO
 - CEPC public services should be put behind IHEP SSO
 - Support CEPC web application, twiki, indico, etc.

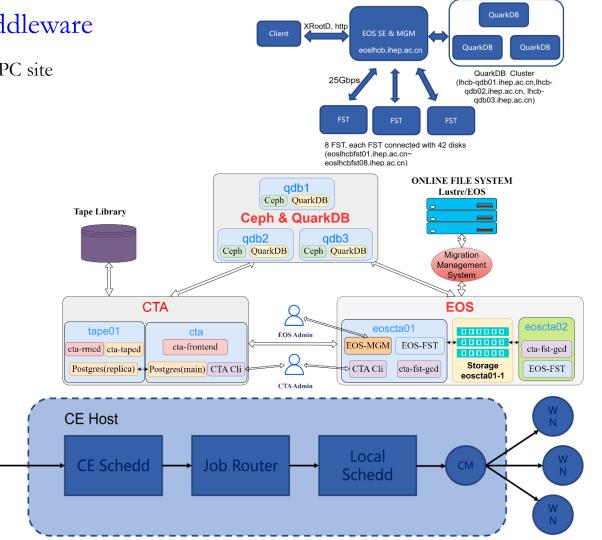


- Site Monitoring System
- Site Middleware and Service

Site and Service Monitoring

To monitor each site status and service availability

- Develop a monitoring platform, provide sites running status collection and metrics visualization.
- Based on workflow system with developed site monitoring probers.
- Provide a running quality evaluation system for each sites.
- Support site admin-oriented monitoring toolkit and plugins interface.



Site Middleware and Service

WLCG

• A CEPC site need to equip with a set of middleware

- Build a site middleware repository required by building a CEPC site
- Including middleware, like CE/SE/Authentication/tape/...
- Disk storage: EOS
 - services: QuarkDB, MGM, FST
 - protocol: xrootd and http
- Tape storage: EOS & EOS-CTA
 - Protocols: xrootd and http
- CE: HTCondor-CE & HTCondor
 - Support for SCIToken and GSI
- Other middle software
 - Argus, BDII, APEL

Summary

- CEPC computing platform is developed based on WLCG standard, with specific development meeting CEPC requirements
- Distributed computing system
 - Manage the CEPC sites all over the world
 - Manage and dispatch the CEPC jobs to the worker nodes from multiple sites

Distributed storage system

- Manage the CEPC storage from the multiple sites, including disk and tape
- Provide the policies of data distribution and data placement
- Network and data transfer system
 - Provide the functions to transfer data from site to site and support the popular protocal
 - Manage the network and monitor the status
- User authentication and authorization
 - IAM for Grid user management and IHEP-SSO for local user management
- Site/service monitoring and accounting

Thanks! Q&A