4D tracking detector development in DRD3

Alessandro Tricoli (Brookhaven National Laboratory)

The 2024 International Workshop on the High Energy Circular Electron Positron Collider Oct 22 – 27, 2024 Hangzhou Platinum Hanjue Hotel

CEPC Tracker Specifications

CEPC Tracking Requirements:

- Single-point resolution of 1^{st} layer < $3 \mu m$
- Material budget < 0.15% Xo per layer (incl. support structures)
- 1st layer close to the beam pipe at r= 16 mm
- Detector occupancy \leq 1%.
- Power consumption of the sensors and readout electronics < 50 mW/cm², if the detector is air cooled.

✤ Options:

- 1. Silicon Vertex + TPC + Silicon Tracker (pixel and strips)
- 2. Full Silicon Tracker
- Sensor technologies which achieve **fine pitch**, **low power, low mass** and **fast readout** must be selected
 - MAPS are prime candidates for silicon tracker
 - What about Timing ? 4D tracker?

The need for 4D Detectors

- As 4D detector Technologies are becoming more advanced, we realize their benefit in collider experiments
 - Timing useful input to **Particle Flow** algorithms
 - Timing as additional information from the **Calorimeters**: identification of slow from prompt shower components
 - **PID capabilities** across a wide momentum range is essential: flavor physics, H→ss...
 - Time-Of-Flight: ~10 ps resolution over 2m

ALLEGRO Detector concept at FCC-ee as an example

- Vertex Detector: MAPS or DMAPS- Possibly ALICE 3 like?
- Silicon Wrapper + ToF: MAPS or DMAPS possibly with timing layer (LGAD)

ALLEGRO Detector Concept for FCC-ee

Silicon technologies can meet the need for 4D detectors at Future Lepton Collider experiments

LGAD Technologies

Low Gain Avalanche Diode (LGAD) is advanced technology for precision timing

- Used in ATLAS and CMS for HL-LHC timing detectors
- o Several foundries in China, Europe, US and Japan
- Thriving field of research for 4D detectors: pixels or strips with various processes

no-gain region

Pixel 1

ultiplication regio

RH-	
¥	

AC-LGAD

Deep-Junction LGAD

Position resolution given by pitch, as in std pixels/strips

Trench-Isolation LGAD ~100% fill factor, signal in single pixel (no share)

Pixel 2

Multiplication region

Alessandro Tricoli

LGAD Performance

AC-LGAD demonstration in test-beams of simultaneous O(10 μm) & O(30 ps) resolution with large pixel or strip pitches technology for 4D-trackers!

• **100% detection efficiency** across sensor surface

- Position: 15-20 μm resolution in 1 cm strips, 500 μm pitch
- Timing: 30-35 ps resolution for 1 cm strips

> Better the timing with smaller the thickness (20 μ m): \leq 20 ps resolution

arXiv:2407.09928

Signal shared between neighboring

Measure position based on signal ratios

electrodes in AC-LGADs:

3D sensors

P+ electrodes

- 3D sensors: charge collection distance decoupled from sensor thickness
- 3D sensors proven more radiation hard than planar silicon
 - Less affected by signal trapping
 - Partial depletion possible
- 3D double-sided technology:
 - Hexagonal and Quadratic geometries,
 285 μm active thickness, 10 μm column diameter

- Before irradiation, 3D sensors **reach time resolutions of 30-35 ps**, comparable to 50 μm -thick LGADs
- 3D pixel sensors improve resolution after irradiation with constant bias voltage
- **3D pixels withstand 5×10¹⁵ n_{eq}/cm**² while keeping their timing performance

Ulrich Parzefall talk (<u>https://indico.cern.ch/event/1434481/</u>)

Monolithic Detectors

- **Material budget and cost** for large volume trackers are a concern for future collider experiments
- Monolithic Active Pixel Sensor (MAPS) established technology
 - Silicon sensor and front-end electronics in a single device
- 4D tracking is possible with MAPS

Advantages

- Low mass: combine readout circuitry and sensing elements in a single and compact device
- Commercial foundries can be used
- Cost savings, i.e. in bump-bonding, cooling
- New MAPS process technology

Mini-Malta (DMAPS)

- TJ 180 nm CMOS
- Pixel 36.4 x 36.4 μm²
- High resistivity epitaxial ptype substrate
- originally proposed for ATLAS ITk outer pixel layer

Monolithic Detectors for Tracking and Timing

ALICE ITS₃ for Tracking

- Reduce material thickness
 - Remove electrical substrate, mechanical support, and active cooling circuit in detector acceptance
 - First detection layer **closer to** interaction point

ITS3: ultra-light, truly cylindrical layer

- 65 nm MAPS, 300 mm wafer-scale stitched sensors, ~50 μm thickness
- **Bent to the target radii** (Layer-o from 23 mm to 19 mm)
- Mechanically in place by carbon foam ribs
- Air cooling between the layers
- Low material budget (0.05% Xo)

SiGe BiCMOS MAPS (without Internal Gain)

- 130 nm by IHP
- 50 µm- thick epilayer with
 350 Ωcm (fully depleted)
- Time Resolution:
 - 45 ps for 1200 e⁻ (0.4 x MIP)
 - \circ 3 ps for 11k e⁻ (3.5 x MIP)

144 hexagonal pixels of 65 μ m side

https://arxiv.org/abs/2401.01229

Towards 4D Monolithic Detectors with Gain

- MAPS sensors in a commercial process (e.g. CMOS) can provide fast timing (~10 ps) and precise spatial resolution (~5 μm)
 - 4D tracking detectors for colliders of the future
 → e+e- Higgs factories and multi-TeV colliders
 - Electronics for signal processing are placed in dedicated p-and n-wells contained within a deep p-type well
 - <u>Intrinsic gain</u> will allow MAPS detectors to perform precise time measurements in addition to spatial measurements

• Rise time of the top electrodes will be determined by the details of the CMOS well capacitance

Cross Fertilization – Example from ePIC at EIC

ECFA R&D Roadmap:

 Tracking and Timing specifications for next generation lepton colliders and EIC are identical

Central Tracker Requirements:

- High pattern recognition efficiency
- High spatial resolution
- Low material budget
- Good time resolution
- https://eic.jlab.org/Requirements/index.html

Electron Ion Collider

Luminosity: 10³³ - 10³⁴ cm⁻²s⁻¹ Center-of-mass energy: 28 - 140 GeV

41, 100 to 275 GeV

ePIC Det. Tracking System ePIC 24.2.1

Silicon Vertex Tracker (SVT):

- Monolithic Active Pixel Sensor (MAPS): ~20x20 μm
- 3 vertex barrels: ITS3 curved wafer-scale sensor, 0.05% X/Xo
- 2 outer barrels: ITS3 based Large Area Sensors (EIC-LAS), 0.55%X/Xo
- 5 disks (forward/backward), EIC-LAS, 0.24% X/Xo

AC-LGAD:

- PID Time of Flight detectors to cover PID at low pT
 - Also provide time and spatial info for tracking
 - Resolution: ~30 ps, 30 um (with charge sharing)
- Barrel (BTOF): 0.05 x 1 cm strip, 1% X/Xo
- Forward disk (FTOF) : 0.05 x 0.05 cm pixel, 2.5% X/Xo
- Far-Forward Detectors: Luminosity Monitor (strips), Bo (pixels), Roman Pots (pixels)

CERN's DRD Collaborations

DRD3 Organisation

Working Group (WG) = organizational structure of the work with a long term horizon, aiming to fulfil research goals.

•

- R&D can be also outside DRD Tasks, but related to semiconductor detectors:
 - R&D outside particle physics application with benefits for HEP
 - Novel semiconductor materials
 - Technology not yet listed in the Work Package guidelines (Silicon Electron Multiplier Sensors...).

- Work Package (WP) = strategic R&D activity and is linked to DRD Tasks. It should pursue the goals listed there.
 - WPs gather a subset of DRD3 institutions, are resource loaded with clear milestones and deliverables and funded
 - WPs reviewed/approved by DRD3 and appended to MoU annex
 - WPs will be shaped and optimized (synergies with similar projects, sharing runs...)

DRD3 Working Group 2 (4D Hybrid Detectors)

Broad scope:

- Sensors with 4D capabilities foreseen in many systems, from <u>Time-of-Flight</u> systems with only 1-2 layers of sensors with the best possible timing resolution to large <u>4D trackers</u> with many layers.
- Two main technologies assumed in WG2: <u>3D and LGAD sensors (in all their flavors)</u>
- <u>Additional technologies</u> can be explored in the future if new ideas will come forward

Challenges:

• Hadron colliders: high radiation levels and high occupancies

Lepton colliders: requirement of low material budget and low power dissipation

Webpage (under development): <u>https://drd3.web.cern.ch/wg2</u>

WG2 – Research Goals

WG2	research	goals	$<\!202$
-----	----------	-------	----------

Description

- **RG 2.1** | Reduction of pixel cell size for 3D sensors
- **RG 2.2** 3D sensors for timing ($\leq 55 \times 55 \ \mu m, < 50 \ ps$)
- **RG 2.3** | LGAD for 4D tracking $< 10 \ \mu m$, $< 30 \ ps$, wafer 6" and 8"
- **RG 2.4** | LGAD for ToF (Large area, $< 30 \ \mu m$, $< 30 \ ps$)

DRD3 scientific proposal: https://drd3.web.cern.ch/documents

• RG 2.1 Reduction of pixel cell size for 3D sensors.

- 2024-2025: 3D sensors test structures with pixel size smaller than the current 50 \times 50 μm^2 or 25 \times 100 μm^2
- 2026-2028: Large size 3D sensors with reduced pixel size.
- $\geq 2028:$ Expand the number of foundries capable of producing 3D sensors for HEP applications.
- \bullet RG 2.2: 3D sensors with a temporal resolution better than 50 ps.
 - 2024-2025: Production of a small matrix with pitch equal to or less than $55\times55~\mu m^2$ to be connected with existing read-out ASICS
 - 2026-2028: Production of large-size sensors (using the selected geometry from the R&D runs) and interconnection with custom-made read-out ASIC

- RG 2.3: LGAD Sensors with very high fill factor, and an excellent spatial and temporal resolution.
 - 2024-2025: LGAD test structures of different technologies (TI-LGAD, iL-GAD, AC-LGAD/RSD, DJ-LGAD), matching existing read-out ASICs.
 - 2026-2028: Large LGAD sensors based on the best-performing technology.
 - 2025-2028: Investigation of radiation hardness of LGAD technology beyond $\sim 2.5 \cdot 10^{15}~n_{\rm eq}/{\rm cm}^2.$
- RG 2.4: LGAD sensors for Time-of-Flight applications
 - 2024-2026: Production of LGAD sensors with large size for Tracking/Timeof-Flight applications to demonstrate yield and doping homogeneity. Study of spatial and temporal resolutions as a function of the pixel size.
 - 2026-2028: LGAD structures with 4D capabilities produced with vendors capable of large-area productions to demonstrate the industrialization of the process.

WG2 – Activities (3D detectors)

RG 2.1 • 3D Applications at high radiation environment, e.g. hadron colliders:

- o Short-term application for the replacement of the innermost pixel layer of ATLAS/CMS pixel dets.
- ο HL-LHC geometries: 50x50 μm² or 25x100 μm².
- Phase-3 replacement: 28 nm CMOS technology for the ASICs could allow for finer pixel sizes to improve hard scattering track reconstruction and pile-up rejection
- o 3D sensors still the most promising candidate due to radiation resistance and low power dissipation
- \circ ASIC pixel size possibly down to 30x30 μm^2 (No timing functionality included)

WG2 – Activities (LGAD detectors)

- **Full scale detector with pixelated LGAD sensors to achieve a position resolution <10 μm,** with a timing resolution <30 ps before irradiation, also in high occupancy environments.
 - Possible application for the replacement of outer pixel layers or disks in the CMS/ATLAS pixel dets. in Phase-III. Requested radiation tolerance for HL-LHC can be in the range of 1-5x10¹⁵ n_{eq}/cm²

RG 2.4 • LGADs for particle identification (Time of Flight)

- Possible applications: <u>ALICE 3 (Run5)</u>, <u>Belle2</u>, <u>Electron Ion collider (Tracking+TOF@ePIC) >2031</u>) and <u>Future</u> <u>Lepton colliders (>2040)</u>.
- Larger surfaces (several m²) have to be covered
- Yield and reproducibility of the process have to be demonstrated while radiation hardness is less of a problem
- <u>Electron Ion Collider</u>: a spatial resolution ~30 μm and timing resolution <30 ps are required. An area up to 13 m² has to be instrumented. Proposal: pad size of 0.5 mm with a spatial resolution ~ 10 μm
- <u>Future lepton colliders</u>: a ToF could be placed as the most external tracking layer, with a surface of around 100 m^2 , < 30 ps, and spatial resolution ~10 (90) μ m (r- ϕ , z).

Alessandro Tricoli

WG2 – Readout Challenges

- ASICs for HL-LHC Timing detector (pitch of 1.3 mm x 1.3 mm):
 - o ATLAS HGTD <u>ALTIROC</u> chip in 130 nm CMOS
 - CMS ETL <u>ETROC</u> chip in 65 nm CMOS

• From the ECFA Roadmap: Technology Choice

- The selection and adoption of the <u>28 nm CMOS</u> technology as a "mainstream" process will "fuel" the developments of "near-future" experiments
- A few chips are being developed at the moment for *4D tracking*:
 - Ignite and PicoPix, focused on LHCb VELO upgrade in 28 nm CMOS
 - *EICROC* for ePIC detector at EIC in 130 nm CMOS
 - Fermilab's *FCFD* for 4D trackers in 65 nm CMOS Etc.
- o but nothing readily available at the moment

WG2 will help to collect requirements for future ASICs and unify efforts

DRD3 WG2 - Institutes

UZH	Nikhef	ANL	IFAE
JSI	FZU Prague	UNM	IFGAE (Santiago)
LPNHE-Paris	Birmingham	IFCA (CSIC-UC)	Oxford
МРР	Gottingen	Charles University, Prague	Santa Cruz
INFN Milano	GSI	BNL	INFN Genova
Oak Ridge	INFN Torino	CERN	IJCLAB
PSI	ETHZ	IMB-CNM-CSIS	
SIAC	КЕК	FBK	
	кіт	FNAL	
Uni Trento + TIFPA INFN	KII	Freiburg	
Uni Chicago	LANL	IMECAS	
Uni Sao Paulo USP	Hamburg	INFN-Firenze	
Uni Sci & Tech China	НЕРНҮ	INFN-Perugia	
Vilnus	HIP (Helsinki Institute of Physics)		

Expressions of Interests (Eols):

https://drive.google.com/drive/folders/1vQMFlwzgQ33M7aJ1KxKt9Ye4B5Lz1Xj8?usp=sharing

- 46 institutes from 15 countries and 3 continents (Europe, US, Asia and South America)
 - We welcome more!
 - Contact us to join!

DRD3 WG2 - Commitments

- 55 FTE for PostDocs and Students
- Average: 2.4 FTE / Institute

DRD₃ WG₂ – Scientific Interests

Most of institutes have extensive experience in silicon tracking or timing detectors in LHC experiments

- LGAD and 3D dominates
- Interest also in **Planar Pixel**, **passive/active CMOS** and *other technologies*
- New and alternative ideas are also welcome

Eols: https://drive.google.com/drive/folders/1vQMFIwzgQ33M7aJ1KxKtgYe4B5Lz1Xj8?usp=sharing

DRD₃ WG₂ – Facilities and Equipment

- Broad technical capabilities
 - Most institutes have sensor testing capabilities
- Widespread testing equipment:
 - Probe-stations
 - o TCT/laser
 - o Radioactive sources
 - o X-ray
 - o Simulation
- Wire-bonding capabilities are also largely available
- Need coordination/sharing:
 - o Test-beams
 - o Irradiation
 - o Readout development
 - o Flip-chip

Eols: <u>https://drive.google.com/drive/folders/1vQMFIwzgQ33M7aJ1KxKtgYe4B5Lz1Xj8?usp=sharing</u>

- Facilities & Equipment TC TOP DIS TRAFFORM SIMPLATION WARDED TO THE STOP +ray astheam DAC pondine restation ripchip source
- Sharing of other resources is encouraged and may be needed in specific clusters of institutes for specific projects

DRD3 WG2 – Structure and Liaisons

No subgroups (for the time-being)

- Discussions open to the whole community, regardless of specific research interests
- We may have dedicated meetings on specific technologies, specific Research Goals or WP to keep meetings focused

• Liaisons:

- Advice WG2 members on available facilities, techniques, platforms, tools etc.
- Provide bi-directional communication with other DRD3 Working Groups or DRDx Coll.
- Provide technical support to community by linking with experts
- Maintain support web pages

Liaisons

- ➤ Test-beam and Characterisation facilities → link to WG5
 - Jordi Duarte-Campderros (IFCA, Santander), jorge.duarte.campderros@cern.ch
 - Ryan Heller (LBL), rheller@lbl.gov
- ➤ Irradiation Coordination → link to WG3
 - Leena Diehl (CERN), leena.diehl@cern.ch
 - Simone Mazza (UCSC), simazza@ucsc.edu
 - Xuan Li (Los Alamos), xuanli@lanl.gov
- ▶ Interconnections \rightarrow link to WG7
 - Mathieu Benoit (ORNL), benoitm@ornl.gov
- Simulation → link to WG4
 - Jörn Schwandt (Uni Hamburg), joern.schwandt@desy.de)
- **Readout Systems** \rightarrow link to DRD7
 - Abderrahmane Ghimouz (PSI), abderrahmane.ghimouz@cern.ch
 - Manwen Liu (IMECAS), liumanwen@ime.ac.cn

DRD3 WG2 – Plans

In the near future we want to learn about

- Main application drivers (e.g. HL-LHC, CEPC, FCC, ILC/CLIC, Muon Collider etc.),
- o Research goals and directions the community wants to pursue,
- o Level of needed vs available effort/person-power for specific developments,
- o Specific interests of various institutes in specific technological areas
- What proposals for Work Packages are submitted and what effort will be provided
- We also want to encourage the community to get an overview of all on-going activities before

we compartmentalize into focused groups

- Cross-fertilization among different R&D areas
- Boost cooperation spirit
- Encourage the formation of institute clusters around specific research goals
 - Next DRD3 WG2 Meeting: Mon. 4th Nov. (remote), <u>https://indico.cern.ch/event/1463712/</u>
 - DRD3 Collaboration Week: Mon-Fri, 2nd -6th Dec. (CERN), <u>https://indico.cern.ch/event/1439336/</u>

DRD3 WG2 – Keep in Touch

- Convenors (Anna Macchiolo, Martin van Beuzekom, Alessandro Tricoli):
 - o <u>drd3-wg2-conveners@cern.ch</u>
- Indico agendas for Meetings and Worshops:
 - DRD3: <u>https://indico.cern.ch/category/17387/</u>
 - WG2: <u>https://indico.cern.ch/category/18197/</u>
- Subscribe to WG2 e-group for general communications/announcements:
 - o drd3-wg2-hybrid@cern.ch
 - Follow instructions here how to subscribe: <u>https://drd3.web.cern.ch/egroups</u>
- Mattermost channels for rapid or extended discussions:
 - o General DRD3: <u>https://mattermost.web.cern.ch/drd3</u>
 - From "Add channels" → "Browse channels" → Select the one to join in the pop-up window, e.g. WG2

Backup

Monolithic Detectors

Chip name	Experiment	Subsystem	Technology	Pixel pitch [µm]	Time resolution [ns]	Power Density [mW/cm ²]
ALPIDE	ALICE-ITS2	Vtx, Trk	Tower 180 nm	28	< 2000	5
Mosaic	ALICE-ITS3	Vtx	Tower 65 nm	25x100	100-2000	<40
FastPix	HL-LHC		Tower 180 nm	10 - 20	0.122 – 0.135	>1500
DPTS	ALICE-ITS3		Tower 65 nm	15	6.3	112
NAPA	SiD	Trk, Calo	Tower 65 nm	25x100	<1	< 20
Cactus	FCC/EIC	Timing	LF 150 nm	1000	0.1-0.5	145
MiniCactus	FCC/EIC	Timing	LF 150 nm	1000	0.088	300
Monolith	FCC/Idea	Trk	IHP SiGe 130 nm	100	0.077 – 0.02	40 - 2700
Malta	LHC,	Trk	Tower 180 nm	36x40	25	> 100
Arcadia	FCC/Idea	Trk	LF 110 nm	25	-	30

C. Vernieri: https://indico.mit.edu/event/876/contributions/2694/attachments/1039/1721/MIT-workshop-Detector.pdf