

CEPC vertex Detector

Zhijun Liang, <u>Ying Zhang</u> (On behalf of the CEPC detector group)

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 24th, 2024, The 2024 International Workshop on CEPC

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design including electronics, cooling and mechanics
- Readout electronics & BEC
- Performance from simulation
- Research team and working plan
- Summary

Introduction: vertex detector

- Vertex detector optimized for first 10 years of operation (ZH, low lumi-Z)
 Motivation:
 - Aim to optimize impact parameter resolution and vertexing capability
 - Key detector for $H \rightarrow cc$ and $H \rightarrow gg$ physics, which is an important goal for CEPC

Vertex Requirement

- Inner most layer (b-layer) need to be positioned as close to beam pipe as possible
 - Challenges: b-layer radius (11 mm) is smaller compared with ALICE ITS3 (18 mm)
- High data rate: (especially at Z pole, ~43 MHz)
 - **Challenges**: >1 Gbps per chip high data rate especially at Z pole
- Low material budget (less than 0.15%X₀ per layer)
- Detector Cooling with air cooling (power consumption<= 40 mW/cm²)
- Spatial Resolution (3-5 µm)
- Radiation level (~2.1 Mrad per year in average)

Technology survey and our choices

- Vertex detector Technology selection
 - Baseline: based on curved CMOS MAPS (Inspired by ALICE ITS3 design [1])
 - Advantage: 2~3 times smaller material budget compared to alternative (ladder)
 - Alternative: Ladder design based on CMOS MAPS

R&D status and final goal

Key technology	Status	CEPC Final goal
CMOS chip technology	Full-size chip with TJ 180 nm CIS	TJ <mark>65nm</mark> CIS
Detector integration	Detector prototype with ladder design	Detector with bent silicon design
Spatial resolution	4.9 μm	3-5 μm
Detector cooling	Air cooling with 1% channels (24 chips) on	Air cooling with full power
Bent CMOS silicon	Bent Dummy wafer radius ~12 mm	Bent final wafer with radius ~11 mm
Stitching	11 \times 11cm stitched chip with Xfab 350 nm CIS	65nm CIS stitched sensor

R&D efforts: Full-size TaichuPix3

Full reticle-size CMOS chip developed, 1st engineering run

- 1024×512 Pixel array, Chip Size: 15.9 mm×25.7 mm
- $-25 \mu m \times 25 \mu m$ pixel size with high spatial resolution < 5 μm (@ detection eff. > 99%)
- Process: TowerJazz 180nm CIS process
- Fast data-driven readout (50 ns/pixel) to cope with all operation modes in CDR
 - Dead time < 500 ns, Max. hit rate 36 MHz/cm²

R&D effort: vertex detector prototype

Detector prototype with ladder design

Detector integration

Detector with bent silicon design

R&D efforts and results: vertex detector prototype beam test

R&D efforts curved MAPS

- CEPC b-layer radius (11 mm) smaller compared with ALICE ITS3 (radius=18 mm)
- Feasibility : Mechanical prototype with dummy wafer can curved to a radius of 12 mm
 - The dummy wafer has been thinned to 40 μm

	Status	CEPC Final goal
Bent silicon with radius	Bent Dummy wafer radius ~12mm	Bent final wafer with radius ~11mm

Baseline: bent MAPS

- 4 single layer of bent MAPS + 1 double layer ladder
 - Material budget is much lower than alternative option
- Use single bent MAPS for Inner layer (~0.15 m²)
 - Low material budget 0.06% X₀ per layer
 - Different rotation angle in each layer to reduce dead area

layer	Radius	Material
Layer 1	11mm	0.06% X ₀
Layer 2	16.5mm	0.06% X ₀
Layer 3	22mm	0.06% X ₀
Layer 4	27.5mm	0.06% X ₀
Layer 5/6 (Ladders)	35-40 mm	0.33% X ₀
Total		0.57% X ₀

Long barrel layout (no endcap disk) to cover $\cos \theta <=0.991$

Alternative : CMOS ladder

Alternative: CMOS chips with a long ladder layout

- 3 double-side layer with long ladders design
- We have built a vertex prototype based on the short ladders design
- No effective solution for inner layer cooling yet.

Data rate estimation of vertex detector

VTX Radius(mm)

- Data rate is dominated by background from pair production

- Estimated based on old version of software
- More details in Haoyu's MDI talk on Friday
- WW runs and low Lumi Z runs (20% of high lumi Z)
- Data rate @1.2 Gbps per chip for triggerless readout

Chip design for ref- TDR and power consumption

Power consumption estimation

- Fast data-driven readout for low-lumi Z (~1 Gbps/chip)
- Using 65/55nm CIS technology

Power consumption can reduced to ~40 mW/cm²

- Air cooling feasibility study
 - Baseline layout can be cooled down to ~20 °C

	Matrix	Periphery	DataTrans.	DACs	Total Power	Power density
TaiChuPix3 180 nm chip @ 3.84 Gbps/chip (CDR Higgs, W, Z)	304 mW	135 mW	206 mW	10 mW	655 mW	160 mW/cm ²
Chip in 65 nm for TDR @ 1 Gbps/chip (TDR LowLumi Z)	60 mW	80 mW	36 mW	10 mW	186 mW	~40 mW/cm ²

		₹			
)	•	Pixel Matrix: 25.6 mm × 12.8 mm			
	15.9 mm				
		A(0.03, 2.30)			
		B(0.03, 1.05)			
		Periphery Readout : 25.6 mm × 1.1 mm			
	O(0, 0) D(0.43, 0.57) C(13.52, 0.40)				

14

Ladder Electronics

- Baseline: stitching and RDL metal layer on wafer to replace PCB
- Alternative: flexible PCB
 - Signal, clock, control, power, ground will be handled by control board through FPC

Baseline: ALICE ITS3 like stitching

[1] ALICE ITS3 TDR: https://cds.cern.ch/record/2890181

Alternative: flexible printed circuit (FPC)

Vertex technologies: Cables and services

Limited space in the MDI region for cables and services

- Signal are transmitted through a flexible PCB and then converted to optical fiber.
- Utilizes DC-DC converter to distribute the power.

Performance: impact parameter resolution

Compared to alternative (ladder) option

More details in Poster #67

- baseline (stitching) has significant improvement (~45%) in low momentum case

Research team

IHEP: Joao Costa, et al, 15 faculty, 5 postdoc, 6 students

- CEPC vertex prototype, X-ray camera, ATLAS ITK strip and HGTD upgrade
 IPHC/CNRS: Jerome Baudot (3 faculty)
- Collaboration in framework of FCPPL, BELLE II upgrade
 IFAE: Chip design , Sebastian Grinstein et al (2 faculty)
 - CEPC TaichuPix chip design, ATLAS ITK pixel and HGTD upgrade
- ShanDong U.: Stitching chip design (3 faculty, 1 postdoc, 3 students)
- CCNU: chip design, ladder assembly (3 faculty, 1 postdoc, 5 students)
- Northwestern Polytechnical U. : Chip design (5 faculty, 2 postdoc, 5 students)
- Nanchang U. : chip design, (1 faculty, 1 students)
- Nanjing U.: irradiation study, chip design : (2 faculty, 4 students)
- Total : 36 faculty, 9 postdoc, 26 students

Summary

- ¹st full-size Prototype based the ladder design for CEPC vertex detector has been developed
- The bent MAPS option has been chosen as baseline for the reference detector TDR.
- We active expanding international collaboration and explore synergies with other projects
 - We are members of ECFA DRD3 collaboration (solid state detectors)

CEPC vertex conceptional design (2016)

CEPC vertex prototype (2023)

Summary: working plan

CEPC vertex detector timeline is about 3-4 years after ALICE ITS3 upgrade

- It will benefit from experience from ALICE ITS3 upgrade

	CEPC Final goal	CEPC Expected date	ALICE ITS3 schedule
CMOS chip technology	65nm CIS	2028 Full-size 65nm chip	2025
Spatial resolution	$3-5 \ \mu m$ with final chip	2028	2025
Stitching	65nm CIS stitched sensor	2029	2026 wafer production
Bent silicon with small radius	Bent final wafer with radius ~11mm	2030	2027
Detector cooling	Air cooling with full power	2027: thermal mockup	2027
Detector integration	Detector with bent silicon design	2032	2028

Thank you for your attention!

中國科學院為能物加加完施 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 24th, 2024, The 2024 International Workshop on CEPC