

PID Performance of CEPC ToF and Outer Tracker

Yunyun Fan on behalf of ToF & Outer tracker detector group, fanyy@ihep.ac.cn

中國科學院為能物況為完備 Institute of High Energy Physics Chinese Academy of Sciences

Oct. 25th, 2024, 24th International workshop on CEPC

Introduction and requirement

• CEPC: rich physics programs: Higgs, electroweak physics, flavor physics, QCD/Top

- **Particle identification(PID)** of Gas detector (dE/dx) : insensitive region
 - ✓ 0.5-2 GeV for K/pi separation, 1.5-2.5 GeV for K/p separation
- PID is essential for flavor physics
- Precision timing detector is a matter of urgency (from IAC recommendation). Timing detector is complementary to gas detector

Absolute difference of the average dE/dx for a track vs Momentum

PID Ability with Different Time Resolutions

Monte Carlo(MC) simulation with z-pole samples

k/pi speration power of ToF with different time resolution, L=1.8m

PID with 50 ps Time Resolution

Timing detector is complementary to gas detector: 50 ps could improves the separation ability at the insensitive region of the gas detector

The efficiency and purity w/o ToF

The K± identification performance with ToF

- A significant increase of purity effeciency when with ToF
- Some increase of efficiency
- The worse the dE/dx, the more important the ToF for PID

	Factor	1.	1.2	1.5	2.
dE/dx	ϵ_{K} (%) purity _K (%)	95.97 81.56	94.09 78.17	91.19 71.85	87.09 61.28
dE/dy & TOE	ε_K (%)	98.43	97.41	95.52	92.3
	purity _K (%)	97.89	96.31	93.25	87.33

$$\sigma_{actual} = factor \cdot \sigma_{intrinsic}$$

$D^0 \rightarrow \pi^+ K^-$ reconstruction with z-pole samples

■ $D^0 \rightarrow \pi^+ K^-$ reconstruction with z-pole samples

	$\epsilon~(\%)$	p (%)
$ mass - mass_{D0} < 0.01 \mathrm{GeV/c^2}$	90.39 ± 0.24	2.16 ± 0.07
$\rm{IMP}>0.02\rm{mm^2}$	79.12 ± 0.21	5.04 ± 0.11
vertex fitted $\chi^2 < 5.15$	72.62 ± 0.23	15.36 ± 0.18
dis of vertex to $\mathrm{IP} > 0.305\mathrm{mm}$	69.24 ± 0.24	28.41 ± 0.23
PID	68.19 ± 0.24	89.05 ± 0.16

Technology survey and our choices

LGAD (Low-Gain Avalanche Diode)

Segmented gain layer

- The read-out electronics is connected to n++ layer
- Time resolution ~ 30ps
- Position resolution: pixel size/ $\sqrt{12}$
- Radiation hardness: 10¹⁵~10¹⁶n_{eq}/cm²

AC-LGAD (AC-coupled LGAD)

Continuous gain layer

Less dead area, higher spatial resolution

- Metal AC-pads separated from the n+ layer by a thin dielectric (Si₃N₄, SiO₂)
- Time resolution \sim 30ps
- Position resolution: 5 \sim 10 um

AC-LGAD Based ToF & Outer Tracker for CEPC

Develop AC-LGAD strip silicon sensor for outer tracker

- timing resolution 50 ps
- spatial resolution better than 10 µm (Bending direction)
- Between TPC and ECAL, R (400 mm 1800 mm) , L (5800 mm)

Reference TDR of CEPC

Electronics for ToF & Outer Tracker

Four parts: Readout ASICs, Data aggregation, Data Link, BEE

- Provide LV and HV for module independently ٠
- Primary Aggregation adapts Data rate between ASIC and Data Link ٠
- Flex between Primary and secondary ٠

٠

Design of the OTK with the strip AC-LGAD: Barrel

Mechanical Design for LGAD ToF & OTK

- Overlap staves for the barrel with detailed electronics design, cooling and installation
 - Sepcial support design to allow precise alignment of the AC-LGAD sensors
 - Extra space for cables
 - Cooling pipes

Endcap Design for ToF & OTK

CEPCSW Progress for ToF&out tracker

Got the geometry of barrel and endcap into CEPCSW

- Good for full simulation and future physics performance study
- Estimated the maximum occupancy: 0.35% at z pole, OK

Details in Dian Yu's poster

R&D Team

- International cooperation experiences: ATLAS China team played a leading role in HGTD
 - Joao (IHEP) is re-elected as Project leader (2021-2025), L1 manager
 - 4 Level-2 conveners (Module, Sensor, Electronics, Risk, Simulation)
 - 3 Level-3 conveners (PEB, high-voltage, module flex)

Summary and Working plan

- PID: ToF with 50 ps is complementary to gas detector (dE/dx) , which could improve the PID ability and essential for the flavor physics
- Designed an AC-LGAD based detector as ToF + Outer Traker for CEPC
 - 50 ps time resolution and 10 µm spatial resolution (4D detector)
 - aim to design **70 mm** long strip AC-LGAD with **100 μm** pitch
 - cover the barrel and endcap region: $\sim 90 \text{ m}^2$

Working plan for ToF & Outer Tracker

- Optimized the barrel and endcap design
- High precision electronics optimization, such as the power consumption
- Design and Optimize the cooling system (cooling pipe et. al.)
- Physics performance study
- A lot to be done...

Welcome to join us!

Thank you for your attention!

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

Backup

Table 2

The	branching	ratio	and	the	number	of	simulated
even	ts of the Z-	pole s	ampl	es.			

Process	В	Sample used
$Z \rightarrow u\overline{u}$	11.17%	
$Z \rightarrow d\overline{d}$	15.84%	
$Z \rightarrow s\overline{s}$	15.84%	6.313×10^{6}
$Z \rightarrow c \overline{c}$	12.03%	
$Z ightarrow b\overline{b}$	15.12%	

intrinsic dE/dx resolution

The dE/dx resolution could reach 2.5% in the barrel region with particle's energy ranges from 0.1 GeV to 100 GeV.

PID performance on Z-pole samples

 K^{\pm} identification

The 4th Concept Yoke + **Ref-TDR is based on** SC Magnet Muon (PS+SiPM) this configuration (3T/2T)**PFA HCAL** (Scintillation Glass) LumiCal Crystal PFA ECAL (Transverse bar) OTK (AC-LGAD) TPC Vertex (Pixelated readout) (MAPS SiPixel) ITK (MAPS SiPixel) 21 2

Mechanism: Optimization of the Barrel Design

Three arrangement of the ladder

G1: $\Delta R = 55.4 \text{ mm}$ (**The Best arrangement**)

The best option:

- minimum space required in R direction ΔR = 55.4 mm
- Sensors toward outside direction (update recently)

Sensor and electronics:

thickness 13.8 mm

Silicon Tracker Common Electronics

Data transmission: common data platform

Trigger mode: triggerless

_3

0.8 10⁻¹

1

10

p (GeV/c)

10²

