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Introduction: vertex detector
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◼ Vertex detector optimized for first 10 years of operation (ZH, low lumi-Z )

◼ Motivation:

– Aim to optimize impact parameter resolution and vertexing capability

– Key detector for H → cc and H → gg physics, which is an important goal for CEPC



Vertex Requirement
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– Inner most layer (b-layer) need to be positioned as close to beam pipe as possible

• Challenges: b-layer radius (11 mm) is smaller compared with ALICE ITS3 (18 mm)

– High data rate: (especially at Z pole , ~43 MHz)

• Challenges: >1 Gbps per chip high data rate especially at Z pole

– Low material budget ( less than 0.15%X0 per layer)

– Detector Cooling with air cooling (power consumption<= 40 mW/cm2)

– Spatial Resolution (3-5 μm)

– Radiation level (~2.1 Mrad per year in average)



Technology survey and our choices
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◼ Vertex detector Technology selection

– Baseline: based on curved CMOS MAPS (Inspired by ALICE ITS3 design [1] )

• Advantage: 2~3 times smaller material budget compared to alternative (ladder)

– Alternative: Ladder design based on CMOS MAPS

Alternative: ladder based MAPSBaseline: curved MAPSMonolithic active Pixel Sensor (MAPS)

[1] ALICE ITS3 TDR: https://cds.cern.ch/record/2890181



R&D status and final goal
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Key technology Status CEPC Final goal

CMOS chip

technology

Full-size chip with TJ 180 nm CIS TJ 65nm CIS

Detector integration Detector prototype with ladder

design

Detector with bent silicon design

Spatial resolution 4.9 μm 3-5 μm

Detector cooling Air cooling with 1% channels (24

chips) on

Air cooling with full power

Bent CMOS silicon Bent Dummy wafer radius ~12 mm Bent final wafer with radius ~11 mm

Stitching 11×11cm stitched chip with Xfab

350 nm CIS

65nm CIS stitched sensor



◼ Full reticle-size CMOS chip developed, 1st engineering run

– 1024×512 Pixel array,  Chip Size：15.9 mm×25.7 mm 

– 25 μm×25 μm pixel size with high spatial resolution < 5 μm (@ detection eff. > 99%)

– Process: TowerJazz 180nm CIS process

– Fast data-driven readout (50 ns/pixel) to cope with all operation modes in CDR

• Dead time < 500 ns, Max. hit rate 36 MHz/cm2

R&D efforts: Full-size TaichuPix3
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Status CEPC Final goal

CMOS chip technology Full-size chip with TJ 180nm CIS TJ 65nm CIS



R&D effort: vertex detector prototype
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Status CEPC Final goal

Detector integration Detector prototype with ladder design Detector with bent silicon design

TaichuPix-based prototype

detector tested at DESY in

April 2023

Spatial resolution ~ 4.9 mm

6 double-sided ladders 



R&D efforts and results: vertex detector 

prototype beam test 
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Spatial resolution ~5 μm
Hit maps of multiple layers of vertex detector

Beam spot

Status CEPC Final goal

Spatial
resolution

4.9 μm 3-5 μm

Efficiency >99%



R&D efforts curved MAPS
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– CEPC b-layer radius (11 mm) smaller compared with ALICE ITS3 (radius=18 mm)

– Feasibility : Mechanical prototype with dummy wafer can curved to a radius of 12 mm

• The dummy wafer has been thinned to 40 μm

12 mm 14 mm

Status CEPC Final goal

Bent silicon with radius Bent Dummy wafer radius ~12mm Bent final wafer with radius ~11mm



Baseline: bent MAPS
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– 4 single layer of bent MAPS + 1 double layer ladder

• Material budget is much lower than alternative option

– Use single bent MAPS for Inner layer (~0.15 m2)

• Low material budget 0.06% X0 per layer

• Different rotation angle in each layer to reduce dead area

Layer 2

Layer 1Layer 3

layer Radius Material

Layer 1 11mm 0.06% X0

Layer 2 16.5mm 0.06% X0

Layer 3 22mm 0.06% X0

Layer 4 27.5mm 0.06% X0

Layer 5/6
(Ladders)

35-40 mm 0.33% X0

Total 0.57% X0

Layer 4

Long barrel layout (no endcap disk)

to cover cos θ<=0.991

https://baike.baidu.com/item/%CE%B8/119485


Alternative : CMOS ladder

◼ Alternative: CMOS chips with a long ladder layout

– 3 double-side layer with long ladders design

– We have built a vertex prototype based on the short ladders design

– No effective solution for inner layer cooling yet.

layer Radius Material

Layer 1/2 12.5 -18 mm ~0.33% X0

Layer 3/4 28 - 35mm ~0.33% X0

Layer 5/6
(Ladders)

45 - 53mm ~0.33% X0

Total ~1% X0



Data rate estimation of vertex detector
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Hit rate
(MHz/cm2)

Data 
rate@triggerless

(Gbps)

Data rate@trigger
(Gbps)

Higgs 0.61 0.18 <0.01

W 3.16 0.98 <0.01

Low-lumi
Z pole

3.9
1.2 ~0.1
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Hit Rate from Background (Higgs runs)

– Data rate is dominated by background from pair production

• Estimated based on old version of software

• More details in Haoyu’s MDI talk on Friday 

– WW runs and low Lumi Z runs (20% of high lumi Z)

– Data rate @1.2 Gbps per chip for triggerless readout



Chip design for ref- TDR

and power consumption
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◼ Power consumption estimation

– Fast data-driven readout for low-lumi Z (~1 Gbps/chip)

– Using 65/55nm CIS technology

Power consumption can reduced to ~40 mW/cm2

◼ Air cooling feasibility study

– Baseline layout can be cooled down to ~20 ℃

• Based on 3 m/s air speed, estimated by thermal simulation

Matrix Periphery DataTrans. DACs Total Power Power density

TaiChuPix3 180 nm chip
@ 3.84 Gbps/chip 
(CDR Higgs, W, Z)

304 mW 135 mW 206 mW 10 mW 655 mW 160 mW/cm2

Chip in 65 nm for TDR
@ 1 Gbps/chip
(TDR LowLumi Z )

60 mW 80 mW 36 mW 10 mW 186 mW ~40 mW/cm2

25.7 mm

1
5

.9
 m

m

Pixel Matrix: 25.6 mm × 12.8 mm 

Periphery Readout : 25.6 mm × 1.1 mm 
DataTrans: 1.3 mm × 0.6 mmDACs: 1.5 mm × 0.5 mm

O(0, 0)

A(0.03, 2.30)

B(0.03, 1.05)

C(13.52, 0.40)D(0.43, 0.57)



Ladder Electronics
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– Baseline: stitching and RDL metal layer on wafer to replace PCB

– Alternative: flexible PCB

• Signal, clock, control, power, ground will be handled by control board through FPC

Alternative: flexible printed circuit (FPC)Baseline: ALICE ITS3 like stitching

[1] ALICE ITS3 TDR: https://cds.cern.ch/record/2890181



Vertex technologies: Cables and services
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◼ Limited space in the MDI region for cables and services

– Signal are transmitted through a flexible PCB and then converted to optical fiber.

– Utilizes DC-DC converter to distribute the power.

Example from ATLAS HGTD upgrade



Performance: impact parameter resolution
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◼ Compared to alternative (ladder) option

– baseline (stitching) has significant improvement (~45%) in low momentum case 

~45% 

Different rotation angle in each layer
to reduce dead area

~40% 

Barrel regions forward regions

More details in Poster #67



Research team
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◼ IHEP: Joao Costa, et al, 15 faculty, 5 postdoc, 6 students

– CEPC vertex prototype, X-ray camera, ATLAS ITK strip and HGTD upgrade

◼ IPHC/CNRS: Jerome Baudot (3 faculty)

– Collaboration in framework of FCPPL, BELLE II upgrade 

◼ IFAE: Chip design , Sebastian Grinstein et al (2 faculty)

– CEPC TaichuPix chip design, ATLAS ITK pixel and HGTD upgrade

◼ ShanDong U.: Stitching chip design (3 faculty, 1 postdoc, 3 students )

◼ CCNU: chip design, ladder assembly (3 faculty, 1 postdoc, 5 students )

◼ Northwestern Polytechnical U. : Chip design (5 faculty, 2 postdoc, 5 students )

◼ Nanchang U. : chip design, (1 faculty, 1 students)

◼ Nanjing U.: irradiation study, chip design : (2 faculty, 4 students)

◼ Total : 36 faculty, 9 postdoc, 26 students



Summary

19

◼ 1st full-size Prototype based the ladder design for CEPC vertex detector has been developed  

◼ The bent MAPS option has been chosen as baseline for the reference detector TDR.

◼ We active expanding international collaboration and explore synergies with other projects

– We are members of ECFA DRD3 collaboration (solid state detectors)

CEPC vertex conceptional design (2016) CEPC vertex prototype (2023)



◼ CEPC vertex detector timeline is about 3-4 years after ALICE ITS3 upgrade

– It will benefit from experience from ALICE ITS3 upgrade

Summary: working plan
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CEPC Final goal CEPC Expected date ALICE ITS3 schedule

CMOS chip
technology

65nm CIS 2028
Full-size 65nm chip

2025

Spatial resolution 3-5 μm with final chip 2028 2025

Stitching 65nm CIS stitched sensor 2029 2026
wafer production

Bent silicon with
small radius

Bent final wafer with radius
~11mm

2030 2027

Detector cooling Air cooling with full power 2027：thermal mockup 2027

Detector
integration

Detector with bent silicon
design

2032 2028



Thank you for your 
attention!
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