Quantum GAN for Fast Shower Simulation

Xiaozhong Huang, Weidong Li IHEP

> CEPC 2024 2024/10/26

Why Fast Shower Simulation?

HL-LHC huge computing resources Fast shower simulation: help overcome the computational challenge

 \odot MC simulation account for \sim 50% (dominated by shower simulation)

Fast Shower Simulation

 $^{\odot}$ Geant4: incoming particle \rightarrow physics process in the detector \rightarrow energy deposition

- accurate results, but time-consuming
- complex geometry
- number of secondary particles grows quickly

$^{\odot}$ Fast simulation: incoming particle \rightarrow energy deposition parameterization GAN (ATLAS)

QC is an alternative to classical computing QC + GAN: the potential to out-perform classical GAN

Geant4

fast simulation

Quantum Generative Adversarial Network (GAN)

- Two kinds of quantum GAN

 - quantum generator + quantum discriminator
- Solution NISQ (noisy intermediate-scale quantum era) noisy and unstable qubit
 - \sim number of qubits: [~10, ~10²]

image source

<u>quantum generator + classical discriminator</u> (choose the hybrid version for our study)

D: Detective (classical neural network: adversarial training maximum mean discrepancy (MMD): train generator only

> update parameters

variational quantum circuit

I: Input for Generator

Data Sample

Second CLIC Calorimeter images: energy deposits from electrons \odot 3D (51 x 51 x 25): too large for the current quantum device Second Secon

8

 8×8

Average Shower Image (PDF)

Previous Studies

DESY & CERN successfully generated the average shower image

Se los se lo

Previous Studies

DESY & CERN successfully generated the average shower image

- Se los se lo

GAN Architecture (8 pixels)

converted to classical data by one-hot encoding In not average shower image, hard to train

- \odot For each shot, we obtain one of the eight quantum states: $|000\rangle \rightarrow |111\rangle$
- The input data of the classical discriminator is the sparse discrete data

Modified Model

- $^{\odot}$ Training data: sparse discrete data (one shot) \rightarrow frequency of each quantum state (multiple shots)
- ^{\bigcirc} Loss function: cross entropy \rightarrow Wasserstein distance

Generated data is consistent with Geant4

Performance (Ideal Simulator)

Impact of Noise: Training (8 pixels)

Consider the impact of double qubit gate error and readout error model performance depends on model initialization

- Second secon
- model is robust against noise at the training stage

Impact of Noise: Inference (8 pixels)

Qubit is not stable: noise level changes over time

- \odot change of CZ error: < 0.5%
- \odot change of readout error: < 2%

Readout Error Changes Over Time Coupler qubit 0 7 qubit 6 qubit 7 Readout Error (%) ज 3 -0928 030 9²⁹ 2000 2022 2002 1005 1013 2001 1015 Time Stamp

Impact of Noise: Inference (8 pixels)

Qubit is not stable: noise level changes over time

- \odot change of CZ error: < 0.5%
- \bigcirc change of readout error: < 2%
- \odot model is robust when noise level < 2%

Results on the Hardware (8 pixels)

Section 10 Test the model on the hardware (Xiaohong: 骁鸿)

performance

Pixel-wise Energy Distribution

- no trainable parameters in the discriminator

Performance of QAG

Pixel-wise energy distribution (correlation coefficients) In general, the distribution of QAG consists with that of Geant4 in detail: there are some differences.

coefficient

efficient

Modified Model

Service CERN & DESY: QAG

- data is only uploaded at the first layer
- measure the expectations of PauliZ
- S qubits to generate the data of 8 pixels

Modified model

- data re-uploading
- measure the expectations of PauliZ and PauliX

Overall Performance (Ideal Simulator)

Consistent distribution between the generated data and Geant4

Performance (Ideal Simulator)

- 1.00 - 0.75 - 0.50 - 0.25 - 0.00 - -0.25 -0.50 -0.75
- 1.00 - 0.75 - 0.50 - 0.25 - 0.00 -0.25 -0.50

Summary and Plan

Summary

- Shower simulation is one of the most CPU-intensive tasks in HEP Quantum computing brings us entirely new possibilities
- Average shower image:
 - improve the training stability
 - \odot 64 pixels: 5d \rightarrow less than 1h
- Pixel-wise energy distribution:
 - expressibility of the model is increased with data re-uploading
 - In number of qubits is reduced by a factor of two

Plan

Pixel-wise energy distribution: train the model on the real hardware

Thank you for your listening !

backup

Quantum Computing

Quantum advantage: superposition, entanglement, ... $^{\odot}$ N bits could represent 2^{N} states, and contain the information of one states $^{\odot}$ N qubits could represent 2^{N} states, but contain the information of 2^{N} states

image source

Problem Size

Quantum Computing in HEP

Generator model

- Variational quantum circuits: *G*(*θ*) | 0 \rangle ⊗^{*n*} → | ψ \rangle
- Solution \mathbb{S} Amplitude decoding: n qubits $\rightarrow 2^n$ amplitudes $\rightarrow 2^n$ PDF values
 - 8 pixels: 3 qubits

Architecture of the Quantum Generator

Parameters to optimize:

- Image of the second second
- Image of layers: 1, 2, 3, 4, 5

On Stabilizing Generative Adversarial Training with Noise

