

New Physics "right off the Z-pole" at Future Lepton Colliders

ArXiv: 2410.17605: In Collaboration with Shaofeng Ge, Michael J. Ramsey-Musolf, Jia Zhou

Table of Contents

- 1. Off the Z Pole: Observables
- 2. The 4-fermion Operators
- 3. Experimental Availability
- 4. 10^{-6} Uncertainties?
- 5. Projected Sensitivity

D. Choudhury et. Al (2001)

Off the Z-Pole

- Precision Measurements
 Future lepton colliders offer
 opportunity for precise
 measurements of the Z lineshape.
- Interference Contribution
 As the SM $Z \gamma$ interference
 contribution, shows linearly right
 off the Z pole scale.
- Probing New Physics

 Line-shape scan from a "humongous" right-off-the *Z* pole data can be utilized for searching possible NP contribution of interference type.

ZQ, Fady Bishara (2023)

Off the Z-Pole: Observables

The Set of 4-fermion Operators

Han and W. Skiba (2005)

$\mu^+\mu^-$	$\mid qar{q}$
$\mathcal{O}_{LL}^s \equiv \frac{1}{2}(\bar{L}\gamma^{\mu}L)(\bar{L}\gamma_{\mu}L)$	$\mathcal{O}_{LQ}^s \equiv (\bar{L}\gamma^{\mu}L)(\bar{Q}\gamma_{\mu}Q)$
$\mathcal{O}^t_{LL} = rac{1}{2} \left(ar{L} \gamma^\mu \sigma^a L ight) \left(ar{L} \gamma_\mu \sigma^a L ight)$	$\mathcal{O}_{LQ}^{t} = \left(\bar{L}\gamma^{\mu}\sigma^{a}L\right)\left(\bar{Q}\gamma_{\mu}\sigma^{a}Q\right)$
$\mathcal{O}_{L\ell} = \left(ar{L}\gamma^{\mu}L ight)\left(ar{\ell}\gamma_{\mu}\ell ight)$	$igg {\cal O}_{Q\ell} = \left(ar Q \gamma^\mu Q ight) \left(ar \ell \gamma_\mu \ell ight)$
$\mathcal{O}_{\ell\ell} = rac{1}{2} \left(ar{\ell} \gamma^{\mu} \ell ight) \left(ar{\ell} \gamma_{\mu} \ell ight)$	$\mathcal{O}_{Lu} = \left(\bar{L}\gamma^{\mu}L\right)\left(\bar{q}_{u}\gamma_{\mu}q_{u}\right)$
	$\mathcal{O}_{Ld} = \left(\bar{L}\gamma^{\mu}L\right)\left(\bar{q}_d\gamma_{\mu}q_d\right)$
	$\mathcal{O}_{\ell u} = \left(\bar{\ell}\gamma^{\mu}\ell\right)(\bar{q}_{u}\gamma_{\mu}q_{u})$
	$\mathcal{O}_{\ell d} = \left(\bar{\ell}\gamma^{\mu}\ell\right)\left(\bar{q}_{d}\gamma_{\mu}q_{d}\right)$

The dimension-6 four-fermion operators that interfere with the SM contributions to the $ee \rightarrow ff$ processes.

Future lepton colliders: Z-pole options

Experiment	$m{Z}$ -pole Int. Lumi. (pb^{-1})		# of Z 's produced
LEP-I + SLC Legacy	160 +20		~ 10 ⁷
ILC-GigaZ	10 ⁵	$(100 fb^{-1})$	~ 4×10 ⁹
CEPC	108	$(100 \ ab^{-1})$	~ 4×10 ¹²
FCC-ee	1.5×10 ⁸	$(150 \ ab^{-1})$	$\sim 5 \times 10^{12}$

Taking CEPC as a blueprint: (Proposed Integrated Luminosity and Main Uncertainties)

						$\delta L/L~(\%)$	0.005
$\sqrt{s} \; (\mathrm{GeV})$	87.9	90.2	91.2	92.2	94.3	$\delta\sqrt{s} \; ({\rm MeV})$	0.1
Luminosity (ab^{-1})	1	1	100	1	1	δP ol $/Pol$ (%)	<1%

10^{-6} Uncertainties?

Statistical Uncertainties

Decrease significantly with these future large samples of Z pole data $1/\sqrt{N}$. ($\sim 10^{-6}$)

Theoretical Uncertainties

- higher-order corrections
- (input) parametric uncertainty
- modeling of hadronic final states

Experimental Uncertainties

- Luminosity/flux
- beam energy calibration
- Polarization
- background processes

Correlation Pattern	$\delta N_{\pm} \text{ (stat)}$	$\delta N_{\pm}(\mathrm{para})$	$\delta N_{\pm}({ m higher})$	$\delta N_{\pm}(\delta L)$	$\delta N_{\pm}(\delta\sqrt{s})$	$\delta N_{\pm} \text{ (Pol)}$
A_{σ}	×	✓	✓	×	×	
$A_{ m FB}$	×	\checkmark	\checkmark		\checkmark	
$A_{ m pol}$	×	\checkmark	\checkmark	×	×	×

$$\delta A^2 \equiv \frac{4N_-^2(\delta N_+)^2}{(N_+ - N_-)^4} + \frac{4N_+^2(\delta N_-)^2}{(N_+ - N_-)^4}, \qquad \delta N_\pm \equiv \frac{\partial N_\pm}{\partial X_\pm} \delta X_\pm, \qquad \qquad \delta A = \frac{\partial A}{\partial X} \delta X = \frac{2\,\delta X}{(N_+ - N_-)^2} \left(N_- \frac{\partial N_+}{\partial X} + N_+ \frac{\partial N_-}{\partial X}\right)$$

Input Parameter (/Parametric) Uncertainties

	Current	CEPC	Improvement*
δM_Z	2.1 MeV	0.1 MeV	Z-pole scan
$\delta \alpha_s(M_Z)/\alpha_s(M_Z)$	~0.76%	~0.13%	Z hadronic decay
$\delta \alpha_{EM}(M_Z) / \alpha_{EM}(M_Z)$	~ 10 ⁻⁴	~ 5 * 10 ⁻⁵	Low c.o.m <i>ee</i> collision data; Z-pole scan
δM_t	δM_t 300 MeV 25 MeV		$tar{t}$ threshold scan
δM_h	δM_h 170 MeV ~5 MeV		Zh Higgs factory
Overall Effect	$\delta(M_Z) > 10^{-4} @ A_\sigma \ \delta\alpha(M_Z) > 10^{-4} @ A_{FB,Pol}$	$\delta(M_Z) > 10^{-5} @ A_{\sigma}$ $\delta\alpha(M_Z) > few \ 10^{-5} @ A_{FB,Pol}$	

Input Parameter (/Parametric) Uncertainties

Uncertainties for Cross section Asymmetry A_{σ}

Uncertainties reaching $O(10^{-4})$

- Theory Uncertainty: Missing higher Order $\mathcal{O}(\alpha^3, \alpha^2 \alpha^s)$ __1,2
- Theory Uncertainty: Input Parameter (δM_Z)
- Experimental Uncertainty: Luminosity and Energy
- \diamond Statistical Uncertainty: rises with decrease of σ (negligible)

- 1. Theory Uncertainty estimated with a relative 10^{-4} uncorrelated uncertainty on the \pm cross sections
- 2. A. Freitas, "Theory Needs for Future e+e- Colliders," Acta Phys. Polon. B 52 no. 8, (2021) 929–946.

Uncertainties for Cross section Asymmetry A_{FB} , A_{Pol}

$\sim \mathcal{O}(10^{-4})$

- Parametric ($\delta \alpha_{EM}$)
- Missing Higher Order
- Statistics : $\mathcal{O}(\text{few } 10^{-5})$

$\sim \mathcal{O}(10^{-4})$

- Parametric $(\delta \alpha_{EM}) : \mathcal{O}(10^{-4})$
- Higher Order $(\alpha^3, \alpha^2 \alpha^s)$: $\mathcal{O}(10^{-5})$
- 3 Experimentals: $\mathcal{O}(\text{few }10^{-5})$

Signal-Uncertainty Ratio

Representative Benchmark O_{tLQ} ($\Lambda_{NP}=20$ TeV)

Offset $\Delta = \pm 3$ GeV taken as decent choice, could extend further.

Projected Sensitivity

- A_{FB} reaches overall better bounds
- A_{σ} reaches with overall biggest bounds before experimental error (lumi)
- A_{FB} has controlled Experimental Uncertainty and best reach before theory
- A_{Pol} gives minor improvement

Combined Sensitivity and Last Slide

Thank you for listening!

- Off-Z-pole asymmetry signals alone
 reach 10 ~ 30 TeV for the 4f-operators.
- Sensitivities reduced significantly by theory uncertainties.
- Complementary bounds from higher c.o.m data considering all realistic uncertainties will be interesting for further comparison and discussed.

More Information on the $ee \rightarrow \mu\mu$ observable

More Information on the $ee \rightarrow \mu\mu$ observable

