

CEPC ToF & Outer Trakcer Detector

Yunyun Fan on behalf of ToF & Outer tracker detector group

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 24th, 2024, 24 International workshop on CEPC

- Introduction
- Requirements
- Technology survey and our choices
- R&D efforts and results
- Detailed design including electronics, cooling and mechanics
- Readout electronics & BEC
- Research team and working plan
- Summary

Introduction and requirement

• CEPC: rich physics programs: Higgs, electroweak physics, flavor physics, QCD/Top

- **Particle identification** of Gas detector (dE/dx) : insensitive region
 - ✓ 0.5-2 GeV for K/pi separation, 1.5-2.5 GeV for K/p separation
- Precision timing detector is a matter of urgency (from IAC recommendation)
- Timing detector is complementary to gas detector: 50 ps could improves the separation ability
 K/pi separation
 K/proton separation

Technology survey and our choices

LGAD (Low-Gain Avalanche Diode)

Segmented gain layer

- The read-out electronics is connected to n++ layer
- Time resolution ~ 30ps
- Position resolution: pixel size/ $\sqrt{12}$
- Radiation hardness: 10¹⁵~10¹⁶n_{eq}/cm²

AC-LGAD (AC-coupled LGAD)

Continuous gain layer

Less dead area, higher spatial resolution

- Metal AC-pads separated from the n+ layer by a thin dielectric (Si₃N₄, SiO₂)
- Time resolution \sim 30ps
- Position resolution: 5 \sim 10 um

LGAD sensors pre-production at IHEP

In May 2023, IHEP-IME sensor was chosen for the ATLAS HGTD project.

- First time the silicon sensor designed and produced by China was chosen for an LHC experiment
- The production plan:
 - IHEP-IME: 90% (66% from CERN tendering+24% in-kind contribution): ~8 m²

Pre-production LGAD sensors from China

IHEP-IME Pre-production

Details in Mei Zhao' talk

R&D : AC-LGAD sensors development at IHEP

Pixels AC-LGAD:

- Pitch size 2000um, pad size 1000um
- Different N+ dose :
 - 10P, 5P, 1P, 0.5P, 0.2P

Strips AC-LGAD:

- Strip length 5.6mm, width 100um
- Different Pitch size:
 - 150um, 200um, 250um

Performance of AC-LGAD: Time Resolution

- No significant change in timing resolution was observed for different pitches
- Saturation was observed: ~ 10 ps.
- 37.5 ps timing resolution, via Beta source test.

Performance of AC-LGAD: Spatial Resolution

Details in Weiyi Sun's poster

AC-LGAD Based ToF & Outer Tracker for CEPC

Develop AC-LGAD strip silicon sensor for outer tracker

- timing resolution **50 ps**
- spatial resolution better than 10 µm (Bending direction)

Reference TDR of CEPC

Electronics for ToF & Outer Tracker

Four parts: Readout ASICs, Data aggregation, Data Link, BEE

- Provide LV and HV for module independently ٠
- Primary Aggregation adapts Data rate between ASIC and Data Link ٠
- Flex between Primary and secondary ٠

٠

AC-LGAD readout chip structure

16 bit (9 TOT, 7 TOA)

TOA for arrival time

TOT for charge measurement and time walk correction

Design of the OTK with the strip AC-LGAD: Barrel

Mechanical Design for LGAD ToF & OTK

- Overlap staves for the barrel with detailed electronics design, cooling and installation
 - Sepcial support design to allow precise alignment of the AC-LGAD sensors
 - Extra space for cables
 - Cooling pipes

Deformation Analysis of ToF & OTK

- FEA analysis for the stave support structure
- Stave support structure: Equivalent thickness ~ 0.5mm CFRP.

maximum deformation 0.1mm.

maximum deformation 0.03mm.

Thermal analysis for ToF & OTK

Thermal analysis

- Power: 288mW/cm2
- Cooling with two-phase CO2 heat pipe: isothermality temperature (5°C), feasible.
 (From Tsinghua University and Sun Yat-sen University)
- Optimization of the temperature distribution (from 15 °C to 7 °C)

· · · · · ·		
	H2O	CO2
Heat/W	1181.88	1181.88
Cooling Method	Single-phase cooling	Phase-change cooling
Heat transfer per unit mass (W/g)	21	214.98
Liquid Density (kg/m ³)	1000	896
Required Mass Flow Rate (g/s)	56.28	5.5
Liquid Velocity (m/s)	17.91	1.95
Operating Pressure (MPa)	0.1	3.97

Endcap Design for ToF & OTK

CEPCSW Progress for ToF&out tracker

Got the geometry of barrel and endcap into CEPCSW

- Good for full simulation and future physics performance study
- Estimated the maximum occupancy: 0.35% at z pole, OK

Details in Dian Yu's poster

Research Team

~ 18 staffs + ~ 22 postdocs & students ToF & OTK: 9 universities and institutes, 南周大學 Nankai University 上海交通大学 中国科学院微电子研究所 Istituto Nazionale di Fisica Nucleare DRD3 - R&D on Semiconductor Detectors Joined the DRD3 group International cooperation experiences: ATLAS China team played a leading role in HGTD – Joao (IHEP) is re-elected as Project leader (2021-2025), L1 manager 4 Level-2 conveners (Module, Sensor, Electronics, Risk, Simulation) _____ 3 Level-3 conveners (PEB, high-voltage, module flex) — Lumi IpGB 18

Technical Challenges and Working Plan

✓ 4D LGAD based sensor

- 40 ps and 10 μm for ~70 mm long strip
- ✓ High precision and low power consumption ASIC
 - 30 ps jitter

✓ Large module:

• Long ladder: 2900 mm

•

CEPC requirement for the sensor and ASIC

	CEPC TOF barrel	CEPC TOF endcap
Area (m ²)	~ 70	~19.4
Granularity	70mm $ imes$ 0.1mm	70mm $ imes$ 0.1mm
Capacitance	~10 pF	~10 pF
Charge	>15fC	>15fC
Channel number	~ 1×10 ⁷	~ 2×10 ⁶
Module assembly	Wire bonding at strip	Wire bonding at strip
MIP Time resolution	~30-50 ps	~30-50 ps
Spatial resolution	~ 10 μm	~10 μm (r-φ)
Number of channels per module	2816	2816
Data size	16 bit (9 TOT, 7 TOA) + channel(7bit, 128) +bunch ID(8bit) + chip ID (4-5 bit) ~40-48 bits	16 bit (9 TOT, 7 TOA) + channel(7bit, 128) +bunch ID(8bit) + chip ID (4-5 bit) ~40-48 bits

Summary and Working plan

Designed an AC-LGAD based detector as ToF + Outer Traker for CEPC

- **50 ps** time resolution and **10 μm** spatial resolution (4D detector)
- aim to design **70 mm** long strip AC-LGAD
- cover the barrel and endcap region: ~90 m²
- Prototype: AC-LGAD sensor with 5.6mm strip length and 150 um pitch, timing resolution is 37.5 ps (Beta test), spatial resolution is 8.3 μm (laser test).
- Working plan for ToF & Outer Tracker
 - Optimized the barrel and endcap design
 - Test beam for the long strip AC-LGAD
 - Sensor design: 3 steps (20mm, 40mm, 70 mm) towards the large area, long strip, sector sensor
 - High precision electronics optimization, such as the power consumption
 - Design and Optimize the cooling system (cooling pipe et. al.)
 - Physics performance study
 - A lot to be done...

Welcome to join us!

Thank you for your attention!

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

Backup

LGAD Development at LGAD

IHEP-NDL(2019)

IHEP-IMEv1(2020.9)

IHEP-IMEv2(2021.6)

IHEP-IMEv3(2022.5)

Pre-production for ATLAS (2023.7)

Mass production for ATLAS (2024.6)

The 4th Concept Yoke + **Ref-TDR is based on** SC Magnet Muon (PS+SiPM) this configuration (3T/2T)**PFA HCAL** (Scintillation Glass) LumiCal Crystal PFA ECAL (Transverse bar) OTK (AC-LGAD) TPC Vertex (Pixelated readout) (MAPS SiPixel) ITK (MAPS SiPixel) 24 2

LGAD module assembly at IHEP

6 module assembly site at HGTD

- IHEP, USTC, Mainz, France, IFAE, Morocco
- IHEP is largest site, 34% module assembly (~3000)
- IHEP designed and fabricated module flex
- IHEP developed gantry system for assembly and loading
 - Pattern recognition, glue dispending and assembly
 - Plan to assemble 10 modules each time

Mechanism: Optimization of the Barrel Design

Three arrangement of the ladder

G1: $\Delta R = 55.4 \text{ mm}$ (**The Best arrangement**)

The best option:

- minimum space required in R direction ΔR = 55.4 mm
- Sensors toward outside direction (update recently)

Sensor and electronics:

thickness 13.8 mm

Silicon Tracker Common Electronics

Data transmission: common data platform

Trigger mode: triggerless

_7

Heat sink study

- PCB heat sink design should based on the standard manual
 - Experiences on 1.6 mm PCB with heat sink
 - Juno and AMS02 experiment applied the heat sink to cooling down

Need to know how large the heat sink is?

Who can help to do the estimation?

Figure 2: A PCB built with embedded copper coin.

https://www.proto-electronics.com/blog/design-hints-high-power-pcbs

AC-LGAD: Spatial Resolution

- Spatial resolution Vs. Pitch size
 - ✓ Pitch size 250um → 150um
 - ✓ Spatial resolution 11 → 8 µm (Strip).
- Smaller pitch sizes -> better spatial resolution

TPC

Fig. 4. The distribution of I as a function of momentum for $K^{\pm}/\pi^{\pm}/p^{(-)}$ (a) and the absolute difference of I for K^{\pm}/π^{\pm} and $K^{\pm}/p^{(-)}$ (b).