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Half-ring
Carbon foam

CYlindrical Structural Shell (CYSS)
Carbon sandwich

Longeron
Carbon foam

Half-layer sensors
65 nm TPSCo CMOS 
imaging technology,

Radii= 19 | 25.2 | 31.5 mm
Length = 266 mm

Beampipe
Beryllium

Radius = 16.5 mm, th=0.5mm

Simplified schematic of the ALICE Inner tracking system 3 (ITS3)
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The limited  dissipated power allows for the use of air cooling at ambient temperature    
The material budget requirement (<1%) calls for an unpalpable support structure, i.e. carbon foam used as support and radiator

µCT scan (Voxel =11µm, @CERN EN-MME)

6 mm

Carbon foam 

Silicon MAPS sensor

Glue

50 µm
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High heat dissipation in the A-side 
end-cap of the sensor (~1 W/cm²).

Allcomp K9 
Standard Density (SD)
ρ =  0.2-0.26  kg/dm3 
K = >17 W/m·K

ERG Duocel Carbon 
(RVC) Foam 100 PPI
ρ = 0.07  kg/dm3 
K = 0.033 W/m·K

Carbon foam types

Support

Cooling radiator

Power dissipation is concentrated at the short edge of the sensor, where carbon foam half-rings (radiators) are placed. 
Carbon foam longerons along the length keep the sensor in position and provide structural stability.

Longerons

Silicon sensor

A-side half-rings
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Material budget evaluation for half-layer 0

Material budget
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Material budget for tracks of 
particles originating from the 
interaction point (Zvtx = 0) as a 
function of φ. The material budget 
plotted is averaged for tracks with 
|η| < 1, resulting in an average 
material budget contribution 
(⟨X/X0⟩) of 0.086% for tracks with 
Zvtx = 0, |η| < 1, and 0 < φ < π.

The silicon sensor itself is responsible for 0.07% X0 and the material budget for tracks 
with |η| < 1 on average is set at 0.09% X0.

Material budget for tracks of 
particles originating from Zvtx = 0 
as a function of η. The plotted 
material budget is averaged for 
tracks with 0 < φ < π, resulting in 
⟨X/X0⟩ = 0.149% for tracks with 
Zvtx = 0, |η| < 2, and 0 < φ < π.

Courtesy of ITS3 WP1

The half-layer layout has been developed to achieve minimum material budget, with most of the material budget belonging to 
the silicon sensor itself. 
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Engineering Models (EMs): 
Used for design development, 
they are a mixture of final-grade 
and commercial components 

Final Models (FMs): 
2x final half-detectors to be 
integrated in the ALICE experiment 
+ 2x half-detectors spares

BreadBoard Models (BBMs): 
Test samples and initial prototypes, 
partially representative of some of 
the final model features

Qualification Models (QMs): 
Final grade, fully integrated 
assemblies including MOSAIX 
sensors, used for qualification tests

ALICE ITS3 prototype

12” ER1 pad wafer

Half-layer 2 

ITS3 Service cone side

The strategy involves prototyping assemblies with varying levels of accuracy to validate the mechanics and cooling.

Half-barrel
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BBM3
BreadBoard Models (BBMs): 
Test samples and initial prototypes, 
partially representative of some of 
the final model features

The strategy involves prototyping assemblies with varying levels of accuracy to validate the mechanics and cooling.
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EM1

EM2

• Sensors supported by 
Carbon foam wedges

• Sensors supported by 
Carbon foam half-ring 
and longerons

Engineering Models (EMs): 
Used for design development, 
they are a mixture of final-grade 
and commercial components 

The strategy involves prototyping assemblies with varying levels of accuracy to validate the mechanics and cooling.
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(48x speed)

Bending procedure

Challenge:  bending of the wafer-size thin silicon sensor without inducing stresses or failure

Half-layer 2  a = 97.8 mmHalf-layer 1  a = 78.3 mm Half-layer 0  a = 58.7 mm

12” Si wafer, 50 µm
65 nm TPSCo CMOS imaging technology,

2
6

6
 m

m

a
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FPC
Wire-bonds

Challenge: is the electrically connection by wire bonds of the curved sensor to the close front end electronics 

Electrical interconnection
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Challenge: optimum glue penetration thickness ( minimum material budget Vs thermal conductivity) in the foam,
 and a smooth surface finishing, avoiding punctual stresses and footprints.

6 mm
Carbon foam 

Glue

Silicon MAPS sensor

Step1 Step2

Carbon foam

Glue penetration ~200 µm

Carbon fleece ~100 µm

2nd Glue deposition ~100 µm

Silicon sensor

Step1 – Smooth surface finish Step 2 – Gluing to Silicon

µCT scan (Voxel =11µm, @CERN EN-MME)

6 mm

Carbon fleece

Carbon foam

Teflon mold

The carbon fleece veil is glued to the carbon foam 
surface in contact with the sensor and cured in a 
Teflon mold for a smooth finish.

Subsequently, the carbon foam is glued to the silicon sensor, 
the glue thickness is 0.1 mm. 
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Challenge: precise machining, positioning and gluing of the carbon foam support  

longeron

Gluing jig

Gluing of the longerons

Longerons
ERG Duocel Carbon (RVC) foam
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Gluing jig

H-rings
A-side half-rings:
 Allcomp K9 SD

C-side half-rings:
ERG Duocel Carbon (RVC) foam

Gluing of the half-rings

Half rings

Challenge: precise machining, positioning and gluing of the carbon foam support  
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Half-layer 0 integration

Half-layer 1 integration

Detector assembly: Half-barrel
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Challenge: minimum material budget achieved by a thin carbon cylindrical exoskeleton for the support to the three half-layers 

H-L2 integration (Gluing deposition, alignment, curing) Half-detector after each half-layer integration

Half-layer 2 integration

Cylindrical structural shell (CYSS)
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An airflow through the carbon foam radiator ring of 8m/sec allows to keep the sensor below 25°C with an air inlet of 20°C 

Experimental results

Dummy chip (heaters)
stack-up

Total thickness 160 um 
(with glue layers)

BBM3

T3

T4

T6

T5 T7

T8

CERN EP-MPT

Prototype

Two zones of different power dissipation: 
Endcap and Active area
Same freestream velocity 𝑣∞ in all layers, 𝑣∞ = 8 m/s
Temperature of the inlet air 𝑇∞ ≈ 20 °C

Surface power dissipation
Left End-cap: 𝑞𝑒 = 1000 mW/cm2 , uniform
Active area: 𝑞𝑎 = 50 mW/cm2 , uniform

Estimates of power consumption (TDR)

L0
L1

L2
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The experimental test results align with the simulation, showing a peak-to-peak displacement of approximately 1.1 µm.

Experimental results

BBM3

Prototype

C-side hole

Confocal sensor

Center holeL2

Confocal chromatic displacement sensor (at 30 kHz)
Freestream velocity 𝑣∞= 8 m/s

Modeling of fluid-structure interaction (FSI):
The procedure includes comprehensive fluidic 
dynamic analysis to evaluate the aerodynamics 
forces induced to the sensor by pressure 
fluctuations, which are utilized as input to finite 
element transient simulations.

𝑣∞ = 8 m/s 

Displacement Vs time
half-layer 2, center hole

Modal analysis H-L2

f1 (492 Hz)

f11 (1055 Hz)

f5 (775 Hz)

Power spectral density of the displacement 
for half-layer 2, v∞ = 8 m/s 

Center holeC-side hole

Displacement: Peak-to-peak ~ 1.1 µm, Root Mean Square < 0.4 μm
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Prototype

Climate chamber
@EP-DT QART lab 

Thermal cycles
10 °C ÷ 50 °C 

Humidity 30-40%

up to 45 °C 

IR camera

Hot-spot testing

Heat gun

• Localized heating to assess the effect of thermal gradient 

Made of final-grade materials 

Thermal cycles

Hot spot
up to 45 °C 

No structural damage in a range of 10÷50°C and thermal peak up to 45 °C . 
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Challenge: integrate power/data lines and cooling ducts in minimum space, use of specific FPC design and 3d printing

Air distributor, 
Polymer 3D printed

Patch-Panel, 
Polymer 3D printed

Longerons, 
Carbon foam

Half- ring, 
Carbon foam

A-side

Half- rings, 
PEEK

C-side

CAD model of Half-layer 0: (left) Exploded view and (right) assembled view. 
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Challenge: handling and precise positioning and integration of layers and services inside the mechanical exoscheleton 

CAD model of Half-layer 0: (left) Exploded view and (right) assembled view. 

A-side

C-side

Half-layer 2

Half-layer 1

Half-layer 0

Power cables from C-side
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The challenge here involves finding space for all the services and making them accessible and removable during assembly
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• Wafer-size thin sensors successfully bent to cylindrical shape to form the detector’s  layer 
• Air-cooling based on carbon foam radiator developed and satisfying thermal and stability requirements
• Layer connected to front end electronics by wire bonding
• Three layers integrated in a half barrel layout
• Service design implemented
• Different models built for the design validation 

• Next: build a final-quality half-barrel (QM) within 2025 to be ready for final detector assembly (FM) in 2026
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