

CEPC Inner Tracker towards Ref-TDR

LI Yiming 李一鸣 on behalf of the CEPC Silicon Inner Tracker team

中國科學院為能物加加統所 Institute of High Energy Physics Chinese Academy of Sciences

24th Oct, 2024, CEPC Workshop @ Hangzhou

- Introduction & requirements
- Technology survey and R&D efforts
- Readout electronics
- Mechanical design
- Performance from simulation
- Workplan and summary

Requirement

Large area silicon tracker: technical challenges

- ~15 m² => cost-effectiveness crucial
- < 10 um spatial resolution required by momentum resolution</p>
- A few ns timing resolution to tag 23ns bunches at Z-pole
- Low material budget (<1% X₀ per layer)
- Moderate power consumption (liquid cooling possible)

Technology Survey – Silicon Pixel

HVCMOS : a promising technology

- Full depletion possible due to large electrode
- Intrinsically radiation hard
- Fast charge collection \rightarrow good time resolution
- Based on commercially available process without modification \rightarrow cost-effective

Towards smaller feature size

- Current HVCMOS chips mostly in 180nm (MuPix, ATLASPix) / 150nm process (MonoPix, RD50-MPW)
- For better performance:
 - Higher circuit density / More functionality in the same area / Less power consumption
- For higher reliability:
 - Current process may be unavailable when mass production begins
- CMOS with small electrode is pushing for 65nm process (mainly driven by ALICE upgrade)

Development in Small Feature-Size HVCMOS

- First attempts to realize HVCMOS in 65nm or less
- SMIC 55nm Low-Leakage process
 - Not HV, yet with a similar deep n-well structure
 - MPW submitted in Oct 2022 in normal wafer
 - COFFEE1 received in Apr 2023
- SMIC 55nm HVCMOS process
 - First HVCMOS sensor in 55nm process
 - MPW submitted in Aug 2023
 - COFFEE2 received in Dec 2023

<u>Yanyan Gao's talk (</u>Thursday) for more R&D status <u>Yang Zhou's talk (</u>Friday) for COFFEE2 design details

HVCMOS (COFFEE2) Chip Test

Circuit test almost ready

- Carrier board fabricated
- Caribou system installed, final firmware debugging

- IV (breakdown at -70 V)
- CV (single pixel ~30-40 fF)
- Leakage current increased from 0.01 nA to ~1 nA after 10¹⁴n_{eq}/cm² radiation
- Laser response observed
- Radioactive source observed

More details & analysis covered in posters of Zhiyu Xiang (#21), Jianpeng Deng (#55) and Leyi Li (#53)

Technology survey – Silicon Strip

Silicon microstrip sensors considered in CDR

- Pitch 50 um in the bending plane
- Wire-bonding would be challenging for smaller pitch
- Silicon strips implemented using CMOS is a promising solution
 - Integration of sensor and FE ASIC => largely simplifying the assembly
 - Aiming for 20 um pitch in the bending plane
 - Cost-effective using commercial CMOS process
- First submission of CMOS Strip Chip (CSC1) being planned
 - 180 nm CMOS process (CSMC, Wuxi Shanghua)

Wire-bonds on ATLAS-ITk strip module (strip pitch 75.5 um)

R&D goal of sensors

	Monolithic HVCMOS pixels	Monolithic CMOS strips
Pixel Size (Strip Pitch Size)	34 μm × 150 μm	20 µm
Sensor size	2 cm × 2 cm (active area: 1.92 cm x 1.74 cm)	2.1 cm × 2.3 cm (active area: 2.05 cm x2.05 cm)
Array size (Strip number)	512 rows × 128 columns 1,024	
Spatial resolution	σ_{ϕ} ~8 μm (bending), σ_z ~40 μm σ ~5 μm	
Timing resolution	~3-5 ns	~3-5 ns
Data size per hit (1 readout)	42 bits (14b BXID, 7b+9b address, 6b TOT, 5b fine TDC, 1 polarity)	32 bits (10b BXID, 10b address, 6b TOT, other 6 bits)
Data rate per sensor	Maximum ~0.1 Gbps* Maximum ~0.2 Gbps* (pair production) (pair production)	
LV / HV	1.2 V / 150 V	1.8 V / 150 V

* Maximum hit rate: ITK barrel~4.1×10⁵ Hz/cm², ITK endcap~7.5×10⁵ Hz/cm², based on preliminary background estimation Beam background study see <u>Zhan Li's poster (#61)</u>

Frontend electronics – HVCMOS

Front-End Readout: ASIC for CMOS strip

Common Electronics

Data transmission: common data platform

Trigger mode: triggerless

CEPC ITK Barrel Design (HVCMOS Pixels)

HVCMOS pixels for CEPC:

- Utilizes 55 nm process
- Wafer resistivity: $1k-2k \Omega \cdot cm$ •
- Chip size: $2 \text{ cm} \times 2 \text{ cm}$
- Array size: 512 rows \times 128 columns
- 34 μm × 150 μm Pixel size: •
- Time resolution: 3-5 ns
- Power consumption: ~200 mW/cm²

Preliminary endcap design using pixels

- Endcap using HVCMOS share as many components as possible with the barrel
 - 3 types of modules, one of which the same as the barrel
 - 516 modules, 6576 chips in total
 - Division into 8 or 4 sections possible

Front-side module

Back-side module

CEPC ITK Endcap Design (CMOS Strips)

• Power consumption: ~80 mW/cm²

Each half endcap is divided into 8 sectors, with each sector consisting of CMOS strip modules. The overlapping areas between the neighboring sectors are designed to be minimal.

CEPC ITK Endcap Design (CMOS Strips)

Two half endcaps are rotated 22.5° relative to each other to form one complete endcap:

22.5° half endcap

The CEPC ITK barrels using pixels is considered for minimal material, while ITK endcaps using strips is optimized for high momentum measurement and particle identification (no TPC).

ITK Mechanical and Cooling Structure

Materials	Thickness (mm)	Radiation Length [% X ₀]
FPC	0.10	0.14
Sensor	0.15	0.18
Carbon fiber×2	0.25	0.10
Graphite×2	0.06	0.03
Others		0.05
Total		0.50

Thickness (mm) Radiation Length [$\% X_0$] Materials FPC 0.10 0.14 Sensor 0.15 0.18 Carbon fiber 0.15 0.06 Graphite 0.03 0.02 Others 0.03 Total 0.43

Mechanical Structure for ITK system

ITK Implementation in CEPCSW

The ITK design has been implemented in the CEPCSW framework, and can be used for full simulation validation

400

200

-200

-400

1200

100

-100

-200

Hitmap in 1 barrel layer generated using 50GeV muon events shows no dead area between neighbouring staves

-200

-100

Xiaojie Jiang's poster (#344) for more details

200 X

Tracker Performance: Momentum Resolution

<u>*Qinglin Geng' poster (#88)</u>* for more details</u>

Working Plan

Experience in Silicon Detector Development

The team has successfully developed several fully functional MAPS:

- JadePix, TaichuPix, CPV, etc
- Major contributions to silicon detector construction, testing, integration, and operation:
 - LHCb Upstream Tracker, AMS L0 upgrade, ATLAS ITK, etc

TaichuPix-3

LHCb UT A-side assembly

AMS L0 ladder production

Summary

- The design of silicon inner tracker in preparation of the CEPC reference detector TDR is proposed, based on R&D of advanced detector technologies
- A lot more development in sensor technology, electronics, mechanics and physics benchmarking expected, for the Ref-TDR and beyond
- Collaboration & your participation welcome

Thank you for your time!