

Testing Bell Inequalities and Probing 3 Quantum Entanglemen

Youpeng Wu, Alim Ruzi, Andrew Micheal Levin, Qiang I

October 24, 2024

Based on arXiv:2410 by JHEP)

Main Contents

44444 <u>uma mm</u> muntan *<u><u>unelle</u>* mars</u>

01 Theory and Methods ($H \rightarrow ZZ$ **)**

- Ø Density Matric Formalism
	- \triangleright Reference Frame
- \triangleright Bell Inequality

02 Numerical Simulation

- \triangleright CEPC results (main)
- \triangleright Muon collider results

03 Summary and Outlook

Peking University

Theory and Methods

Entanglement in QM

- Qubit = two-level quantum system $|0\rangle$, $|1\rangle$: most simple quantum system
- Two qubits: the most simple example of quantum correlations.
- l A quantum state of two subsystems A and B is separable when its density matrix:

$$
\rho = \sum\nolimits_i p_i \rho_A^i \otimes \rho_B^i
$$

- \bullet Non-separability of a quantum state = entanglement.
	- entangled states cannot be described by independent superpositions.
	- measuring particle spin in an entangled system immediately reveals the spin state of the second particle even when casually separated.

Affected

Entanglement in HEP: Several experimental tests carried out since 1972

- mostly with electrons and photons at low energy
- Interest in repeating these tests with massive systems at high energy.

The Nobel Prize in Physics 2022

Alain Aspect Prize share: 1/3

John F. Clauser Prize share: 1/3

Anton Zeilinger Prize share: 1/3

The Nobel Prize in Physics 2022 was awarded jointly to Alain Aspect, John F. Clauser and Anton Zeilinger "for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science"

Observed

"here"

"over there"

Theory and Methods (Highlights)

Entanglement at the LHC

- LHC can provide a unique TeV environment to study entanglement and [violation of Bell's inequa](https://cds.cern.ch/record/2900633)lities:
	- \bullet simplest qubits at LHC: $t\tilde{t}$.
- \bullet First observation of entanglement in $t\tilde{t}$ by ATLAS at 2023. [https://doi.org/10.1038/s41586-024-07824-z]
- The first observation at CMS a few months ago in the dilepton events. [https://doi.org/10.48550/arXiv.2406.03976].
- Recently first observation in lepton+jets events by CMS first time with casually separated top quarks at high $m_{\tilde{t}}$.

[CMS-PAS-TOP-23-007]

Theory and Methods------Density Matrix

 \triangleright The polarization density matrix(PDM) can be reconstructed from

the angular distributions of the decay products:

 $\rho = |\Psi_{ZZ}\rangle \langle \Psi_{ZZ}| = |\Phi\rangle \langle \Phi|$

$$
|\Phi\rangle = \sum c_{ij} |ij\rangle \rightarrow \sum \mathcal{M}(\lambda_1, \lambda_2) |\lambda_1, \lambda_2\rangle
$$

 Ψ _z has three polarization states: +1, 0, -1

 \triangleright Parametrization from using the irreducible tensor operators:

$$
\rho = \frac{1}{9} \left[\mathbb{1}_3 \otimes \mathbb{1}_3 + A_{LM}^1 T_M^L \otimes \mathbb{1}_3 + A_{LM}^2 \mathbb{1}_3 \otimes T_M^L + C_{L_1M_1L_2M_2} T_{M_1}^{L_1} \otimes T_{M_2}^{L_2} \right]
$$

$$
\frac{1}{\sigma} \frac{d\sigma}{d\Omega_{+} d\Omega_{-}} = \left(\frac{3}{4\pi}\right)^{2} \text{Tr}\left[\rho_{V_{1}V_{2}}\left(\Gamma_{1} \otimes \Gamma_{2}\right)\right]
$$

Production
Preduction **Decay**

All coefficients → **Quantum Tomography**

- \blacksquare No direct spin measurements: inferred by angular distributions.
- Both the state before decay $&$ the final state decay products inherit the SAME quantum information.

Theory and Methods------Density Matrix

 \triangleright The decaying density matrix:

$$
\Gamma(\theta,\phi) = \frac{1}{4} \begin{pmatrix} 1 + \cos^2 \theta - 2\eta_{\ell} \cos \theta & \frac{1}{\sqrt{2}} (\sin 2\theta - 2\eta_{\ell} \sin \theta) e^{i\phi} & (1 - \cos^2 \theta) e^{i2\phi} \\ \frac{1}{\sqrt{2}} (\sin 2\theta - 2\eta_{\ell} \sin \theta) e^{-i\phi} & 2 \sin^2 \theta & -\frac{1}{\sqrt{2}} (\sin 2\theta + 2\eta_{\ell} \sin \theta) e^{i\phi} \\ (1 - \cos^2 \theta) e^{-i2\phi} & -\frac{1}{\sqrt{2}} (\sin 2\theta + 2\eta_{\ell} \sin \theta) e^{-i\phi} & 1 + \cos^2 \theta - 2\eta_{\ell} \cos \theta \end{pmatrix}
$$

 \triangleright The density matrix:

$$
\rho = \begin{bmatrix}\n0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{6}(\sqrt{2}A_{2,0}^1 + 2) & 0 & \frac{1}{3}C_{2,1,2,-1} & 0 & \frac{1}{3}C_{2,2,2,-2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3}C_{2,1,2,-1} & 0 & \frac{1}{3}(1-\sqrt{2}A_{2,0}^1) & 0 & \frac{1}{3}C_{2,1,2,-1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3}C_{2,2,2,-2} & 0 & \frac{1}{3}C_{2,1,2,-1} & 0 & \frac{1}{6}(\sqrt{2}A_{2,0}^1 + 2) & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\n\end{bmatrix}
$$

 \triangleright The coefficients can be expressed using the differential cross section making use of the orthogonal property of the spherical harmonics:

$$
\int \frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2} Y_L^M(\Omega_j) d\Omega_j = \frac{B_L}{4\pi} A_{LM}^j, \qquad j = 1, 2;
$$

$$
\int \frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2} Y_{L_1}^{M_1}(\Omega_1) Y_{L_2}^{M_2}(\Omega_1) d\Omega_1 d\Omega_2 = \frac{B_{L_1} B_{L_2}}{4\pi} C_{L_1 M_1 L_2 M_2}.
$$

Theory and Methods------Reference Frame

In two spin-1 massive bosons' system:

 \triangleright The z-axis is the direction of the on-shell Z boson's 3-momentum.

 \triangleright The \hat{x} axis is in the production plane: \hat{x} = sign(cos $\theta) (\hat p_p - cos \theta \hat z)$

 \triangleright The $\hat{y} = \hat{z} \times \hat{x}$

- \triangleright I_z is the polarization operator.
- \triangleright The eigenstates of J_z is the basis of the spin space.

Two Lorentz Transformation:

- \triangleright Higgs rest frame \rightarrow determine Z axis
- \triangleright Z boson rest frame(boost along Z vector)

$$
\rightarrow
$$
 lepton's polar angles

Obtain : (θ_1, φ_1) in Z_1 rest frame, (θ_2, φ_2) in Z_2 rest frame. The coefficients can A^I_{LM} and $C_{L_1M_1L_2M_2}$ can be calculated

 $\rho = \frac{1}{9} \left[\mathbb{1}_3 \otimes \mathbb{1}_3 + A_{LM}^1 T_M^L \otimes \mathbb{1}_3 + A_{LM}^2 \mathbb{1}_3 \otimes T_M^L + C_{L_1M_1L_2M_2} T_{M_1}^{L_1} \otimes T_{M_2}^{L_2} \right]$

 $\frac{\hat{p}_j(p_p \cos \theta)}{\sin \theta}, \hat{p}_p = (0,0,1)$

Ruobing 7/18 October 24, 2024

Theory and Methods------Bell Inequalities

 \triangleright The most original form of Bell inequalities (Clauser-Horne-Shimony-Holt Inequality): $P(A_1B_1|AB,\lambda) = P(A_1|A,\lambda)P(B_1|B,\lambda)$

Classical local hidden variable theory: $I_3 = \langle O_{Bell} \rangle = Tr{\rho O_{Bell}} \leq 2$

: Polarization density matrix (PDM)

 \triangleright More general form (Collins-Gisin-Linden-Massar-Popescu Inequality):

$$
\mathcal{I}_d = \sum_{k=0}^{[d/2]-1} (1 - \frac{2k}{d-1}) \{+[P(A_1 = B_1 + k) + P(B_1 = A_2 + k + 1) + P(A_2 = B_2 + k) \\ + P(B_2 = A_1 + k) - [P(A_1 = B_1 - k - 1) + P(B_1 = A_2 - k) \\ + P(A_2 = B_2 - k - 1) + P(B_2 = A_1 - k - 1)]\}
$$

3-dimensional form:

$$
\mathcal{I}_3 = P(A_1 = B_1) + P(B_1 = A_2 + 1) + P(A_2 = B_2) + P(B_2 = A_1)
$$

-
$$
[P(A_1 = B_1 - 1) + P(B_1 = A_2) + P(A_2 = B_2 - 1) + P(B_2 = A_1 - 1)].
$$

- Bell operator can be written as:
 $B = \int_{3\sqrt{3}}^{2} (T_1^1 \otimes T_1^1 T_0^1 \otimes T_0^1 + T_1^1 \otimes T_{-1}^1) + \frac{1}{12} (T_2^2 \otimes T_2^2 + T_2^2 \otimes T_{-2}^2)$ $+\frac{1}{2\sqrt{6}}\left(T_2^2\otimes T_0^2+T_0^2\otimes T_2^2\right)-\frac{1}{3}(T_1^2\otimes T_1^2+T_1^2\otimes T_{-1}^2)+\frac{1}{4}T_0^2\otimes T_0^2\bigg]+{\rm h.c.}.$
- \triangleright Bell inequality expectation value can be calculated:

$$
\boxed{\mathcal{I}_3 = \frac{1}{36} \left(18 + 16 \sqrt{3} - \sqrt{2} \left(9 - 8 \sqrt{3}\right) A_{2,0}^1 - 8 \left(3 + 2 \sqrt{3}\right) C_{2,1,2,-1} + 6 C_{2,2,2,-2}\right)}
$$

Circular Electron–Positron Collider(CEPC)

 $IP₁$

- \triangleright Lepton collider has a much cleaner backgrounds and simpler final states than the Hadron collider.
- \triangleright Such a Higgs factory can also be a factory for top, Z, and W.
- \triangleright CEPC can be upgraded to a ~100 TeV pp collider in the future (SppC).
- **Three processes to generate Higgs boson at CEPC:**
- Higgsstrahlung, WW fusion, ZZ fusion

Numerical Simulation

In our analysis:

The signal process:

 $e^+e^- \rightarrow ZH$, $H \rightarrow ZZ^*(Z^*$: off – shell Z boson)

Backgrounds for this process:

 \triangleright $e^+e^- \rightarrow ZZ$

 \triangleright $e^+e^- \rightarrow ZZZ$

 \triangleright $e^+e^- \rightarrow \ell^+\ell^-H$

- \triangleright This process is the main dominant to generate Higgs at $\sqrt{s} = 250$ GeV.
- \triangleright Consider two channels depending on the Z boson decay.
- \triangleright Both semi-leptonic and pure-leptonic channels are not complicated to analyze.
- \triangleright Through the four leptons (θ, φ) to calculate I_3 and coefficients

The results of the simulation

Ø **Both signal and backgrounds are simulated with MadGraph5_aMC@NLO**

Ø **Showered and hadronized by Pythia8**

 \triangleright Use D_{ELPHES} version 3.0 to simulate the detector effects with

Two final states:

The pure-leptonic state channel:

$$
e^+e^-\to ZH, (H\to Z\ \ell^+\ell^-, Z\to \ell^+\ell^-), Z\to \nu_\ell\tilde{\nu}_\ell
$$

The semi-leptonic state channel:

$$
e^+e^- \rightarrow ZH
$$
, $(H \rightarrow Z \ell^+ \ell^-$, $Z \rightarrow \ell^+ \ell^-$), $Z \rightarrow jj$

100

The distributions of variables:

The invariant mass of four leptons in the final states:

The signal can be separated from backgrounds easily, so we can only use the signal to calculate I_3 and coefficients: C_{212-1} , C_{222-2} .

Semi-leptonic channel Pure-leptonic channel

 \triangleright If $I_3 \geq 2$: the existence of the violation

of Bell inequality.

▶ If C_{212-1} , $C_{222-2} \neq 0$: the existence of

quantum entanglement.

Ruobing 12/18 October 24, 2024

Final results

- \triangleright Consider the Luminosity: $\mathcal{L} = 50ab^{-1}$.
- \triangleright set a series of pseudo-experiments according to the expected number of events.
- \triangleright Set four different lower mass limits: $M_{Z*} \in [0, 10, 20, 30]$ GeV.

The semi-leptonic channel

The pure-leptonic channel

Numerical Simulation------Muon Collider

Based on arXiv:2408.05429 (accepted by JHEP)

- Ø **muon–muon collisions are cleaner than proton-proton collisions and thus can lead to higher effective c.m. energy.**
- Ø **muon collider could be much smaller and cheaper than a functionally equivalent proton collider.**
- Ø **massive muons emit much less synchrotron radiation than electrons.**

VBS p

 μ^+

 μ^-

 μ

 2.2

Ruobing 14/18 October 24, 2024 Contract 24, 2024 Contract 24, 2024 Contract 24, 2024 Contract 24, 2024

Numerical Simulation------Muon Collider

Final results

- \triangleright Consider the Luminosity: $\mathcal{L} = 30ab^{-1}$.
- \triangleright Set a series of pseudo-experiments according to the expected number of events.
- \triangleright Set three collision energy experiments: \sqrt{s} ∈ $\left[1, 3, 10\right]$ TeV, four different lower mass limits: $M_{Z*} \in [0, 10, 20, 30]$ GeV.
	- \triangleright The quantum entanglement can be probed with a significance of around 4σ.
	- \triangleright The violation of the Bell inequality can be tested up to 2σ level.

- We have finished a complete simulation analysis about Testing Bell Inequalities and Probing Quantum **Entanglement through** $H \rightarrow ZZ$ **at CEPC.**
	- \checkmark Consider two final states and corresponding backgrounds.
	- \checkmark Obtain variable distributions to determine using signal to calculate I_3 and coefficients: C_{212-1} , C_{222-2} .
	- \checkmark The quantum entanglement can be measured with a significance up to 2σ in the semi-leptonic signal channel and 1σ in the pure-leptonic signal channel.
	- \checkmark The significance of the Bell inequality violation can be probed up to 1σ in semi-leptonic channel.
- In the future, more work about testing Bell inequalities and probing quantum entanglement at CEPC: $H \rightarrow W^+W^-$

Thanks for your attention!

Back-up

The detectors can't measure the spin:

No direct spin measurement: inferred by angular distributions

- \triangleright while momenta (exp observables) is \cdot possible to construct LHVT (Local Hidden Variables Theory) to mimic all observables
- \triangleright ECAL is not able to measure photon spin; a new dedicated ECAL in the future may.
- \triangleright Testing BI to test QM's consistently
- \triangleright It is not to test QM fundamentals, however, instead, one can do **Quantum Tomography** @ collider

The significance is not high:

- \triangleright It's a new topic in collider physics; we will do more research in CEPC. QE is a new idea which provides a new variables to collider physics.
- \triangleright Calculate Quantum behaviors, get Quantum information...
- \triangleright BSM may affect production or decay.
- \triangleright Higher energy of CEPC,,,,,,in SppC

