International workshop on the high energy Circular Electron Positron Collider (CEPC)- [link](https://indico.ihep.ac.cn/event/22089/) - 24/10/2024 - Hangzhou, China

ALICE ITS3 vertex detector upgrade: mechanics & cooling overview

Corrado Gargiulo On behalf of ALICE ITS3 Work Package 5

Simplified schematic of the ALICE Inner tracking system 3 (ITS3)

Outline

- **Mechanics and Cooling**
- **Material budget**
- Prototyping strategy
- Half-detector assembly
- Testing:
	- Cooling performance
	- **Dynamic stability Vs airflow**
	- Thermoelastic failure assessment
- **Services**

Carbon sandwich

Mechanics and Cooling design Algorithm ALICE ITS3 WEGTERN ALGETERN ALGORATER

The limited dissipated power allows for the use of **air cooling** at ambient temperature The material budget requirement (<1%) calls for an unpalpable support structure, i.e. **carbon foam** used as **support** and **radiator**

µCT scan (Voxel =11µm, @CERN EN-MME)

Mechanics and Cooling design

Power dissipation is concentrated at the short edge of the sensor, where carbon foam **half-rings** (radiators) are placed. Carbon foam **longerons** along the length keep the sensor in position and provide structural stability.

24/10/2024 2024 CEPC International workshop | ITS3 WP5 | ALICE ITS3 vertex detector upgrade overview | C. Gargiulo 4

Material budget

ALICE ITS3 WP

The half-layer layout has been developed to achieve **minimum material budget,** with most of the material budget belonging to the silicon sensor itself.

Material budget evaluation for half-layer 0

The silicon sensor itself is responsible for **0.07%** X₀ and the material budget for tracks **with |η| < 1 on average is set at 0.09% X₀.**

Material budget for tracks of particles originating from the interaction point $(Z_{vtx} = 0)$ as a function of *φ*. The material budget plotted is averaged for tracks with |η| < 1, resulting in an average material budget contribution (⟨X/X0⟩) of 0.086% for tracks with *Z*_{*vtx}* = 0, |*η*| < 1, and 0 < φ < π.</sub>

Material budget for tracks of particles originating from $Z_{\text{tr }x} = 0$ as a function of *η*. The plotted material budget is averaged for tracks with 0 < *φ* < π, resulting in $\langle X/X0 \rangle$ = 0.149% for tracks with *Z*_{*vtx}* = 0, $|\eta|$ < 2, and 0 < *φ* < π.</sub>

Courtesy of ITS3 WP1

Prototyping strategy Allians and the control of the con

The strategy involves prototyping assemblies with varying levels of accuracy to validate the mechanics and cooling.

BreadBoard Models (BBMs):

Test samples and initial prototypes, partially representative of some of the final model features

Engineering Models (EMs):

Used for design development, they are a mixture of final-grade and commercial components

Qualification Models (QMs):

Final grade, fully integrated assemblies including MOSAIX sensors, used for qualification tests

Final Models (FMs):

2x final half-detectors to be integrated in the ALICE experiment + 2x half-detectors spares

Prototyping strategy Allegary Allegary

The strategy involves prototyping assemblies with varying levels of accuracy to validate the mechanics and cooling.

BreadBoard Models (BBMs):

Test samples and initial prototypes, partially representative of some of the final model features

Engineering Models (EMs):

Used for design development, they are a mixture of final-grade and commercial components

Qualification Models (QMs):

Final grade, fully integrated assemblies including MOSAIX sensors, used for qualification tests

Final Models (FMs):

2x final half-detectors to be integrated in the ALICE experiment + 2x half-detectors spares

Prototyping strategy Allice ITS3 WP5

The strategy involves prototyping assemblies with varying levels of accuracy to validate the mechanics and cooling.

BreadBoard Models (BBMs):

Test samples and initial prototypes, partially representative of some of the final model features

Engineering Models (EMs):

Used for design development, they are a mixture of final-grade and commercial components

Qualification Models (QMs):

Final grade, fully integrated assemblies including MOSAIX sensors, used for qualification tests

Final Models (FMs):

2x final half-detectors to be integrated in the ALICE experiment + 2x half-detectors spares

Sensors supported by Carbon foam wedges

> Sensors supported by Carbon foam half-ring and longerons

Detector assembly: Half-layer bending

Challenge: **bending** of the wafer-size thin silicon sensor without inducing stresses or failure

Detector assembly: Half-layer wire bonding

Challenge: is the electrically connection by **wire bonds** of the **curved sensor** to the close front end electronics

Electrical interconnection

Detector assembly: carbon foam Vs silicon gluing

Challenge: **optimum glue penetration** thickness (minimum material budget Vs thermal conductivity) in the foam, and a **smooth surface finishing**, avoiding punctual stresses and footprints.

Carbon foam

24/10/2024 2024 CEPC International workshop | ITS3 WP5 | ALICE ITS3 vertex detector upgrade overview | C. Gargiulo 11

Detector assembly: Half-layer longerons

Challenge: **precise machining, positioning** and **gluing** of the carbon foam support

Gluing of the longerons

Detector assembly: Half-layer rings

Challenge: **precise machining, positioning** and **gluing** of the carbon foam support

Gluing of the half-rings

Allcomp K9 SD

C-side half-rings: ERG Duocel Carbon (RVC) foam

Detector assembly: Half-barrel

ALICE ITS3 W

Challenge: minimum material budget achieved by a thin carbon cylindrical **exoskeleton** for the support to the three half-layers

H-L2 integration (Gluing deposition, alignment, curing) **Half-detector after each half-layer integration**

Testing: Cooling performance

An airflow through the carbon foam radiator ring of **8m/sec** allows to keep the sensor below 25°C with an air inlet of 20°C

Experimental results

Two zones of different power dissipation: Endcap and Active area Same freestream velocity v_{∞} in all layers, v_{∞} = 8 m/s | Temperature of the inlet air $T_{\infty} \approx 20$ °C

Surface power dissipation

Left End-cap: $q_e = 1000$ mW/cm² , uniform <u>Active area: $q_a = 50$ mW/cm² , uniform</u>

Testing: Dynamic stability Vs airflow

BBM3

Confocal sensor

Prototype

The experimental test results align with the simulation, showing a peak-to-peak displacement of approximately 1.1 um.

Confocal chromatic displacement sensor (at 30 kHz) Freestream velocity v_{∞} = 8 m/s

Modeling of fluid-structure interaction (FSI):

The procedure includes comprehensive fluidic dynamic analysis to evaluate the aerodynamics forces induced to the sensor by pressure fluctuations, which are utilized as input to finite element transient simulations.

> **Power spectral density of the displacement** for half-layer 2, v_{∞} = 8 m/s

Displacement: Peak-to-peak ~ 1.1 µm, Root Mean Square < 0.4 μm

Testing: Thermoelastic failure assessment

No structural damage in a range of 10÷50°C and thermal peak up to 45 °C .

Services: half-layer

Challenge: integrate power/data lines and cooling ducts in minimum space, use of specific FPC design and 3d printing

CAD model of Half-layer 0: (left) Exploded view and (right) assembled view.

Services: half-detector

Challenge: handling and precise positioning and integration of layers and services inside the mechanical exoscheleton

CAD model of Half-layer 0: (left) Exploded view and (right) assembled view.

Services: prototyping

The challenge here involves **finding space** for all the services and making them accessible and removable during assembly

Conclusions

- Wafer-size thin sensors successfully bent to cylindrical shape to form the detector's layer
- Air-cooling based on carbon foam radiator developed and satisfying thermal and stability requirements
- Layer connected to front end electronics by wire bonding
- Three layers integrated in a half barrel layout
- Service design implemented
- Different models built for the design validation
- Next: build a final-quality half-barrel (QM) within 2025 to be ready for final detector assembly (FM) in 2026

