

國科學院為能物招研究所 Institute of High Energy Physics Chinese Academy of Sciences

Beijing HE-Racing Technology Co., Ltd.

Accelerating Equipments Development at IHEP&HERT

OCT. 23th @Hangzhou, China

The 2024 international workshop on the high energy Circular Electron Positron Collider (CEPC)

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

Beijing HE-Racing Technology Co., Ltd.

Outline

Brief Introduction

Magnets

Accelerating Structure and RT Cavities

SRF Cavities Couplers and Cryomodules

Facilities Serviced by HERT

Summary

IHEP organization

History

1950. 5 Institute of Modern Physics Technician Team 1953. 10 Institute of Physics Machine shop			
1958. 7	1973.2	2013. 4	2024. 6
Institute of Atomic Energy-1 st Workshop	Institute of High Energy Physics,CAS-Machine shop	Beijing HE-Racing Technology Co.,Ltd	Huairou Divsion of HERT

1950	1960	1970	1980	1990	2000	2010	2020	2024	
Research Instrum "Two bombs " a	ient accessories	"753 Project" "87 Project" Research	BEPC	International Developing	BEPCII SSRF CSNS Research	ADS Research CSNS HLS Update HEPS-TF	HEPS SHINE DALS Research CSNSII PAPS	HEPS SHINE CSNSII	

HERT Organization

Main Products:

- Magnets
- Accelerating Structure and RT Cavities
- **SRF Cavities, Couplers and cryomodules.**
- Insertion Devices
- > Microwave devices
- RFQ and DTL
- SLEDs

Project and Experience:

- BEPC/BEPCII, CSNS, SSRF, HEPS-TF, HLSII, THz, DCLS, SXFEL, CADS, SHINE, HEPS, DALS, HALF, CSNSII...
- ◆ PLS/PLSII, PAL-FEL, PEFP, KEK-B, FIR/THz, RISP ...
- PEPII, SPEAR3, NSLSII, CLS, ILC-ATF2, LCLSII...
- SPARK, LEG, E-XFEL, MAXIV, FERMI-Eletta, KIPT-ADS ...

Machining Tools and Equipment:

编号	设备名称	品牌	型号	主要技术指标(行程(精度))mm	数量
1	加工中心	山崎马扎克	LGMazak	X/Y/Z:1050×510×560 (0.008)	1
2	加工中心	哈斯	VF6	X/Y/Z:1626×813×762 (0.01)	1
3	加工中心	沈阳机床	VMC 850E	X/Y/Z:850×510×540 (0.02)	3
4	车铣中心	山崎马扎克	LGMazak QTN	直径 Ø380×1033 (0.01)	1
5	车削中心	山崎马扎克	LGMazak Nexus	直径 Ø360×1063 (0.01)	1
6	车削中心	山崎马扎克	LGMazak Nexus	直径 Ø280×300 (0.01)	2
7	线切割	沙迪克	AQ550Ls	X/Y/Z:550×350×320 (0.003)	1
8	线切割	阿奇夏米尔	CA30	X/Y/Z:600×400×350 (0.002)	1
9	氯气炉	北方华创	MHF5060	Φ500×600 (1100°C, ±5°C)	1
10	氢气炉	北方华创	MHF3040	Φ300×400 (1100°C, ±5°C)	1
11	三坐标	海克斯康	Classical	X/Y/Z:900×1200×800 (0.0026)	1
12	检漏仪	INFICON	UL1000 Fab	最小检漏漏率: 5×10-12mbar+L/s	1
13	真空炉	兰州真空	ZRT-3580-14W5	Φ1150×1650 (1300°C, ±5°C)	1
14	电子束焊机	泰克米特	LARA52	X/Y/Z: 3300×1000×1300	1
15	电子束焊机	狮达	THDW-9	X/Y/Z: 1050×500×700	1
16	四柱压力机	山东滕州	YQ32-200T	200T	1
17	网络分析仪	罗德施瓦茨	ZNB8	Max. 8.5GHz	1

(Total >500 sets)

EBW machines

EBW machine (3 sets)

Laser Welding machine

Qualifications and Honors:

ERTIFICATE

()

2.1 Magnet List (1572 Sets in Total)

Booster Magnets					
Description	Qty. (set)	Period			
Dipole	130	2019.12~2021.12			
Sextupole	70	2019.12~2021.12			

Storage Ring Magnets					
Description	Qty. (set)	Period			
Sextupole	294	2020.05~2022.05			
LG Dipole	98	2020.12~2023.06			
Quadrupole	686	2020.12~2023.12			
B&D magent	294	2020.12~2023.12			

2.2 Booster Magnets

2.2.1 Booster Magnets (Dipole)

Core:

- Lamination type
- Glued and Welded

Parameters	Value	Unit
QTY.	130	set
Leff	1.450	m
Max. Field(@6GeV)	0.68	т
Min. Field(@500MeV)	0.05	т
Bending Radius	29.540	m
Gap	34.00	mm
Good Field Area (H×V)	30×20	mm
Uniformity(@0.5GeV, 6GeV)	1×10 ⁻³ ,5×10 ⁻⁴	-
Integral Gradient Discretness	0.1%	-

2.2.1 Booster Magnets (Dipole)

2.2.1 Booster Magnets (Dipole)

Batch Test Integral Field Discreteness

2.2.2 Booster Magnets (Sextupole)

Core:

- **Lamination type**
- Glued

Parameters	Value	Unit
QTY.	70	set
Leff	0.2	m
Max. Field Gradient	1000	T/m^2
Min. Field Gradient	30	T/m^2
Good Field Radius	16	mm
Aperture	Ф40	mm
Harmonic Error(@0.5GeV, 6GeV)	5×10 ⁻³ ,1×10 ⁻³	-
Integral Gradient Discretness	0.2%	-

2.2.2 Booster Magnets (Sextupole)

2.2.2 Booster Magnets (Sextupole)

2.3 Storage Ring Magnets

Unit Magnet (7BA@Model and position indication)

2.3 Storage Ring Magnets

BLG5 (Type II)

2.3.1 Storage Ring Magnets (Dipoles)

Qty (set) 48+1 48+1 Leff (m) 1.499 1.499 File (Gauss) 4838.4/3357.3/2863.6/ 1283.7/2073.6/2863.6/ 2073.6/1283.7 (5 steps) 3357.3/4838.4 Integral Field (Gauss.m) 4322.0 4322.0 Integral Field Discreetness 1 × 10-4 1 × 10-4 Good Field Area (H×V) [-11, 11] ×[-8, 8] [-11, 11] ×[-8, 8] (mm) Uniformity 4 × 10-4 4 × 10-4

BLG1 (Type I)

TYPE

Permanent Magnet:

Core (DT4 Steel)

2.3.1 Storage Ring Magnets (Dipoles)

BLG1-Difference (Cal.-Mea.) 6.00E-05 5.00E-05 4.00E-05 3.00E-05 2.00E-05 1.00E-05 0.00E+00 -1.00E-QS -2.00E-05 -3.00E-05 -4.00E-05 -5.00E-05 -6.00E-05 -7.00E-05 -8.00E-05 -9.00E-05

Measurement Results(BLG1,49sets)

2.3.2 Storage Ring Magnets (Quadrupole type I, 340sets)

Core:

- Lamination type
- Welded

Description	QF1/6-245	QF1/6-201	QD2	QF2	QD3/6	QD5		
QTY.(Set)	47+1	47+1	47+1	48+1	96+2	48+1		
Core Length (mm)	245	201	180	201	327	260		
Leff (mm)	255	211	190	211	337	270		
Field Gradient (T/m)	78.2	77.5	73.7	77.2	78.7	74.2		
Good Field Radius (mm)	5	5	5	5	5	5		
Aperature (mm)	26	26	26	26	26	26		
	B ₃ /B₂≤4×10 ⁻⁴ ,							
	B₄/B₂≤4×10⁻⁴,							
Harmonic Error	B₅/B₂≤2×10 ⁻⁴ ,							
	B _n /B₂≤1×10 ⁻⁴ for n>5							
Integral Gradient Discreetness	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%		
Bonding Coil	None	None	None	None	None	None		

2.3.2 Storage Ring Magnets (Quadrupole type I, 340sets)

Measurement Results (QD5, 49 sets)

2.3.3 Storage Ring Magnets (Quadrupole type II, 148sets)

Core: DT4 Steel

Description	QD4 QF5 QD7				
QTY.(Set)	48+1	48+1	49+1		
Core Length (mm)	260 201 180				
Leff (mm)	270	211	190		
Field Gradient (T/m)	74.2 77.2 73.				
Good Field Radius (mm)	5	5			
Aperature (mm)	26	26	26		
	B ₃ /B ₂ ≤4×10 ⁻⁴ ,				
Userna antis France	B₄/B₂≤4×10 ⁻⁴ ,				
Harmonic Error	B₅/B₂≤2×10 ⁻⁴ ,				
	B _n /B₂≤1×10 ⁻⁴ for n>5				
Integral Gradient					
Discretness	0.2%	0.2%	0.2%		
Bonding Coil	None None None				

2.3.4 Storage Ring Magnets (Quadrupole, with bonding coil, 194sets)

Description	QD1/8-192 QD1/8-180 QF				
QTY.(Set)	47+1	47+1	96+2		
Core Length (mm)	192	180	374		
Leff (mm)	202	190	384		
Field Gradient (T/m)	77.4	68.7	79.6		
Good Field Radius (mm)	5	5 5			
Aperature (mm)	26	26			
	B ₃ /B₂≤4×10 ⁻⁴ ,				
	B₄/B₂≤4×10 ⁻⁴ ,				
Harmonic Error	B₅/B₂≤2×10 ⁻⁴ ,				
	B _n /B₂≤1×10 ⁻⁴ for n>5				
Integral Gradient Discretness	0.2%	0.2%	0.2%		
Bonding Coil	ng Coil Yes Yes				

Core:

- **Lamination type**
- Welded

2.3.4 Storage Ring Magnets (Quadrupole, Special, 4sets)

Description	R02QF6	R48QF1	R02QD8	R48QD1		
QTY.(Set)	1	1	1	1		
Core Length (mm)	245	201	192	180		
Leff (mm)	255	211	202	190		
Field Gradient (T/m)	78.2	77.5	77.4	68.7		
Good Field Radius (mm)	5	5	5	5		
Aperature (mm)	26	26	26	26		
	B ₃ /B₂≤4×10 ⁻⁴ ,					
	B₄/B₂≤4×10⁻⁴,					
Harmonic Error	B₅/B₂≤2×10 ⁻⁴ ,					
	B _n /B₂≤1×10 ⁻⁴ for n>5					
Integral Gradient	• • • • · · ·		• • • • •	• • • • •		
Discretness	0.2%	0.2%	0.2%	0.2%		
Bonding Coil	None	None	Yes	Yes		

Core: DT4 Steel

2.3.6 Storage Ring Magnets (B&D, 294sets)

Core:

- Lamination type
- Welded

Core: DT4 Steel

Description	BD12	ABF1/4	ABF2/3		
QTY.(Set)	96+2	96+2	96+2		
Core Length (mm)	1040	180	590		
Leff (mm)	197.2	179.9	609.9		
Field Gradient (T/m)	34.54	53.43	66.43		
Good Field Radius (mm)	5	5	5		
Aperature (mm)	45	30	30		
	B ₃ /B ₂ ≤6×10 ⁻⁴ ,				
	B₄/B₂≤6×10⁻⁴,				
Harmonic Error	B₅/B₂≤3×10 ⁻⁴ ,				
	B _n /B₂≤1.5×10 ⁻⁴ for n>5				
Integral Gradient Discretness	0.2%	0.2%	0.2%		
Bonding Coil	None	None	None		

- Core:
- Lamination type
- Welded

2.3.7 Sextupole (3 types, 294 sets)

Core:

Core (DT4 Steel)

Description	SD1&4	SD2&3	SF1&2		
QTY.(Set)	96+2	96+2	96+2		
Core Length (mm)	304	350	318		
Leff (mm)	314	358	326		
Field Gradient (T/m^2)	4588 7360 74				
Integral Gradient Discretness	6×10 ⁻³				
Integral Gradient Discretness (Sorting)	3×10 ⁻³				
Good Field Radius (mm)	5 5				
Aperature (mm)	26	26	26		
	B₄/B₃≤5×10 ⁻³ ,				
Harmonic Error	rmonic Error $B_5/B_3 \le 2.5 \times 10^{-3}$,				
	B _n /B ₃ ≤1.25×10 ⁻³ for n>5				
Bonding Coil	Yes	Yes	None		

2.3.7 Sextupole (3 types, 294 sets)

٠

٠

Measurement Results(SD23,98sets)

3. Accelerating Structure and RT Cavities 《》高篇

3.1 S Band Accelerating Structures (9 sets)

3. Accelerating Structure and RT Cavities 《》高能

3.1 S Band Accelerating Structures (9 sets)

将根据采购方的要求, 协助进行加速管的测试与调谐

调整腔间相移和累积相移误差±2°以内

完成输入/输出耦合器驻波比测试 (≤1.1)

填充时间与衰减测试

CONTRACTOR OF A DECK

3.1 S Band Accelerating Structures (9 sets)

3. Accelerating Structure and RT Cavities 《》高篇

3.2 RT Cavities (RFQ)

3. Accelerating Structure and RT Cavities

3.3 RT Cavities (DTL)

图 3 漂移管 X 向同轴偏差

图 4 漂移管 Y 向同轴偏差

2.1 Cavities-Parameters List (130 Pieces)

ltem	Facility	Type Frequency Qty. (MHz) (Piece		Qty. (Piece)	Eacc (MV/m)	Remark
1	HEPS-TF	QWR	166.7	2	19	VT
2	HEPS	QWR	166.7	2	14	Online
3	CiADS	Spoke , β=0.12	325	4	11.5	Online
4	CiADS	Spoke , β=0.21	325	5	12	Online
5	CiADS	Spoke , β=0.24	325	1	11.2	VT
6	CiADS	Double Spoke , $\beta = 0.51$	325	1	16	VT
7	CSNSII	Doubl Spoke , β=0.51	325	4	13	VT
8	RISP	Spoke , β=0.51	325	7	12	VT
9	HEPS	Single CELL elliptical	500	4	16	Online
10	BIIU	Single CELL elliptical	500	2	16	HT (4K)
11	HALS	Single CELL elliptical	500	2	16	VT (4K)
12	CSNSII	Single CELL elliptical	648	1	24	нт
13	CEPC	2 CELL elliptical	650	1	24	VT
14	CEPC	5CELL elliptical	650	3	12	VT (4K)
15	PAPS	2CELL elliptical	650	3	36	VT
16	CiADS	6CELL elliptical	650	1	24	VT
17	PAPS&SHINE	Single CELL elliptical	1300	28	43	VT
18	ILC R&D	9CELL elliptical	1300	1	24	VT
19	PAPS	9CELL elliptical	1300	2	25	VT
20	SHINE	9CELL elliptical	1300	8	25	НТ
21	SHINE	9CELL elliptical	1300	8	25	VT
22	SHINE	9CELL elliptical	1300	20	25	VT
23	ZJ Lab	9CELL elliptical	1300	8	25	VT
24	DALS	9CELL elliptical	1300	8	23	нт

4.2 Cavities-Pictures

SRF Cavities

4.3 Couplers-Parameters List (80 Pieces)

ltem	Facility	Cavity Type	Frequency (MHz)	Window Type	Qty.	Remark	Power
1	SERI	DTL(NC)	80	Coaix, Plate	2	Online	
2	IBS	HWR (SCC)	162.5	Coaix, Plate	2	Test	
3	CiADS	HWR (SCC)	162.5	Coaix, Plate	2	Online	CW 15kW
4	HEPS-TF	QWR (SCC)	166.7	Coaix, Plate	2	Test	
5	HEPS	QWR (SCC)	166.7	Coaix, Plate	10	Online	TW250kW,SW100kW
6	CSNS	Spoke (SCC)	324	Coaix, Plate	2	Test	TW300kW, 5%
7	CiADS	RFQ (NC)	325	Coaix, Plate	8	Online	
8	CiADS	Spoke (SCC)	325	Coaix, Plate	7	Online	CW,10kW
9	CiADS	Buncher (NC)	325	Coaix, Plate	3	Online	CW,7kW
10	CSNS	RFQ (NC)	325	Coaix, Plate	5	Online	
11	BNCT	RFQ (NC)	325	Coaix, Plate	5	Online	95kW, 80%
12	BEPCII	1 cell (SCC)	500	Coaix, Plate	4	Online	TW,250kW,SW,100kW
13	HEPS	5Cell (NC)	500	Coaix, Plate	2	Test	TW 250kW,SW 波100kW
14	PAPS	2Ccell (SCC)	650	Cylinder	2	Test	
15	ILC R&D	9cell (SCC)	1300	Cylinder	2	Test	
16	SHINE	9cell (SCC)	1300	Cylinder	8	Test	CW14kW;SW7kW
17	DALS	9cell (SCC)	1300	Cylinder	8	HT	CW14kW;SW7kW
18	SHINE	9cell (SCC)	1300	Cylinder	4	Test	CW14kW;SW7kW

4.3 Couplers-Pictures

4.3 Couplers-Pictures

4.3 Couplers-Pictures

4.4 SSR2 Spoke 325MHz Cavity cryomodule-3D model

4.4 SSR2 Spoke 325MHz Cavity cryomodule-Assembly at RISP

Cavity string alignment

Cryomoduel complete

4.5 Double Spoke 325MHz Cavity cryomodule-Cavities VT

CSNS-II SRF Cavities

	324 MHz Double Spoke Resonator	648 MHz 060 5-cell Elliptical Cavity	Units
Frequency	324	648	MHz
β_g or β_{opt}	0.5 (β _{opt})	0.6 (β _g)	
Beam aperture	50	96/130	mm
E _p /Eacc	3.72	2.76	
B _p /Eacc	7.83	5.14	mT/(MV/m)
R/Q	451	274.8	Ω
E _{acc} (Max.)	9	16	MV/m
V _{acc} (Max.)	6.25	11.152	MV

20 Spoke Cavities for CSNS-II

4.5 Double Spoke 325MHz Cavity cryomodule-Cavities VT

Cavity HPR

VT Results

4.5 Double Spoke 325MHz Cavity cryomodule- Cryomodule

General Assembly

4.6 1.3GHz cryomodule-3D model

LongitudinalSection View

4.6 1.3GHz cryomodule-General assembly

Cryomodule assembly and HT test was finished. Q0 3.8E10@16MV/m; <u>3.6E10@21MV/m;</u> Average Max. Eacc 23.1MV/m Key process:
(1) HPR cavity before assembly;
(2) Do RT coupler conditioning before cooling down;
(3) Optimize anchor connection;

4.7 166MHz cryomodule (HEPS)

4.8 500MHz cryomodule (HEPS)

CSNSII (Dongguan, Guangdong province)-Cavities and Couplers

■ HEPS (Beijing)-Cavities and Couplers

HALF (Hefei, Anhui province)-Magnets and Cavities

■ SHINE (Shanghai)-Cavities and Couplers

■ S3FEL (Shenzhen, Guangdong province) - Cryomodules

CEPC research –Cavities and Couplers

PAPS operation (20 staff of HERT)

PAPS operation (20 staff of HERT)

PAPS operation (20 staff of HERT)

- HERT full with the experience for accelerator key technology and components R&D and manufacture.
- HERT has Successfully developed the magnets, accelerating structure, SRF cavities , couplers and cryomodule for HEPS.
- HERT is willing to undertake more R&D work for all institutes, universities and labs.

Thanks for your attention!

中國科學院為能物現為完施 Institute of High Energy Physics Chinese Academy of Sciences

Beijing HE-Racing Technology Co., Ltd.