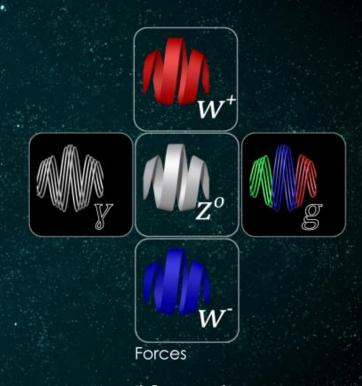
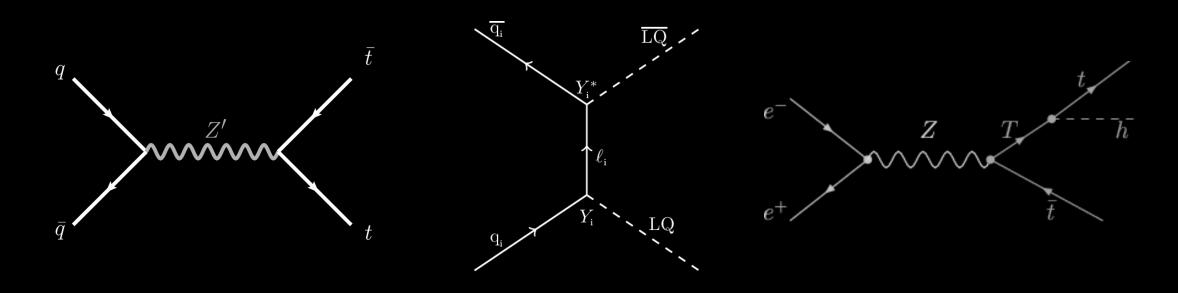
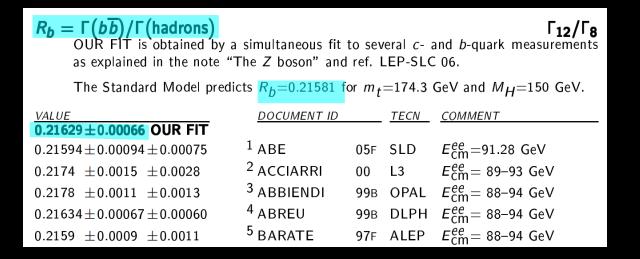

Prospects for constraining lightquark electroweak couplings at e^+e^- colliders

Krzysztof Mękała


DESY, Hamburg, Germany
Faculty of Physics, University of Warsaw, Poland

based on work in collaboration with D. Jeans, J. Reuter, J. Tian, A.F. Żarnecki




A nice picture but it is not "self-explanatory": it contains many free parameters.

Measuring precision observables allows to constrain the SM parameters but also to search for New Physics.

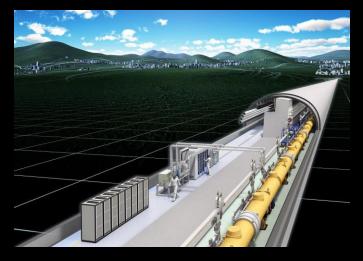
Z decays to hadrons are constrained from LEP and SLC...

Review of Particle Physics, PDG, 2022

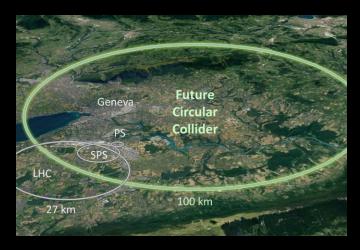
 $R_c = \Gamma(c\overline{c})/\Gamma(\text{hadrons})$ OUR FIT is obtained by a simultaneous fit to several c- and b-quark measurements

as explained in the note "The Z boson" and ref. LEP-SLC 06.

The Standard Model predicts $R_c = 0.1723$ for $m_t = 174.3$ GeV and $M_H = 150$ GeV.


			-	
VALUE	DOCUMENT ID		TECN	COMMENT
0.1721 ± 0.0030 OUR FIT				
$0.1744 \pm 0.0031 \pm 0.0021$	1 ABE	05F	SLD	<i>E</i> ^{ee} _{Cm} =91.28 GeV
$0.1665 \pm 0.0051 \pm 0.0081$				<i>E</i> ^{ee} _{cm} = 88–94 GeV
0.1698 ± 0.0069	³ BARATE	00 B	ALEP	<i>E</i> ^{ee} _{Cm} = 88−94 GeV
$0.180 \pm 0.011 \pm 0.013$	⁴ ACKERSTAFF	98E	OPAL	<i>E</i> ^{ee} _{Cm} = 88−94 GeV
$0.167\ \pm0.011\ \pm0.012$	⁵ ALEXANDER	96 R	OPAL	<i>E</i> ^{ee} _{cm} = 88−94 GeV

$\Gamma((u\overline{u}+c\overline{c})/2)/\Gamma(\text{hadrons})$


This quantity is the branching ratio of $Z \to$ "up-type" quarks to $Z \to$ hadrons. Except ACKERSTAFF 97T the values of $Z \to$ "up-type" and $Z \to$ "down-type" branchings are extracted from measurements of $\Gamma(\text{hadrons})$, and $\Gamma(Z \to \gamma + \text{jets})$ where γ is a high-energy (>5 or 7 GeV) isolated photon. As the experiments use different procedures and slightly different values of M_Z , $\Gamma(\text{hadrons})$ and α_S in their extraction procedures, our average has to be taken with caution.

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
0.166±0.009 OUR AVERAGE				
$0.172 {}^{+ 0.011}_{- 0.010}$	¹ ABBIENDI	04E	OPAL	$E_{CM}^{\mathit{ee}} = 91.2 \; GeV$
$0.160 \pm 0.019 \pm 0.019$	² ACKERSTAFF	97⊤	OPAL	<i>E</i> ^{ee} cm = 88−94 GeV
$0.137 ^{igoplus 0.038}_{-0.054}$	³ ABREU	95X	DLPH	<i>E</i> ^{ee} _{cm} = 88−94 GeV
0.137 ± 0.033	⁴ ADRIANI	93	L3	<i>E</i> ^{<i>ee</i>} _{CM} = 91.2 GeV

Future e^+e^- colliders operating at the Z-pole would be a perfect place to study the couplings.

ILC CEPC FCC-ee

Source	$e^-e^+ ightarrow c\bar{c}$				$e^-e^+ \to b\bar{b}$			
	$P_{e^-e^+}(-0.8,+0.3)$ $P_{e^-e^+}(+0.8,-0.3)$		0.8, -0.3)	$P_{e^{-}e^{+}}(-0)$	0.8, +0.3)	$P_{e^{-}e^{+}}(+0.8,-0.3)$		
	R_c	$A_{FB}^{car{c}}$	R_c	$A_{FB}^{car{c}}$	R_b	$A_{FB}^{bar{b}}$	R_b	$A_{FB}^{bar{b}}$
Statistics	0.18%	0.38%	0.27%	0.52%	0.12%	0.24%	0.23%	0.70%
Preselection eff.	<0.01%	0.12%	0.02%	0.16%	<0.01%	0.08%	0.06%	0.12%
Background	0.01%	0.01%	0.02%	0.02%	0.01%	0.01%	0.06%	<0.01%
heavy quark mistag	0.11%	<0.01%	0.06%	<0.01%	0.12%	<0.01%	0.22%	<0.01%
uds mistag	0.03%	<0.01%	0.02%	<0.01%	0.08%	<0.01%	0.14%	<0.01%
Angular correlations	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%
Beam Polarisation	<0.01%	<0.01%	0.02%	0.01%	<0.01%	0.01%	0.03%	0.15%
Systematics	0.15%	0.16%	0.12%	0.19%	0.18%	0.13%	0.29%	0.22%
Total	0.24%	0.41%	0.30%	0.55%	0.21%	0.27%	0.37%	0.73%

A. Irles *et al.*, [2306.11413]

The cross sections to heavy quarks could be well constrained thanks to excellent flavour-tagging.

But how to take the measurement if...

- tagging is imperfect (s quark)?
- tagging is unavailable (u, d quarks)?

Outline

- 1. How to measure Z couplings to light quarks?
- 2. How to generate Monte Carlo events?
- 3. How to select events?

How to measure Z couplings to light quarks?

General idea

We want to measure quark couplings:

$$c_f = v_f^2 + a_f^2$$

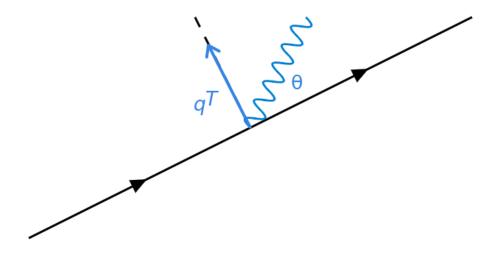
They are given in the SM by:

$$v_f = 2I_{3,f} - 4Q_f \sin^2 \theta_W$$
 $a_f = 2I_{3,f}$

 Γ_{had} scales as:

$$\Gamma_{had} \sim (3c_d + 2c_u)$$

and $\Gamma_{had+\gamma}$ as:


$$\Gamma_{had+\gamma} \sim \frac{\alpha}{2\pi} f(y_{cut}) \left(3q_d^2 c_d + 2q_u^2 c_u\right)$$

The correction factor $f(y_{cut})$ to be determined for a given value of the resolution parameter y_{cut} .

Resolution parameter y_{cut}

- By measuring the radiative and non-radiative decays, one can disentangle c_d and c_u . The definition of a radiative event is crucial.
- The photon resolution criterion may depend on an arbitrarily chosen isolation parameter, e.g. the photon transverse momentum w.r.t. the jet direction, q^T :

$$q^T = E_{\gamma} \sin(\theta_{j\gamma})$$

1. Count 2-jet events (n_j) and 2-jet events with a tagged photon $(n_{\gamma j})$. We consider 4 tags: "light", s, c and b. j = (ud)(ud), (ud)s, (ud)c, ..., ss, sc, sb, ...

- 1. Count 2-jet events (n_j) and 2-jet events with a tagged photon $(n_{\gamma j})$. We consider 4 tags: "light", s, c and b. j = (ud)(ud), (ud)s, (ud)c, ..., ss, sc, sb, ...
- 2. Compare to the expected numbers of events:

$$N_j = (\text{exp. acceptance}) \cdot (\text{class. prob.}) \cdot (\text{lumi.}) \cdot \sigma_q \equiv A_{jq} \cdot \sigma_q$$

$$N_{\gamma j} = B_{jq}^{\gamma}(y_{cut}) \cdot \sigma_{\gamma q} + B_{jq}^{0}(y_{cut}) \cdot \sigma_{0q} \equiv B_{jq} \cdot \sigma_q$$
[2310.03440]

- 1. Count 2-jet events (n_j) and 2-jet events with a tagged photon $(n_{\gamma j})$. We consider 4 tags: "light", s, c and b. j = (ud)(ud), (ud)s, (ud)c, ..., ss, sc, sb, ...
- 2. Compare to the expected numbers of events:

$$N_j = (\text{exp. acceptance}) \cdot (\text{class. prob.}) \cdot (\text{lumi.}) \cdot \sigma_q \equiv A_{jq} \cdot \sigma_q$$

$$N_{\gamma j} = B_{jq}^{\gamma}(y_{cut}) \cdot \sigma_{\gamma q} + B_{jq}^{0}(y_{cut}) \cdot \sigma_{0q} \equiv B_{jq} \cdot \sigma_q$$
[2310.03440]

3. Minimise the χ^2 distribution to extract the cross sections:

$$\chi^2 = \sum_j \frac{(n_j - N_j)^2}{N_j} + \sum_j \frac{(n_{\gamma j} - N_{\gamma j})^2}{N_{\gamma j}}$$

- 1. Count 2-jet events (n_j) and 2-jet events with a tagged photon $(n_{\gamma j})$. We consider 4 tags: "light", s, c and b. j = (ud)(ud), (ud)s, (ud)c, ..., ss, sc, sb, ...
- 2. Compare to the expected numbers of events:

$$N_j = (\text{exp. acceptance}) \cdot (\text{class. prob.}) \cdot (\text{lumi.}) \cdot \sigma_q \equiv A_{jq} \cdot \sigma_q$$

$$N_{\gamma j} = B_{jq}^{\gamma}(y_{cut}) \cdot \sigma_{\gamma q} + B_{jq}^{0}(y_{cut}) \cdot \sigma_{0q} \equiv B_{jq} \cdot \sigma_{q}$$

[2310.03440]

3. Minimise the χ^2 distribution to extract the cross sections:

$$\chi^2 = \sum_{j} \frac{(n_j - N_j)^2}{N_j} + \sum_{j} \frac{(n_{\gamma j} - N_{\gamma j})^2}{N_{\gamma j}}$$

Systematic uncertainties can also be included:

$$\chi^{2} = \sum_{j} \frac{\left(n_{j} - N_{j}(\vec{\delta})\right)^{2}}{N_{j}(\vec{\delta})} + \sum_{j} \frac{\left(n_{\gamma j} - N_{\gamma j}(\vec{\delta})\right)^{2}}{N_{\gamma j}(\vec{\delta})} + \sum_{k} \delta_{k}^{2}$$

How to generate Monte Carlo events?

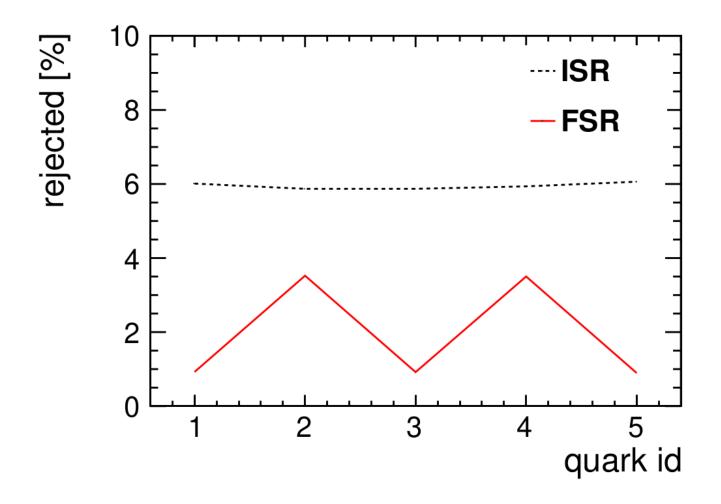
Analysis setup

We want to consider:

$$e^+e^- o qar q(\gamma)$$

Experimentally measured photons can originate not only from the Final State Radiation but also from the Initial State Radiation, hadronisation and decays...

One may encounter the following issues:


- Matrix Element calculations divergent or very slow for low photon-emission angles;
- **ISR structure functions** good for small angles, a proper matching procedure needed;
- FSR showers important for QCD emissions, may cause double-counting;
- hadron decays photons to be included properly.

Matching procedure – Whizard perspective

- matching: soft physics invisible in the detector, hard physics properly reconstructed
- soft ISR photons simulated using built-in structure functions
- soft FSR photons simulated using parton showers
- hard photons simulated using full ME calculations (0, 1, 2... ME γ samples)
- → momentum transfer and energy to define the soft and hard regimes

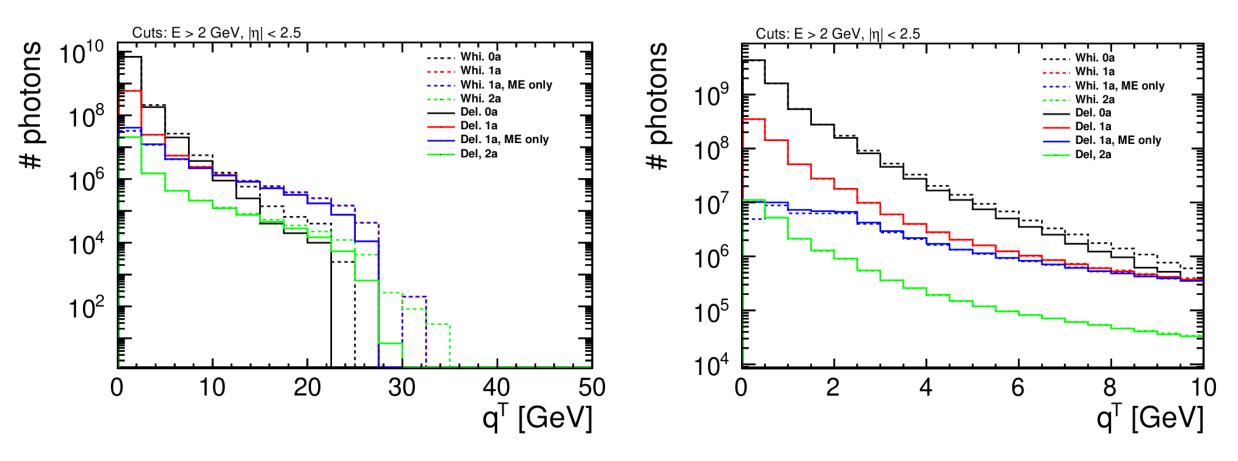
Efficiency of the matching procedure

About 7-8% of Whizard events are rejected to avoid double-counting.

How to select events?

work in progress

Event reconstruction

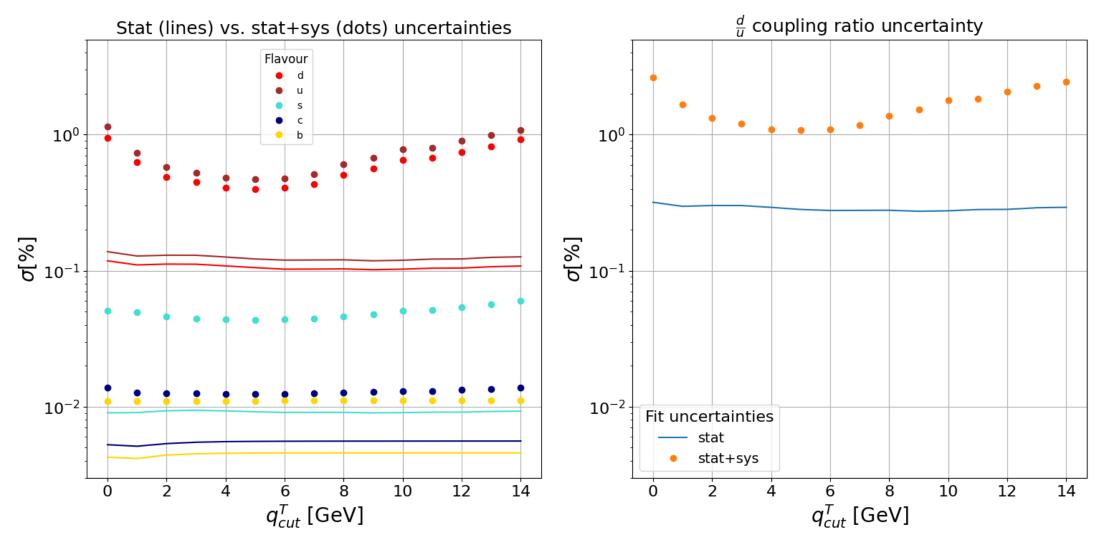

Measurable photons can originate from:

- Initial State Radiation,
- Final State Radiation,
- hadronisation and decays.

The interesting information comes only from FSR so the reconstruction criteria should reduce the other contributions.

A dedicated approach is <u>crucial!</u>

Photon kinematics – transverse momentum

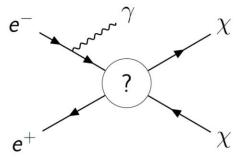

Detector simulation for ILC

Systematic uncertainties

The optimal isolation parameter can be chosen only if systematic uncertainties are included.

Uncertainty	[%]
Luminosity	0.01
Acceptance of radiative events	5
Acceptance of non-radiative events	50
b tagging	1
c tagging	2
s tagging	5
u/d tagging	10

Preliminary results


Conclusions

- The couplings of the Z boson to light quarks are weakly constrained but an excellent improvement could be achieved at future colliders.
- Proper assessment of the uncertainties requires deep understanding of theoretical calculations, event simulation and reconstruction.
- First estimates: sub-percent precision for d and u,
 sub-permille precision for s, c and b
- Work in progress...

Backup

Starting point

Some part of the work has already been done...

Simulating hard photon production with WHIZARD

J. Kalinowski *et al.*, [2004.14486]

General idea:

- soft ISR photons simulated using the built-in structure function
- hard ISR photons simulated at the ME level
- matching in q_{\pm} :

$$q_{-}=\sqrt{4E_{0}E_{\gamma}}\sinrac{ heta_{\gamma}}{2}$$
 $q_{+}=\sqrt{4E_{0}E_{\gamma}}\cosrac{ heta_{\gamma}}{2}$

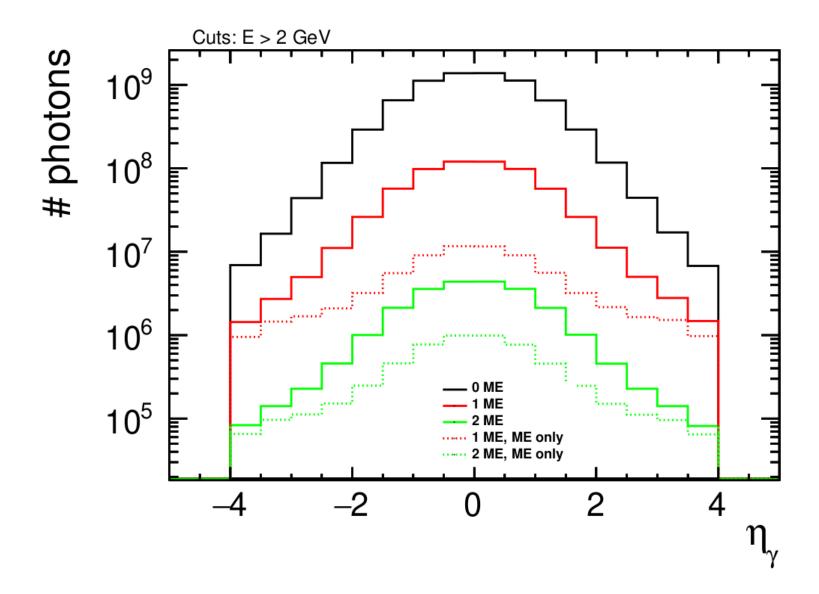
Extension of the procedure

Simulating events with Whizard and Pythia6 (shower and hadronisation)

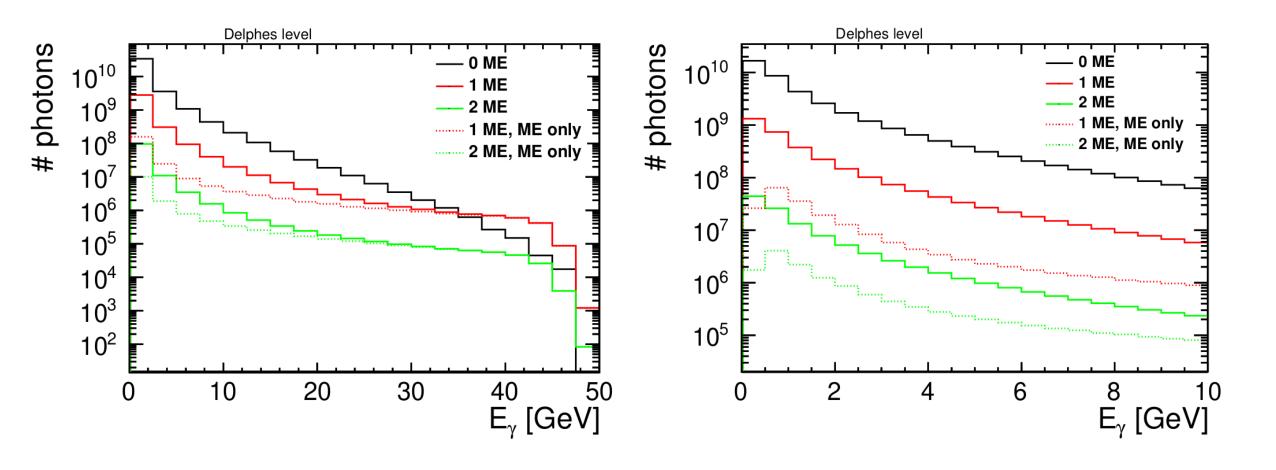
- ME cuts:
 - \circ all γ 's:

$$q_{\pm} > 0.5 \text{ GeV}$$
 and $E > 0.5 \text{ GeV}$ and $M(\gamma, q_i) > 1 \text{ GeV}$

- event selection:
 - \circ all ISR SF γ 's:


$$q_{\pm}$$
 < 0.5 GeV or E < 0.5 GeV or $M(\gamma, q_i)$ < 1 GeV

o all FSR shower y's whose parents are initial quarks:


$$q_{\pm}$$
 < 0.5 GeV or E < 0.5 GeV or $M(\gamma, q_{i})$ < 1 GeV

Note: a single quark can emit multiple photons.

Photon kinematics – pseudorapidity

Photon kinematics – energy

What decays?

[%]	d	и	S	С	b
π^0	94	94	94	93	88
η	4.5	4.5	4.3	3.7	3.6
D mesons	-	-	-	1.9	2.0
B mesons	-	-	-	-	5.6

hadronisation by Pythia6