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EW corrections are already relevant at the LHC: an example

Grazzini, Kallweit, Lindert, Pozzorini, Wiesemann ’19
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Figure 14. Distribution in the transverse momentum of the hardest charged lepton for the processes
(3.1)–(3.3) at 13TeV. Same plots as in figure 9, but in addition to the baseline cuts also the jet veto (3.16)
is applied.
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Figure 15. Distribution in the missing transverse momentum for the processes (3.1)–(3.3) at 13TeV. Same
plots as in figure 10, but in addition to the baseline cuts also the jet veto (3.16) is applied.
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Figure 14. Distribution in the transverse momentum of the hardest charged lepton for the processes
(3.1)–(3.3) at 13TeV. Same plots as in figure 9, but in addition to the baseline cuts also the jet veto (3.16)
is applied.
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Figure 15. Distribution in the missing transverse momentum for the processes (3.1)–(3.3) at 13TeV. Same
plots as in figure 10, but in addition to the baseline cuts also the jet veto (3.16) is applied.
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Figure 14. Distribution in the transverse momentum of the hardest charged lepton for the processes
(3.1)–(3.3) at 13TeV. Same plots as in figure 9, but in addition to the baseline cuts also the jet veto (3.16)
is applied.
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Figure 15. Distribution in the missing transverse momentum for the processes (3.1)–(3.3) at 13TeV. Same
plots as in figure 10, but in addition to the baseline cuts also the jet veto (3.16) is applied.
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Figure 14. Distribution in the transverse momentum of the hardest charged lepton for the processes
(3.1)–(3.3) at 13TeV. Same plots as in figure 9, but in addition to the baseline cuts also the jet veto (3.16)
is applied.
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Figure 15. Distribution in the missing transverse momentum for the processes (3.1)–(3.3) at 13TeV. Same
plots as in figure 10, but in addition to the baseline cuts also the jet veto (3.16) is applied.
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Figure 14. Distribution in the transverse momentum of the hardest charged lepton for the processes
(3.1)–(3.3) at 13TeV. Same plots as in figure 9, but in addition to the baseline cuts also the jet veto (3.16)
is applied.
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Figure 15. Distribution in the missing transverse momentum for the processes (3.1)–(3.3) at 13TeV. Same
plots as in figure 10, but in addition to the baseline cuts also the jet veto (3.16) is applied.
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Table 1: Table shows dimension-6 operators contributing to the high energy longitudinal diboson production
channels in the SILH and Warsaw bases.

Coming to the V V and V h processes (V = W
±
, Z boson), the amplitudes scale di↵erently for the di↵erent

combinations of the longitudinally and transversely polarised gauge bosons when comparing between the SM
and BSM contributions. We tabulate the various combinations in Tab. 2 [23]. In this study, we will focus
on the longitudinally polarised W -boson pair.

SM SMEFT
qL/Rq̄L/R ! VLVL(VLh) ⇠ 1 ⇠ E

2
/⇤2

qL/Rq̄L/R ! V±VL(V±h) ⇠ mW /E ⇠ mWE/⇤2

qL/Rq̄L/R ! V±V±(V±h) ⇠ m
2

W
/E

2
⇠ E

2
/⇤2

qL/Rq̄L/R ! V±VL(V±h) ⇠ 1 ⇠ 1

Table 2: Scaling factors of the di-boson amplitudes for transverse (±) and longitudinal (L) polarisations for
the SM and SMEFT scenarios. ⇤ is assumed to be the cut-o↵ scale for new physics.

The BSM Lagrangian in the broken phase can be written as follows [23].
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�
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, Aµ⌫ ⌘ Âµ⌫ , W±

µ⌫
⌘ Ŵ

±
µ⌫

± iW
±
[µ
(A + Z)⌫], where V̂µ⌫ = @µV⌫ � @⌫Vµ, and

✓W is the Weinberg angle. The ‘. . .’ refers to the Higgs coupling which we do not explicitly consider in
this study [24, 30]. In Tab. 2 of Ref. [23] the relations between the high energy primaries (denoted by

a
(1)

q , a
(3)

q , au, and ad) are related to the low energy primaries. For the high energy primaries, the Warsaw
basis [3] of dimension-6 SMEFT operators gives four independent couplings as follows.

au = 4
c
u

R

⇤2
, ad = 4

c
d

R

⇤2
, a

(1)

q
= 4

c
(1)

L

⇤2
, and a

(3)

q
= 4

c
(3)

L

⇤2
, (2.2)

where the above Wilson coe�cients are the coe�cients of the operators in Tab. 1. The above parameterisation
only holds for weakly-coupled “non-universal” theories which must have a complete set of operators. Example
tree-level completions of such “non-universal” theories include models with a heavy SU(2)L triplet vector
boson which are coupled to the left-handed fermionic currents and to the Higgs current [23, 24].

3 Event Generation

We generate samples for all relevant processes using SHERPA version 2.2.15 [31]. See [32,33] for an overview
of other available frameworks. Matrix elements are generated by the internal tools AMEGIC++ [34] and
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tensioned the outcome of setting constraints on EFT operators when the background is calculated at NLO
QCD accuracy against it being calculated at NLO in QCD and ELW accuracy. Our results highlight the
significant role of electroweak corrections in enhancing the interpretative power of LHC data and obtaining
reliable constraints on new physics interactions. The pp ! W

+
W

� process served as a benchmark process
for this study. Our validation against CMS data confirmed the accuracy and reliability of our theoretical
predictions.

This work pioneers incorporating electroweak corrections into SMEFT analyses, emphasising their crucial
role in high-energy physics. Future studies should continue to include these corrections in similar analyses,
such as Wh, Zh, WZ, and weak-boson fusion processes, to ensure precise isolation and interpretation
of new physics e↵ects. The following steps should also extend the SMEFT interference piece to include
QCD and approximate electroweak e↵ects. Furthermore, additional improvements should involve studying
the relevant operators’ Renormalisation Group Equations [58] and understanding the associated theory
systematics. With the High-Luminosity Large Hadron Collider providing unprecedented data volumes, the
inclusion of electroweak corrections will become even more critical. The precision in theoretical predictions
and their experimental verification will be indispensable for advancing our understanding of the fundamental
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Fig. 3.8: Expected relative precision of the k parameters and 95% CL upper limits on the
branching ratios to invisible and untagged particles for the various colliders. All values are
given in %. For the hadron colliders, a constraint |kV |  1 is applied, and all future colliders are
combined with HL-LHC. For colliders with several proposed energy stages it is also assumed
that data taken in later years are combined with data taken earlier. Figure is from Ref. [39].

hadron colliders uncertainties on the Higgs production cross section are included. For decay
branching ratios only the parametric uncertainties are included while the intrinsic uncertainties
are neglected, see discussion in Ref. [39] and Sect. 3.2.3.

At the HL-LHC the Higgs boson couplings can be determined with an accuracy of O(1�
3%) in most cases, under the assumption |kV |  1. Ratios of couplings are (mostly) model
independent, and an accuracy of O(1�3%) is expected in many cases [23]. Based on analyses
of final states with large Emiss

T , produced in Higgs VBF and V H (V =W and Z) processes, BRinv
values of 1.9% will be probed at 95% CL. The constraint from the k-fit on the BR to untagged
final states is 4.0% at 95% CL. The HE-LHC improves the precision typically by a factor of
two, although much of the improvement comes from the assumption of a further reduction by a
factor of two in the theoretical uncertainty, scheme S20 [23].

Lepton colliders allow a measurement of the ZH total production cross section, indepen-
dently of its decay making use of the collision energy constraint. This measurement, together
with measurements where the decay products of the Higgs boson are identified, can be inter-
preted as a nearly model-independent measurement of the total decay width. Therefore the
constraint |kV |  1, used for hadron colliders, is not needed for lepton colliders.

Future e+e� colliders improve the accuracy on Higgs coupling determination typically
by factors between 2 and 10, except for kt , kg , kµ and kZg where no substantial improvement
compared to HL-LHC is seen. LHeC achieves a significant improvement for kW , kZ and kb. At
e+e� colliders, the couplings to vector bosons will be probed with a few 0.1% accuracy. Higgs
boson couplings to b-quarks can be measured with an accuracy between 0.5% and 1.0%, a factor
of 2 � 4 better than at the HL-LHC. The coupling to the charm quark, not easily accessible at
HL-LHC, is expected to be measured with an accuracy of O(1%). The various e+e� colliders
do not differ significantly in their initial energy stages.

Sub-percent precision is expected and so NLO EW is not enough.
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FIG. 1: Examples of two-loop Feynman diagrams with at
least one closed fermion loop.
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FIG. 2: Diagrammatical demonstration of VZH divergence
separation.

factorize and can be taken into account through convo-
lution with process-independent structure functions, see
e. g. Ref. [14]. Therefore we omit these contribution in
our calculation. Dimensional regularization is employed
to regulate the UV divergence. It is worthwhile to briefly
discuss the renormalization scheme and the treatment of
�5 in D dimensions.

We employed on-shell renormalization scheme for all
fields, masses and electromagnetic coupling e. The ↵(0)
scheme is used for the latter, i. e. e is normalized to its
value in the Thomson limit. As a result, the final result
depends on the shift �↵ = 1� ↵(mZ)/↵(0), where ↵(µ)
is the running electromagnetic coupling at the sale µ.
More details on the renormalization parameters can be
found in Ref. [21].

The problem of �5 appears in the diagrams involv-
ing triangle fermion loops, which require the evalua-
tion of tr(�↵

�
�
�
µ
�
⌫
�5). In D dimensions, the anti-

commutation relation {�
µ
, �5} and the trace identity

tr(�↵
�
�
�
µ
�
⌫
�5) = �4i✏↵�µ⌫ cannot be satisfied simul-

taneously. However, contributions originating from the
✏-tensor are UV finite, so they can be safely evaluated in

4 dimension. This approach has been used for example
in Ref. [18, 22]. More strategies about the treatment of
�5 in D dimensions can be found in Ref. [23].
Now let us discuss the evaluation of the two-loop in-

tegrals in the matrix element for e
+
e
�

! ZH. The re-
ducible diagrams, Fig. 1 (d), and self-energy diagrams,
Fig. 1 (a), can be straightforwardly computed by reduc-
ing the expressions to a set of known master integrals
(MIs) [24]. The MIs have been evaluated numerically
using LoopTools 2.16 [25] for the one-loop cases and
TVID 2.2 [26] for the two-loop self-energies. The two-
loop counterterms have been computed with the same
approach.

For the two-loop vertex and box diagrams, we adopt
the method of Ref. [20], which has been extended to deal
with UV-divergent diagrams. The approach uses Feyn-
man parameters to transform one of the two sub-loops
into a self-energy-type integral, which can be expressed
in terms of a dispersion relation. The second sub-loop
can then be solved analytically via well-known one-loop
Passarino-Veltman functions. No reduction to MIs is re-
quired in this approach. The integration over the Feyn-
man and dispersion parameters is performed numerically,
resulting in at most three-dimensional integrals for two-
loop vertex and box diagrams.

UV divergences need to be subtracted before carrying
out the numerical integration. In general, three types of
subtraction terms may be needed, two for sub-loop diver-
gences and one more for a global (or nested) divergence.
[The number of subtraction terms varies with topologies;
for simpler topologies, only one term is needed.] The sub-
traction terms should be simple enough to be integrated
analytically and then added back to the total result.

To illustrate how to subtract the UV divergences, let
us take an example from the diagram shown in Fig. 1 (f),
namely the tensor function given in Eq. (1) below. By
power counting one can see that this integral has sub-
loop divergences for both the q1 and q2 loops, as well as a
global two-loop divergence. After introducing a Feynman
parameter and shifting the q2 momentum, one arrives
at the expression in Eq. (2), where px = xp = x(pz +
ph) and m

2
x
= (1 � x)m2

V2
+ xm

2

V1
+ (x2

� x)p2. Here
pz and ph are the momenta of the final-state Z-boson
and Higgs boson, respectively, whereas p is the s-channel
momentum. Next, the q2 loop is rewritten in terms of
dispersion relations. This produces a number of terms,
of which only the divergent ones are explicitly shown in
Eq. (3). The remaining terms, denoted by I

finite
q1,q2

, are
finite and do not play any role in the UV subtraction.
Here �0 = (mx + mf1)

2, and the explicit form of the
dispersion kernels �Bij can be found in Ref. [20]. For
future reference, we introduce the symbols I

ij

q1
for the

three q1 integrals in Eq. (3).

Contributions from fermion loops at NNLO
4

↵(0) scheme Gµ scheme

�
LO [fb] 222.96 239.18

�
NLO [fb] 229.89 232.08

�
NNLO [fb] 231.55 232.74

O(↵2

Nf=2) 1.88 0.73
O(↵2

Nf=1) �0.23 �0.07

TABLE II: Numerical results for the unpolarized integrated
ZH production cross section, in fb, for two di↵erent renor-
malization schemes. Results are given for

p
s = 240 GeV at

LO, NLO and fermionic electroweak NNLO. For the latter,
the contributions from two (Nf = 2) and one (Nf = 1) closed
fermion loops are also shown individually.

↵(0) scheme Gµ scheme

�
LO [fb] 223.14 239.64

�
NLO [fb] 229.78 232.46

�
NNLO,EW⇥QCD [fb] 232.21 233.29

�
NNLO,EW [fb] 233.86 233.98

TABLE III: Similar to Tab. II, but using input values and
mixed EW-QCD corrections from Ref. [9].

estimate is only a lower bound on the size of missing
higher-order contributions, we conservatively multiply it
by a factor 2, to arrive at an error estimate of 0.24 fb.

An alternative estimate of the bosonic NNLO correc-
tions could be obtained by considering a subset of the
latter, namely those stemming from |M(1,bos)|

2, where
M(1,bos) is the matrix element of the bosonic NLO correc-
tions. This leads to a contribution of 0.65 fb to the cross-
section. The contribution from genuine bosonic two-loop
diagrams, 2Re{M⇤

(0)M(2,bos)}, is expected to be smaller
than this, since the Born matrix element M(0) contains
several suppression factors: (a) the e-e-Z couplings in
the initial state are smaller than the e-⌫-W couplings,
which appear in the 1-loop box diagrams, by a factor
2�3/2

⇠ 0.35; (b) the s-channel Z propagator produces a
factor m2

Z
/(s�m

2
Z
) ⇠ 0.17 for

p
s = 240 GeV.

Thus it seems plausible that the missing bosonic elec-
troweak NNLO corrections have an impact between 0.24
and 0.65 fb on the SM prediction for the ZH produc-
tion cross-section. These theory error estimates are lower
than the anticipated experimental precision (0.4–1%),
but a direct calculation of these missing contributions
is still desirable.

IV. CONCLUSIONS

In this article, we present the calculation of the
e
+
e
�

! ZH cross section with polarized beams, while
also addressing the renormalization scheme dependence.
The electroweak NNLO corrections exhibit a strong de-

V1

V2

f1

f2

f2

f2

FIG. 2: Two-loop VZH vertex diagram

pendence on the beam polarizations. The corrections
are found to be large for e+

L
e
�
R

beam polarization, while
small for e

+
R
e
�
L

case due to numerical cancellation. By
computing the cross section in the ↵(0) and Gµ schemes,
we have shown that the renormalization scheme depen-
dence decreases by including the two-loop electroweak
corrections, and reduces further by adding mixed EW-
QCD corrections. Renormalization scheme dependence
can be utilized to estimate missing higher order correc-
tions. Combining this with partial results for the missing
bosonic electroweak NNLO corrections, we estimate the
latter to be about 0.1� 0.3%, thus lower than the antic-
ipated experimental precision (0.4� 1%).
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Appendix A: UV subtraction terms

The UV divergent subtraction terms must be expanded
appropriately to get the correct finite term. As stated in
Ref. [10], there are three types of subtraction terms: two
for subloop divergences and one more for a global di-
vergence. The latter corresponds to vacuum diagrams,
the analytical formulas of which can be obtained and ex-
panded to higher orders in ✏ with TVID [19]. The general
form for the subloop divergences can be expressed as the
multiplication of two one-loop scalar integrals. Taking
the two-loop vertex diagram Fig. 2 as an example, the
tensor integral can be written as

I =

Z
d
D
q2

i⇡2

d
D
q1

i⇡2

X

n0,n1,n2,i,j

c
n0,n1,n2
ij

⇥ {p
n0
i
, q

n1
1 , q

n2
2 }j

⇥
1

(q22 �m
2
V2
)((q2 + p)2 �m

2
V1
)((q2 + q1)2 �m

2
f1
)

⇥
1

(q21 �m
2
f2
)((q1 � ph)2 �m

2
f2
)((q1 � p)2 �m

2
f2
)
,

(A1)

where {p
n0
i
, q

n1
1 , q

n2
2 } denotes dot products among ex-

ternal momentum pi and loop momentum q1,2, and ni

denote the power of each of them. The index j labels

+3.1%
+0.7%

-2.9%
+0.3%

Small corrections, but necessary for matching the experimental precision.

The choice of the renormalisation scheme is relevant.

This is only one of the effects: e.g. PDFs and ISR are not taken into account.

Freitas, Song, Xie ‘24
Freitas, Song ‘22

S = 240 GeV

7

:  NNLO EW e+e− → ZH 𝒪(α2)



:  mixed NNLO QCD-EW e+e− → ZH 𝒪(αsα)

8

amplitude for eþðk1;−σÞþe−ðk2;σÞ→HðpHÞþZðpZ;λÞ
reads

Mσ;λ
0 ¼ e2gσe

MZ

sWcW

1

s −M2
Z
v̄ðk1Þ=ε%λPσuðk2Þ; ð1Þ

where P& ¼ 1&γ5

2 are chirality projectors, and εμλ denotes the
polarizationvector of theZ boson,with λ ¼ 0ð&1Þ being the
longitudinal (transverse) polarization. σ ¼ & 1

2 represents
the helicity of the incoming electron or positron (often we
use the shorthand σ ¼ & for brevity). To warrant a non-
vanishing amplitude, the positron must carry the opposite
helicity with respect to the electron. We follow the con-
ventions in Ref. [19] to define the Weinberg angle as
cW ≡ MW

MZ
, and sW ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − c2W
p

. The Zff̄ couplings g&f are
defined following Ref. [18].
For simplicity, we will consider the unpolarized eþðe−Þ

beams, which is the case for CEPC and FCC-ee. The LO
differential cross section for polarized Z then reads

dσð0Þλ

dcosθ
¼ πα2β
16c2Ws

2
W

M2
Z

ðs−M2
ZÞ2

×

8
<

:

ð1&cosθÞ2g−e 2þð1∓ cosθÞ2gþe 2; for λ¼&1;

2sin2θðg−e 2þgþe 2Þ
"
1þ β2s

4M2
Z

#
; for λ¼0;

ð2Þ

with θ being the angle between pZ and k1 in the CM frame,
β ¼ 2jpZjffiffi

s
p . Upon angular integration, the LO integrated cross

section for polarized Z reads

σð0Þλ ¼ πα2βðg−e 2 þ gþe 2Þ
6c2Ws

2
W

M2
Z

ðs −M2
ZÞ2

$
1þ δλ;0

β2s
4M2

Z

%
: ð3Þ

The total unpolarized cross section σð0Þ ¼ σð0ÞL þ σð0ÞT ≡
σð0Þ0 þ 2σð0Þ&1. In the high-energy limit, the cross section for

producing longitudinally polarized Z (∝1=s) dominates the
one associated with the transversely polarized Z (∝1=s2).

III. THE OUTLINE OF CALCULATION
FOR RADIATIVE CORRECTIONS

As far as the OðαÞ þOðααsÞ corrections are concerned,
the higher-order diagrams can be grouped into several
distinct topologies, as shown in Figs. 1 and 2.
It is conventional to separate the OðαÞ corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called initial-state
radiation (ISR) effect, which has been well understood and
implemented in Monte Carlo event generators. A recent
study using the package WHIZARD [20] reveals that
including the ISR effect reduces the Born order σðHZÞ
at

ffiffiffi
s

p
¼ 250 GeV by 10% [21]. A more careful analysis of

the ISR effect for this process will be presented elsewhere.
The OðαÞ and OðααsÞ corrections to the amplitude can

be decomposed as follows:

δMσ;λ ¼ δMσ;λ
eeH þ δMσ;λ

Box þ δMσ;λ
eeZ þ δMσ;λ

S:E:

þ δMσ;λ
ZZH þ δMσ;λ

γZH; ð4Þ

as can be recognized from Fig. 1. The first two terms,
corresponding to the eeH vertex corrections and box
diagrams, are UV finite at OðαÞ.
The amplitude arising from the eeZ vertex corrections

can be written as δMσ;λ
eeZ ¼ Mσ;λ

0 Γ̂σ
eeZ, where the one-loop

expression of the renormalized vertex form factor Γ̂σ
eeZ is

given in Ref. [18]. The amplitude also receives corrections
from both ZZ and mixed γZ self-energies:

δMσ;λ
S:E: ¼ −Mσ;λ

0

$
Σ̂ZZ
T ðsÞ

s −M2
Z
þ 1

gσe

Σ̂γZ
T ðsÞ
s

%
; ð5Þ

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.
The amplitudes involving the VZHðV ¼ γ; ZÞ vertex

corrections are

FIG. 1. LO diagram for eþe− → HZ and examples of QED
OðαÞ corrections and weak one-loop corrections, consisting
of eeH vertex corrections, box diagrams, and corrections to the
eeZ vertex, the γZ=ZZ self-energy, and VZH vertex. The latter
three types of corrections also include OðααsÞ corrections, as
shown in Fig. 2.
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FIG. 2. Representative diagrams for the weakOðαÞ andOðααsÞ
corrections to the eeZ vertex, γZ=ZZ self-energy, and VZH
vertex. The cross represents the quark mass counterterm in QCD;
a cap denotes the electroweak counterterm.
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amplitude for eþðk1;−σÞþe−ðk2;σÞ→HðpHÞþZðpZ;λÞ
reads

Mσ;λ
0 ¼ e2gσe

MZ

sWcW

1

s −M2
Z
v̄ðk1Þ=ε%λPσuðk2Þ; ð1Þ

where P& ¼ 1&γ5

2 are chirality projectors, and εμλ denotes the
polarizationvector of theZ boson,with λ ¼ 0ð&1Þ being the
longitudinal (transverse) polarization. σ ¼ & 1

2 represents
the helicity of the incoming electron or positron (often we
use the shorthand σ ¼ & for brevity). To warrant a non-
vanishing amplitude, the positron must carry the opposite
helicity with respect to the electron. We follow the con-
ventions in Ref. [19] to define the Weinberg angle as
cW ≡ MW

MZ
, and sW ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − c2W
p

. The Zff̄ couplings g&f are
defined following Ref. [18].
For simplicity, we will consider the unpolarized eþðe−Þ

beams, which is the case for CEPC and FCC-ee. The LO
differential cross section for polarized Z then reads

dσð0Þλ

dcosθ
¼ πα2β
16c2Ws

2
W

M2
Z

ðs−M2
ZÞ2

×

8
<

:

ð1&cosθÞ2g−e 2þð1∓ cosθÞ2gþe 2; for λ¼&1;

2sin2θðg−e 2þgþe 2Þ
"
1þ β2s

4M2
Z

#
; for λ¼0;

ð2Þ

with θ being the angle between pZ and k1 in the CM frame,
β ¼ 2jpZjffiffi

s
p . Upon angular integration, the LO integrated cross

section for polarized Z reads

σð0Þλ ¼ πα2βðg−e 2 þ gþe 2Þ
6c2Ws

2
W

M2
Z

ðs −M2
ZÞ2

$
1þ δλ;0

β2s
4M2

Z

%
: ð3Þ

The total unpolarized cross section σð0Þ ¼ σð0ÞL þ σð0ÞT ≡
σð0Þ0 þ 2σð0Þ&1. In the high-energy limit, the cross section for

producing longitudinally polarized Z (∝1=s) dominates the
one associated with the transversely polarized Z (∝1=s2).

III. THE OUTLINE OF CALCULATION
FOR RADIATIVE CORRECTIONS

As far as the OðαÞ þOðααsÞ corrections are concerned,
the higher-order diagrams can be grouped into several
distinct topologies, as shown in Figs. 1 and 2.
It is conventional to separate the OðαÞ corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called initial-state
radiation (ISR) effect, which has been well understood and
implemented in Monte Carlo event generators. A recent
study using the package WHIZARD [20] reveals that
including the ISR effect reduces the Born order σðHZÞ
at

ffiffiffi
s

p
¼ 250 GeV by 10% [21]. A more careful analysis of

the ISR effect for this process will be presented elsewhere.
The OðαÞ and OðααsÞ corrections to the amplitude can

be decomposed as follows:

δMσ;λ ¼ δMσ;λ
eeH þ δMσ;λ

Box þ δMσ;λ
eeZ þ δMσ;λ

S:E:

þ δMσ;λ
ZZH þ δMσ;λ

γZH; ð4Þ

as can be recognized from Fig. 1. The first two terms,
corresponding to the eeH vertex corrections and box
diagrams, are UV finite at OðαÞ.
The amplitude arising from the eeZ vertex corrections

can be written as δMσ;λ
eeZ ¼ Mσ;λ

0 Γ̂σ
eeZ, where the one-loop

expression of the renormalized vertex form factor Γ̂σ
eeZ is

given in Ref. [18]. The amplitude also receives corrections
from both ZZ and mixed γZ self-energies:

δMσ;λ
S:E: ¼ −Mσ;λ

0
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Σ̂ZZ
T ðsÞ

s −M2
Z
þ 1

gσe

Σ̂γZ
T ðsÞ
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; ð5Þ

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.
The amplitudes involving the VZHðV ¼ γ; ZÞ vertex

corrections are

FIG. 1. LO diagram for eþe− → HZ and examples of QED
OðαÞ corrections and weak one-loop corrections, consisting
of eeH vertex corrections, box diagrams, and corrections to the
eeZ vertex, the γZ=ZZ self-energy, and VZH vertex. The latter
three types of corrections also include OðααsÞ corrections, as
shown in Fig. 2.
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corrections to the eeZ vertex, γZ=ZZ self-energy, and VZH
vertex. The cross represents the quark mass counterterm in QCD;
a cap denotes the electroweak counterterm.
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of the cross sections with respect to the renormalization
scale μ by a factor of 2 around the default scale μ0 ¼

ffiffiffi
s

p
=2.

We observe that the variations of the NLO cross sections
are too small to cover the higher order corrections, which is
common for electroweak observables. The mixed QCD-
EW corrections introduce dependence on strong inter-
actions for the first time in the perturbative series. As a
result, the NNLO cross sections exhibit larger scale
variations than the NLO ones. Comparing Table I and II,
one can see that the results in the two schemes are quite
close to each other. For the NNLO results, the difference
between the two schemes are similar in size to the effect of
scale variation in the MS scheme. We use these to give a
rough estimate that the size of even higher order corrections
amounts to about 0.2%.
Once we go for higher energies above the tt̄ thresh-

old, the 1=mt expansion is expected to break down. In
this case one has to rely on the numerical methods.
Nevertheless, we observe from Table I and II that forffiffiffi
s

p
¼ 350 GeV, the 1=mt expansion still does a reason-

able job to describe the OðααsÞ correction. We also see
that, due to the threshold enhancement, the NNLO
correction can reach 1.5% of the NLO cross section.
The energy

ffiffiffi
s

p
¼ 350 GeV is just slightly above the tt̄

threshold,2 and is a design energy of the ILC and the
FCC-ee to study the properties of the top quark, which

makes it particularly interesting. Our result provides the
essential theoretical input to continue investigating the
Higgs boson at this collider energy.
Going further up to higher energies, the main task of

the colliders becomes producing new particles below the
TeV scale rather than precisely measuring standard
model processes, and the ZH cross section is not as
important as in previous cases. Nevertheless, we give
the results for

ffiffiffi
s

p
¼ 500 GeV in Table I and II for

demonstration purposes. It is clear that the asymptotic
expansion completely fails here: the 1=mt expansion up
to order m−4

t overestimates the size of the NNLO
correction by a factor of 2.
To further assess the behavior of the 1=mt expansion,

we show in Table III the fractions of different orders of
the expansion in the full OðααsÞ corrections at the default
scale μ ¼

ffiffiffi
s

p
=2 in the MS scheme. Results in the αðmZÞ

scheme are similar and we do not show them here. Again
we show the results for 5 different center-of-mass
energies. The most important one is

ffiffiffi
s

p
¼ 240 GeV,

which exhibits the largest production cross section and
also very high luminosity can be achieved experimentally,
and therefore is the design energy of Higgs factories. At
this energy, we see that the leading Oðm2

t Þ term accounts
for about 82% of the total corrections, while the sub-
leading Oðm0

t Þ term accounts for another 16%. The even
higher power contributions are negligible here. These
demonstrate the good convergence of the 1=mt expansion
and the usefulness of our approximate analytical formula,
which evaluates much faster than the sector decomposi-
tion method. It provides an efficient and reliable way to
perform high precision physics analyses for Higgs
factories.
As we increase the center-of-mass energy, it can be seen

that the size of the power corrections starts to grow
gradually. The 1=mt expansion still provides very good
approximations to the full results as long as the energies are
below or even slightly above the tt̄ threshold. For

ffiffiffi
s

p
¼

500 GeV which is far beyond the threshold, the power
series tends to diverge as expected.

IV. SUMMARY AND OUTLOOK

In this paper, we calculated the mixed QCD-electroweak
corrections to the associated production of a Higgs boson

TABLE I. Total cross sections at various collider energies in the
MS scheme.
ffiffiffi
s

p
(GeV) σLO (fb) σNLO (fb) σNNLO (fb) σexpNNLO (fb)

240 256.3(9) 228.0(1) 230.9(4) 230.9(4)
250 256.3(9) 227.3(1) 230.2(4) 230.2(4)
300 193.4(7) 170.2(1) 172.4(3) 172.4(3)
350 138.2(5) 122.1(1) 123.9(2) 123.6(2)
500 61.38(22) 53.86(2) 54.24(7) 54.64(10)

TABLE II. Total cross sections at various collider energies in
the αðmZÞ scheme.
ffiffiffi
s

p
(GeV) σLO (fb) σNLO (fb) σNNLO (fb) σexpNNLO (fb)

240 252.0 228.6 231.5 231.5
250 252.0 227.9 230.8 230.8
300 190.0 170.7 172.9 172.9
350 135.6 122.5 124.2 124.0
500 60.12 54.03 54.42 54.81

TABLE III. Convergence of the 1=m2
t expansion for the mixed

QCD-EW corrections in the MS scheme with μ ¼
ffiffiffi
s

p
=2.

ffiffiffi
s

p
(GeV) Oðm2

t Þ Oðm0
t Þ Oðm−2

t Þ Oðm−4
t Þ

240 81.8% 16.2% 1.4% 0.4%
250 81.7% 16.1% 1.5% 0.5%
300 80.0% 15.2% 2.1% 1.1%
350 69.7% 12.6% 2.7% 2.1%
500 137% 18.6% 17.3% 31.1%

2This fact also makes the numerical evaluation of the master
integrals for

ffiffiffi
s

p
¼ 350 GeV rather difficult. For this reason,

many optimizations over the original version of the program
reported in [27] are implemented to further improve the effi-
ciency. We are not able to cross-check this result using the current
public version of SecDec (3.0.9) with the computation resource
attainable to us.
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amplitude for eþðk1;−σÞþe−ðk2;σÞ→HðpHÞþZðpZ;λÞ
reads

Mσ;λ
0 ¼ e2gσe

MZ

sWcW

1

s −M2
Z
v̄ðk1Þ=ε%λPσuðk2Þ; ð1Þ

where P& ¼ 1&γ5

2 are chirality projectors, and εμλ denotes the
polarizationvector of theZ boson,with λ ¼ 0ð&1Þ being the
longitudinal (transverse) polarization. σ ¼ & 1

2 represents
the helicity of the incoming electron or positron (often we
use the shorthand σ ¼ & for brevity). To warrant a non-
vanishing amplitude, the positron must carry the opposite
helicity with respect to the electron. We follow the con-
ventions in Ref. [19] to define the Weinberg angle as
cW ≡ MW

MZ
, and sW ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − c2W
p

. The Zff̄ couplings g&f are
defined following Ref. [18].
For simplicity, we will consider the unpolarized eþðe−Þ

beams, which is the case for CEPC and FCC-ee. The LO
differential cross section for polarized Z then reads

dσð0Þλ

dcosθ
¼ πα2β
16c2Ws

2
W

M2
Z

ðs−M2
ZÞ2

×

8
<

:

ð1&cosθÞ2g−e 2þð1∓ cosθÞ2gþe 2; for λ¼&1;

2sin2θðg−e 2þgþe 2Þ
"
1þ β2s

4M2
Z

#
; for λ¼0;

ð2Þ

with θ being the angle between pZ and k1 in the CM frame,
β ¼ 2jpZjffiffi

s
p . Upon angular integration, the LO integrated cross

section for polarized Z reads

σð0Þλ ¼ πα2βðg−e 2 þ gþe 2Þ
6c2Ws

2
W

M2
Z

ðs −M2
ZÞ2

$
1þ δλ;0

β2s
4M2

Z

%
: ð3Þ

The total unpolarized cross section σð0Þ ¼ σð0ÞL þ σð0ÞT ≡
σð0Þ0 þ 2σð0Þ&1. In the high-energy limit, the cross section for

producing longitudinally polarized Z (∝1=s) dominates the
one associated with the transversely polarized Z (∝1=s2).

III. THE OUTLINE OF CALCULATION
FOR RADIATIVE CORRECTIONS

As far as the OðαÞ þOðααsÞ corrections are concerned,
the higher-order diagrams can be grouped into several
distinct topologies, as shown in Figs. 1 and 2.
It is conventional to separate the OðαÞ corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called initial-state
radiation (ISR) effect, which has been well understood and
implemented in Monte Carlo event generators. A recent
study using the package WHIZARD [20] reveals that
including the ISR effect reduces the Born order σðHZÞ
at

ffiffiffi
s

p
¼ 250 GeV by 10% [21]. A more careful analysis of

the ISR effect for this process will be presented elsewhere.
The OðαÞ and OðααsÞ corrections to the amplitude can

be decomposed as follows:

δMσ;λ ¼ δMσ;λ
eeH þ δMσ;λ

Box þ δMσ;λ
eeZ þ δMσ;λ

S:E:

þ δMσ;λ
ZZH þ δMσ;λ

γZH; ð4Þ

as can be recognized from Fig. 1. The first two terms,
corresponding to the eeH vertex corrections and box
diagrams, are UV finite at OðαÞ.
The amplitude arising from the eeZ vertex corrections

can be written as δMσ;λ
eeZ ¼ Mσ;λ

0 Γ̂σ
eeZ, where the one-loop

expression of the renormalized vertex form factor Γ̂σ
eeZ is

given in Ref. [18]. The amplitude also receives corrections
from both ZZ and mixed γZ self-energies:

δMσ;λ
S:E: ¼ −Mσ;λ

0

$
Σ̂ZZ
T ðsÞ

s −M2
Z
þ 1

gσe

Σ̂γZ
T ðsÞ
s

%
; ð5Þ

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.
The amplitudes involving the VZHðV ¼ γ; ZÞ vertex

corrections are

FIG. 1. LO diagram for eþe− → HZ and examples of QED
OðαÞ corrections and weak one-loop corrections, consisting
of eeH vertex corrections, box diagrams, and corrections to the
eeZ vertex, the γZ=ZZ self-energy, and VZH vertex. The latter
three types of corrections also include OðααsÞ corrections, as
shown in Fig. 2.
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FIG. 2. Representative diagrams for the weakOðαÞ andOðααsÞ
corrections to the eeZ vertex, γZ=ZZ self-energy, and VZH
vertex. The cross represents the quark mass counterterm in QCD;
a cap denotes the electroweak counterterm.
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amplitude for eþðk1;−σÞþe−ðk2;σÞ→HðpHÞþZðpZ;λÞ
reads

Mσ;λ
0 ¼ e2gσe

MZ

sWcW

1

s −M2
Z
v̄ðk1Þ=ε%λPσuðk2Þ; ð1Þ

where P& ¼ 1&γ5

2 are chirality projectors, and εμλ denotes the
polarizationvector of theZ boson,with λ ¼ 0ð&1Þ being the
longitudinal (transverse) polarization. σ ¼ & 1

2 represents
the helicity of the incoming electron or positron (often we
use the shorthand σ ¼ & for brevity). To warrant a non-
vanishing amplitude, the positron must carry the opposite
helicity with respect to the electron. We follow the con-
ventions in Ref. [19] to define the Weinberg angle as
cW ≡ MW

MZ
, and sW ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − c2W
p

. The Zff̄ couplings g&f are
defined following Ref. [18].
For simplicity, we will consider the unpolarized eþðe−Þ

beams, which is the case for CEPC and FCC-ee. The LO
differential cross section for polarized Z then reads

dσð0Þλ

dcosθ
¼ πα2β
16c2Ws

2
W

M2
Z

ðs−M2
ZÞ2

×
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<
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Z

#
; for λ¼0;
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with θ being the angle between pZ and k1 in the CM frame,
β ¼ 2jpZjffiffi

s
p . Upon angular integration, the LO integrated cross

section for polarized Z reads

σð0Þλ ¼ πα2βðg−e 2 þ gþe 2Þ
6c2Ws

2
W

M2
Z

ðs −M2
ZÞ2

$
1þ δλ;0

β2s
4M2

Z

%
: ð3Þ

The total unpolarized cross section σð0Þ ¼ σð0ÞL þ σð0ÞT ≡
σð0Þ0 þ 2σð0Þ&1. In the high-energy limit, the cross section for

producing longitudinally polarized Z (∝1=s) dominates the
one associated with the transversely polarized Z (∝1=s2).

III. THE OUTLINE OF CALCULATION
FOR RADIATIVE CORRECTIONS

As far as the OðαÞ þOðααsÞ corrections are concerned,
the higher-order diagrams can be grouped into several
distinct topologies, as shown in Figs. 1 and 2.
It is conventional to separate the OðαÞ corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called initial-state
radiation (ISR) effect, which has been well understood and
implemented in Monte Carlo event generators. A recent
study using the package WHIZARD [20] reveals that
including the ISR effect reduces the Born order σðHZÞ
at

ffiffiffi
s

p
¼ 250 GeV by 10% [21]. A more careful analysis of

the ISR effect for this process will be presented elsewhere.
The OðαÞ and OðααsÞ corrections to the amplitude can

be decomposed as follows:

δMσ;λ ¼ δMσ;λ
eeH þ δMσ;λ

Box þ δMσ;λ
eeZ þ δMσ;λ

S:E:

þ δMσ;λ
ZZH þ δMσ;λ

γZH; ð4Þ

as can be recognized from Fig. 1. The first two terms,
corresponding to the eeH vertex corrections and box
diagrams, are UV finite at OðαÞ.
The amplitude arising from the eeZ vertex corrections

can be written as δMσ;λ
eeZ ¼ Mσ;λ

0 Γ̂σ
eeZ, where the one-loop

expression of the renormalized vertex form factor Γ̂σ
eeZ is

given in Ref. [18]. The amplitude also receives corrections
from both ZZ and mixed γZ self-energies:

δMσ;λ
S:E: ¼ −Mσ;λ

0
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Σ̂ZZ
T ðsÞ

s −M2
Z
þ 1

gσe

Σ̂γZ
T ðsÞ
s

%
; ð5Þ

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.
The amplitudes involving the VZHðV ¼ γ; ZÞ vertex

corrections are

FIG. 1. LO diagram for eþe− → HZ and examples of QED
OðαÞ corrections and weak one-loop corrections, consisting
of eeH vertex corrections, box diagrams, and corrections to the
eeZ vertex, the γZ=ZZ self-energy, and VZH vertex. The latter
three types of corrections also include OðααsÞ corrections, as
shown in Fig. 2.
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of the cross sections with respect to the renormalization
scale μ by a factor of 2 around the default scale μ0 ¼

ffiffiffi
s

p
=2.

We observe that the variations of the NLO cross sections
are too small to cover the higher order corrections, which is
common for electroweak observables. The mixed QCD-
EW corrections introduce dependence on strong inter-
actions for the first time in the perturbative series. As a
result, the NNLO cross sections exhibit larger scale
variations than the NLO ones. Comparing Table I and II,
one can see that the results in the two schemes are quite
close to each other. For the NNLO results, the difference
between the two schemes are similar in size to the effect of
scale variation in the MS scheme. We use these to give a
rough estimate that the size of even higher order corrections
amounts to about 0.2%.
Once we go for higher energies above the tt̄ thresh-

old, the 1=mt expansion is expected to break down. In
this case one has to rely on the numerical methods.
Nevertheless, we observe from Table I and II that forffiffiffi
s

p
¼ 350 GeV, the 1=mt expansion still does a reason-

able job to describe the OðααsÞ correction. We also see
that, due to the threshold enhancement, the NNLO
correction can reach 1.5% of the NLO cross section.
The energy

ffiffiffi
s

p
¼ 350 GeV is just slightly above the tt̄

threshold,2 and is a design energy of the ILC and the
FCC-ee to study the properties of the top quark, which

makes it particularly interesting. Our result provides the
essential theoretical input to continue investigating the
Higgs boson at this collider energy.
Going further up to higher energies, the main task of

the colliders becomes producing new particles below the
TeV scale rather than precisely measuring standard
model processes, and the ZH cross section is not as
important as in previous cases. Nevertheless, we give
the results for

ffiffiffi
s

p
¼ 500 GeV in Table I and II for

demonstration purposes. It is clear that the asymptotic
expansion completely fails here: the 1=mt expansion up
to order m−4

t overestimates the size of the NNLO
correction by a factor of 2.
To further assess the behavior of the 1=mt expansion,

we show in Table III the fractions of different orders of
the expansion in the full OðααsÞ corrections at the default
scale μ ¼

ffiffiffi
s

p
=2 in the MS scheme. Results in the αðmZÞ

scheme are similar and we do not show them here. Again
we show the results for 5 different center-of-mass
energies. The most important one is

ffiffiffi
s

p
¼ 240 GeV,

which exhibits the largest production cross section and
also very high luminosity can be achieved experimentally,
and therefore is the design energy of Higgs factories. At
this energy, we see that the leading Oðm2

t Þ term accounts
for about 82% of the total corrections, while the sub-
leading Oðm0

t Þ term accounts for another 16%. The even
higher power contributions are negligible here. These
demonstrate the good convergence of the 1=mt expansion
and the usefulness of our approximate analytical formula,
which evaluates much faster than the sector decomposi-
tion method. It provides an efficient and reliable way to
perform high precision physics analyses for Higgs
factories.
As we increase the center-of-mass energy, it can be seen

that the size of the power corrections starts to grow
gradually. The 1=mt expansion still provides very good
approximations to the full results as long as the energies are
below or even slightly above the tt̄ threshold. For

ffiffiffi
s

p
¼

500 GeV which is far beyond the threshold, the power
series tends to diverge as expected.

IV. SUMMARY AND OUTLOOK

In this paper, we calculated the mixed QCD-electroweak
corrections to the associated production of a Higgs boson

TABLE I. Total cross sections at various collider energies in the
MS scheme.
ffiffiffi
s

p
(GeV) σLO (fb) σNLO (fb) σNNLO (fb) σexpNNLO (fb)

240 256.3(9) 228.0(1) 230.9(4) 230.9(4)
250 256.3(9) 227.3(1) 230.2(4) 230.2(4)
300 193.4(7) 170.2(1) 172.4(3) 172.4(3)
350 138.2(5) 122.1(1) 123.9(2) 123.6(2)
500 61.38(22) 53.86(2) 54.24(7) 54.64(10)

TABLE II. Total cross sections at various collider energies in
the αðmZÞ scheme.
ffiffiffi
s

p
(GeV) σLO (fb) σNLO (fb) σNNLO (fb) σexpNNLO (fb)

240 252.0 228.6 231.5 231.5
250 252.0 227.9 230.8 230.8
300 190.0 170.7 172.9 172.9
350 135.6 122.5 124.2 124.0
500 60.12 54.03 54.42 54.81

TABLE III. Convergence of the 1=m2
t expansion for the mixed

QCD-EW corrections in the MS scheme with μ ¼
ffiffiffi
s

p
=2.

ffiffiffi
s

p
(GeV) Oðm2

t Þ Oðm0
t Þ Oðm−2

t Þ Oðm−4
t Þ

240 81.8% 16.2% 1.4% 0.4%
250 81.7% 16.1% 1.5% 0.5%
300 80.0% 15.2% 2.1% 1.1%
350 69.7% 12.6% 2.7% 2.1%
500 137% 18.6% 17.3% 31.1%

2This fact also makes the numerical evaluation of the master
integrals for

ffiffiffi
s

p
¼ 350 GeV rather difficult. For this reason,

many optimizations over the original version of the program
reported in [27] are implemented to further improve the effi-
ciency. We are not able to cross-check this result using the current
public version of SecDec (3.0.9) with the computation resource
attainable to us.
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PDFs at NLL accuracy in QED
manageable level, we present results for the cumulative cross section:

�(⌧min) =

Z
d� ⇥

 
⌧min 

M2
pp̄

s

!
, p = q , t , W+ , (6.4)

where M2
pp̄ is the invariant mass squared of the pp̄ pair, and s the collider c.m. energy

squared. We employ MG5 aMC to compute this observable at fixed order, either leading

or next-to-leading; in other words, soft logarithms that appear at ⌧min ! 1 are not re-

summed. We stress that MG5 aMC is capable of computing simultaneously any number of

observables, subject to arbitrary final-state cuts. Our primary interest is the assessment of

the impact of NLL contributions to the PDFs, and of the factorisation- and renormalisation-

scheme dependencies, which we shall discuss in sects. 6.2 and 6.3, respectively. In order

to do so in a manner conceptually analogous to what is typically done in the literature, in

those sections we shall limit ourselves to including only the e+e�-initiated partonic channel

results. The contributions of other partonic channels that enter eqs. (6.2) and (6.3), and

in particular the �� one, will be discussed in sect. 6.4 (see also sect. 6.1). We typically

consider all of the six possible combinations of factorisation (�, MS) and renormalisation

(MS, ↵(mZ), Gµ) schemes, except for qq̄ and tt̄ production in QED, in which cases no

results are given for the Gµ renormalisation scheme.

We set the hard scale as follows:

µ =
p

s , (6.5)

and employ

mW = 80.379 GeV , (6.6)

mZ = 91.1876 GeV , (6.7)

mt = 173.3 GeV . (6.8)

We present predictions obtained with a
p

s = 500 GeV c.m. energy, but we stress that we

have considered (if above the respective pair-production thresholds) several other cases in

the range 50 GeV 
p

s < 500 GeV, finding quantitatively similar results. In the legends

of the plots, we shall typically employ the following naming conventions:

xsec , PDF [fact sch , ren sch] , (6.9)

where “xsec” denotes the perturbative accuracy of the short-distance cross sections, “PDF”

the logarithmic accuracy of the PDFs, and “fact sch” and “ren sch” the factorisation and

renormalisation schemes, respectively, used in the latter. Thus:

xsec 2 {LO , NLO} , (6.10)

PDF 2 {LL , NLL} , (6.11)

fact sch 2 {� , MS} , (6.12)

ren sch 2 {MS , ↵(mZ) , Gµ} . (6.13)

– 28 –

NLO EW with NLL and LL PDFs can have ~ 1% differences: small but necessary for 
matching the 1% precision.
Renormalisation scheme relevant too, factorisation scheme less relevant for x-sections.
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Figure 3: As in fig. 2, for tt̄ production in the full SM (left panel) and in QED (right

panel).

There are a couple of immediate conclusions that can be drawn from the inspection of

the figures. Firstly, the relative impact of the NLL contributions can be much larger than

the typical precision targets at future e+e� colliders, and depends on both the process

and the kinematical region one considers (since the histograms are not flat); and, secondly,

the dependence on the renormalisation scheme is significant (conversely, we shall show in

sect. 6.3 that the one stemming from the factorisation scheme is much smaller, which is the

reason why we could concentrate here on �-scheme results). As far as the former aspect

is concerned, it is representative of a process- and observable-dependent pattern27 that

renders it impossible to account for NLL PDF e↵ects in some “universal” manner (e.g., with

the multiplication of LL-accurate results by an overall factor). Thus, the key conclusion

is the following: while the assessment of the relevance of NLL PDF e↵ects depends on

the specific applications one pursues (in particular, the observable one considers and the

accuracy with which this is expected to be determined experimentally), one should expect

them to be phenomenologically important in high-energy e+e� collisions, and thus regard

NLL-accurate PDFs as the default choice for precision studies in that context.

6.3 Factorisation- and renormalisation-scheme dependences

In this section we consider the dependence of the observable of eq. (6.4) upon the choice

of the factorisation and the renormalisation schemes. We first point out that these two

dependencies may be seen as being of a di↵erent nature, in spite of the fact that they both

induce di↵erences that are beyond the accuracy one is working at (thus, in our case, the

di↵erences are of NNLO). In particular, it is often the case that a definite renormalisation

scheme is chosen because it is thought to be particularly apt at correctly capturing dom-

inant e↵ects of perturbative orders higher than those included in the computation one is

performing (e.g., the Gµ scheme for processes that involve W ’s and Z’s, and no photons).

This viewpoint is of course legitimate, but its validity diminishes with the ability to carry

27For each process, we have computed several di↵erential and cumulative observables, and studied them

in the same manner as what is done here for that of eq. (6.4).
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PDFs at NLL accuracy in QED
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µ =
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s , (6.5)

and employ

mW = 80.379 GeV , (6.6)

mZ = 91.1876 GeV , (6.7)

mt = 173.3 GeV . (6.8)

We present predictions obtained with a
p

s = 500 GeV c.m. energy, but we stress that we

have considered (if above the respective pair-production thresholds) several other cases in

the range 50 GeV 
p

s < 500 GeV, finding quantitatively similar results. In the legends

of the plots, we shall typically employ the following naming conventions:

xsec , PDF [fact sch , ren sch] , (6.9)

where “xsec” denotes the perturbative accuracy of the short-distance cross sections, “PDF”

the logarithmic accuracy of the PDFs, and “fact sch” and “ren sch” the factorisation and

renormalisation schemes, respectively, used in the latter. Thus:

xsec 2 {LO , NLO} , (6.10)

PDF 2 {LL , NLL} , (6.11)

fact sch 2 {� , MS} , (6.12)

ren sch 2 {MS , ↵(mZ) , Gµ} . (6.13)

– 28 –

Regardless of the scheme used, photon initiated processes can be relevant: small but 
necessary for matching the 1% precision.
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Figure 9: Ratios of cross sections computed by including photon-initiated partonic contri-

butions over their counterparts computed by discarding such contributions, for all possible

combinations of renormalisation and factorisation schemes. Left panel: W+W� produc-

tion; right panel: tt̄ production in the full SM.

processes is striking (this is emphasised graphically by the choice of the same range on

the y axis for the two panels of the figure): while for tt̄ production the relative impact of

the photonic channels is of O(10�4), i.e. within factorisation- and renormalisation-scheme

uncertainty, for W+W� production at small ⌧min (i.e. when the cross section approaches

its fully-inclusive value) it is of O(1%), larger than any theoretical systematics at this

order: it thus represents a physical e↵ect. We note that, at the fully di↵erential level, in

regions dominated by small pair invariant masses, the photon-induced contributions can

actually be in excess of 50% of the total. Needless to say, a key point here is the process

dependence of the results: channels di↵erent from the e+e� one may or may not give sizable

contributions, with a definite answer to be obtained only with specific running conditions

and selection cuts. It is therefore important that the PDFs have the ability to include all

partonic channels prescribed by the factorisation theorem.

Before concluding this section, a couple of general remarks are in order. Firstly, we

remind the reader that the photon PDF is not equal to the Weizsaecker-Williams func-

tion [48, 49] (WW henceforth); while at O(↵) these two quantities are relatively close to

each other (but do not coincide – see e.g. ref. [22]), this is not the case for the all-order PDF

vs the WW function. This may induce visible discrepancies between predictions obtained

with the photon PDF and the WW function. We also point out that PDFs automatically

include a unitarity condition: in other words, when summing over all possible branching

types that underpin PDF evolution, the number of incoming particles (the electron in this

case) is conserved, so that the fraction of electron- vs photon-initiated partonic processes

is the one correctly determined by QED. This is not the case if the LL electron PDF (in

particular if evolved purely as a non-singlet) and the WW function are employed (as is

often done in the context of NkLO+LL simulations), since they separately implement a

unitary constraint; thus, an appropriate rescaling of the respective contributions must be

envisaged.
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Figure 2: LO cross section (left) and C1 (right) as function of the center of mass energy
p
ŝ for P (e�, e+) = (�1.0, 1.0).
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Figure 3: Representative Feynman diagrams for double Higgs production. The black

blobs correspond to the one-loop HHV V and HHH form factors.

where �0 is the SM result, �1 represents the leading contribution in the EFT expansion

(order (v/⇤)2), while �2 is the squared EFT term of order (v/⇤)4. Note that within our

choice of operators there is no contribution proportional to c̄8 in this expansion. Actually,

no c2n coe�cient with n > 3 enters at the tree level.

The NLO corrections involve several di↵erent contributions. First we classify all of

them and then we specify those relevant for our study. Using a notation that is analogous

to eq. (3.10), the cross section at NLO accuracy can be parametrised as

�NLO(HH) = �LO(HH) + �1�loop(HH) , (3.11)

�1�loop(HH) = �00 + �10c̄6 + �20c̄
2

6 (3.12)

+ �30c̄
3

6 + �40c̄
4

6 (3.13)

+ c̄8
h
�01 + �11c̄6 + �21c̄

2

6

i
(3.14)

+ c̄10
h
�001 + �101c̄6

i
, (3.15)

where the �ij quantities refer to the one-loop terms that factorise c̄i
6
c̄j
8
contributions and the

�i0j to those proportional to c̄i
6
c̄j
10
. Some comments on the terms in (3.12), (3.13), (3.14)

and (3.15) are in order.
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Figure 4: Feynman Diagrams contributing to the HHH form factor at one loop.

can be expressed as

c̄10
h
�001 + �101c̄6

i
= (�1 + 2�2c̄6)

5�c̄10
4⇡2

✓
1� log

m2
H

µ2
r

◆
. (3.19)

At one-loop in ZHH or WBF production their sum can be written as a kinematically

independent shift to c̄6,

c̄6 ! c̄6 +
5�c̄10
4⇡2

⇣
1� log

m2
H

µ2
r

⌘
⇠ c̄6 + 0.016c̄10

⇣
1� log

m2
H

µ2
r

⌘
. (3.20)

In practice we can only constrain a linear combination of c̄6 and c̄10 that is in eq. (3.20). In

the following we work in the assumptions that c̄10 e↵ects are negligible and we set c̄10 = 0,

however, for not too large values of c̄10, i.e., where the linear expansion in c̄10 is reliable,

results of c̄6 can be translated into a linear combination of c̄6 and c̄10 via eq. (3.20).8 In

order to be directly sensitive to c̄10 one would need to consider one-loop e↵ects in triple

Higgs production, or evaluate quadruple Higgs production at the tree level.

In conclusion, in our phenomenological analysis, we evaluate c̄6 and c̄8 e↵ects at one

loop via the following approximation

�pheno

NLO
(HH) = �LO(HH) +��c̄6(HH) +��c̄8(HH) ,

��c̄6(HH) = c̄36

h
�30 + �40c̄6

i
,

��c̄8(HH) = c̄8
h
�01 + �11c̄6 + �21c̄

2

6

i
. (3.21)

The analytical results for the form factors used for the calculation of ��c̄6(HH) and

��c̄8(HH) are given in Appendix B. We show now the impact of c̄6 and c̄8 in the �pheno

NLO

predictions at di↵erent energies.

First of all, in Fig. 5 we show the LO cross section �LO of ZHH (left) and WBF

(right) production as function of
p
ŝ for di↵erent values of c̄6. In ZHH production, the LO

cross section peaks around
p
ŝ = 500 GeV, which is the optimal energy for measuring this

8If c̄10 is so large that the shift induced by eq. (3.20) is even larger than c̄6 itself, then squared loop-

diagrams involving the H
5 vertex would be larger than their interferences with Born diagrams. Thus,

one-loop contributions, and consequently the level of accuracy of our calculation, would not be su�cient.
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Figure 21: Feynman diagrams contributing to the V01[HHV V ] form factor.

V
µ1 p1

H

V
µ2 p2

H

H
H

H

V
µ1 p1

H

G

H

V
µ2 p2

H

H H

V
µ1 p1

H

V

H

V
µ2 p2

H

H H

Figure 22: Representative Feynman diagrams contributing to the V20[HHV V ] form fac-

tor.

where all momentum are incoming and Tµ1µ2 is given in eq. (B.6). The V20[HHV V ] term

instead originates from the diagrams in Fig. 22, which include boxes and thus they involve

a much more complex kinematic dependence,

V µ1µ2

20
[HHV V ] = 9

�2m2
V

⇡2
[Fµ1µ2(p1, p2, p3, p4,mV ,mH) + Fµ1µ2(p1, p2, p4, p3,mV ,mH)] ,

(B.20)

where Fµ1µ2 is given by

Fµ1µ2(p1, p2, p3, p4,mV ,mH) =(�
1

4
C0 �m2

V
D0 +D00)g

µ1µ2 + pµ1

4
pµ2

1
D12

+ pµ1

4
(p1 + p4)

µ2D22 � pµ1

2
pµ2

1
D13 � pµ1

2
(p1 + p4)

µ2D23 ,

(B.21)

with the dependence on external momenta and internal masses of C and D functions as

C0 =C0((p3 + p4)
2, p23, p

2

4,m
2

H
,m2

H
,m2

H
) , (B.22)

Di(j) =Di(j)(p
2

1, p
2

4, p
2

3, p
2

2, (p1 + p4)
2, (p4 + p3)

2,m2

V
,m2

H
,m2

H
,m2

H
) , (B.23)

according to the convention of ref. [51]. Both V01[HHV V ] and V20[HHV V ] are UV finite

and gauge-invariant. We remind the reader that the �ZNP

H
component in the counterterm,

which originates from the two H external legs, has been removed from V [HHV V ].
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2 Theoretical setup

2.1 Notation and parametrisation of New Physics e↵ects

In this work we are interested to the e↵ect induced by the modification V SM(�) ! V (�)

defined as

V (�) = V SM(�) + V NP(�) , � =

 
G+

1p
2
(v +H + iG0)

!
, (2.1)

where the New Physics (NP) modifications of the potential are all included in V NP and the

symbol � denotes the Higgs doublet. The term V SM has already been defined in eq. (1.1).

Following the convention of ref. [50], the most general form of V NP that is invariant

under SU(2) symmetry can be written as

V NP(�) ⌘
1X

n=3

c2n
⇤2n�4

✓
�†��

1

2
v2
◆

n

. (2.2)

It is important to specify from the beginning why for our calculation it is convenient

to parametrise the NP contributions as done in eq. (2.2) and not using the standard EFT

parameterisation

V NP

std(�) ⌘
1X

n=3

c0
2n

⇤2n�4

⇣
�†�

⌘
n

. (2.3)

The advantages of the parametrisation in eq. (2.2) w.r.t the one in eq. (2.3) are due

to the fact that after EWSB any
�
�†�

�n
originates H i terms with 1  i  2n, while any�

�†��
1

2
v2
�n

originates H i terms only with n  i  2n. In other words, at tree-level,

the trilinear Higgs self-coupling receives modifications only from c6 and the quadrilinear

only from c6 and c8. Needless to say, when they are summed to V SM, equations (2.2) and

(2.3) not only refer to the same quantity parametrised in a di↵erent way (V SM + V NP

std
=

V SM + V NP), but they are also fully equivalent for any truncation of the series at a given

order n.

Writing V SM(�) + V NP(�) after EWSB as

V (H) =
1

2
m2

HH2 + �3vH
3 +

1

4
�4H

4 + �5

H5

v
+O(H6) (2.4)

allows to define the self-couplings �n, which can be parametrised by the quantities1

3 ⌘
�3

�SM
3

= 1 +
c6v2

�⇤2
⌘ 1 + c̄6, (2.5)

4 ⌘
�4

�SM
4

= 1 +
6c6v2

�⇤2
+

4c8v4

�⇤4
⌘ 1 + 6c̄6 + c̄8 , (2.6)

5 ⌘
�5

�
=

3c6v2

4�⇤2
+

2c8v4

�⇤4
+

c10v6

�⇤6
⌘

3

4
c̄6 +

1

2
c̄8 + c̄10 . (2.7)

1Note that 3 and 4 are defined di↵erently than 5. The former are the ratios of the trilinear and

quadrilinear couplings with their SM values. The latter is the value normalised to �, being a tree-level H5

interaction not present in the SM.
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sented in ref. [35] for gg ! H ! ��. At the same time, the complete set of (one- and

two-) loop computations for all relevant single-Higgs observables at the LHC together with

the proposal of combining inclusive and di↵erential observables, has been put forward in

[36]. Since then several studies have appeared: the computation of the factorisable QCD

corrections to the single-Higgs EW production at the LHC [37], two-loop e↵ects in preci-

sion EW observables [38, 39] and, more recently, further investigations on the impact of

the di↵erential information and the relevance of SM electroweak corrections [40]. Further-

more, global analyses in the context of an SMEFT (SM-EFT) have also been presented

for present and future measurements at the LHC [41] and even for the case of future e+e�

colliders [42, 43]. On the other hand, in these works, e↵ects of �4 have been either ignored,

being irrelevant for the calculation considered, or assumed to be determined in turn by the

�3 value.

In the present work we investigate for the first time the (combined) sensitivity to both

the �3 and �4 self-couplings in (multi-)Higgs production at future e+e� colliders. We con-

sider H, HH, and HHH production both in association with a Z boson or via W -boson

fusion (WBF) [44]. These processes are listed in Tab. 1, where we have also specified at

Process �3 �4

ZH, ⌫e⌫̄eH (WBF) one-loop two-loop

ZHH, ⌫e⌫̄eHH (WBF) tree one-loop

ZHHH, ⌫e⌫̄eHHH (WBF) tree tree

Table 1: Processes considered in this work and the order at which the �3 and �4 depen-

dence appears. We do not calculate two-loop e↵ects, but we do calculate one-loop e↵ects

for both single and double Higgs production.

which level in perturbation theory the �3 and �4 dependence appears (we do not calcu-

late two-loop e↵ects in this work). In particular, we perform the computation of one-loop

e↵ects in single and (for the first time) double Higgs production. The former pose no

theoretical challenge, confirm the results of [31, 43] (and mutatis mutandis, of [36, 37]);

they are presented here for completeness and are also used in our analysis. On the other

hand, one-loop e↵ects in double Higgs production can be computed only within a com-

plete and consistent EFT approach, where UV renormalisation can be performed. To this

purpose, we work in a theoretical and computational framework where the cubic and quar-

tic couplings can independently deviate from the SM predictions and loop computations

can be consistently performed. Specifically, we add the two higher-dimensional operators

c2n(�†� � v2/2)n/⇤(2n�4) with n = 3, 4 to the SM Lagrangian, where the presence of

the “�v2” term considerably simplifies the technical steps of the one-loop calculation in

double Higgs production. On the other hand, Wilson coe�cients in this basis or in the

standard c0
2n
(�†�)n/⇤(2n�4) parameterisation can be easily related at any perturbative

order and also after the running to a di↵erent scale. While the c0
2n

coe�cient are more

suitable for the matching to a UV-complete model, the c2n ones feature simple relations

to Higgs self-couplings, and are more convenient for phenomenological predictions such as
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It is important to specify from the beginning why for our calculation it is convenient

to parametrise the NP contributions as done in eq. (2.2) and not using the standard EFT

parameterisation

V NP

std(�) ⌘
1X

n=3

c0
2n

⇤2n�4

⇣
�†�

⌘
n

. (2.3)

The advantages of the parametrisation in eq. (2.2) w.r.t the one in eq. (2.3) are due

to the fact that after EWSB any
�
�†�

�n
originates H i terms with 1  i  2n, while any�

�†��
1

2
v2
�n

originates H i terms only with n  i  2n. In other words, at tree-level,

the trilinear Higgs self-coupling receives modifications only from c6 and the quadrilinear

only from c6 and c8. Needless to say, when they are summed to V SM, equations (2.2) and

(2.3) not only refer to the same quantity parametrised in a di↵erent way (V SM + V NP

std
=

V SM + V NP), but they are also fully equivalent for any truncation of the series at a given

order n.

Writing V SM(�) + V NP(�) after EWSB as

V (H) =
1

2
m2

HH2 + �3vH
3 +

1

4
�4H

4 + �5

H5

v
+O(H6) (2.4)

allows to define the self-couplings �n, which can be parametrised by the quantities1

3 ⌘
�3

�SM
3

= 1 +
c6v2

�⇤2
⌘ 1 + c̄6, (2.5)

4 ⌘
�4

�SM
4

= 1 +
6c6v2

�⇤2
+

4c8v4

�⇤4
⌘ 1 + 6c̄6 + c̄8 , (2.6)

5 ⌘
�5

�
=

3c6v2

4�⇤2
+

2c8v4

�⇤4
+

c10v6

�⇤6
⌘

3

4
c̄6 +

1

2
c̄8 + c̄10 . (2.7)

1Note that 3 and 4 are defined di↵erently than 5. The former are the ratios of the trilinear and

quadrilinear couplings with their SM values. The latter is the value normalised to �, being a tree-level H5

interaction not present in the SM.
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proportional to c̄8 or any other c2n coe�cient in this expansion, meaning that eq. (3.5) is

actually exact; no other terms can enter at all even for higher orders in the (v/⇤) expansion.

Furthermore, we remind that, at variance with the case of double Higgs production, in single

Higgs production at one-loop the anomalous coupling approach (3) is fully equivalent to

the calculation in the EFT (c̄6).

For our phenomenological study we ignore the SM NLO EW corrections [54, 55].

Our main focus is not the precise determination of c̄6, but the study of its impact via

its leading contributions. As discussed in detail in ref. [40], SM NLO EW corrections

have a tiny impact on the extraction of the value of c̄6 and do not a↵ect the accuracy of

the determination of c̄6. Therefore, we consider c̄6 e↵ects at one loop via the following

approximation

�pheno

NLO
(H) = �LO + �1c̄6 + �2c̄

2

6 . (3.6)

With this approximation, the sensitivity to the trilinear coupling can be expressed via the

ratio

��(H) ⌘
�pheno

NLO
� �LO

�LO
=

�1c̄6 + �2c̄26
�LO

= (3 � 1)C1 + (23 � 1)C2 , (3.7)

C2 = �ZSM,�

H
, (3.8)

where we have expressed the �i/�LO ratios directly5 using the symbols C1 and C2 intro-

duced in ref. [36]. C1 denotes the one-loop virtual contribution involving one triple Higgs

vertex, while C2 originates from the Higgs wave-function renormalisation constant (see

eqs. (A.2),(A.14) and (A.17)), which is the only source of c̄2
6
and thus 2

3
dependence at

one loop level. Both C1 and C2 are independently UV-finite and, for simplicity, we choose

not to resum higher-orders contributions to the wave function, at variance with ref. [36]. In-

deed, given the results already presented in ref. [31], we expect to bound 3 close to the SM

(3 = 1) and in this scenario such a resummation would not make a noticeable di↵erence

anyway. Moreover, even considering 3 in the range |3| < 6 from ref. [56], the di↵erence

between the formula in eq. (3.7) and including the resummed higher-order contributions

to ZH is below 1% (see also ref. [40]). Considering C2 in eq. (3.8), the di↵erence w.r.t. the

definition in ref. [36] is only due to this choice, however, in the limit c̄6 ! 0(3 ! 1) the

5Note that 2

3 � 1 = (3 � 1)2 + 2(3 � 1), so �2 = C2�LO and �1 = (C1 + 2C2)�LO
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Figure 19: Feynman diagrams contributing to the V [HV V ] form factor at one loop.

where �1 and �2 are part of �LO(HH) in eq. (3.10). Note that �30 and �40 are written

in such a form that can be easily extend to the case in which the �ZNP

H
contribution from

external legs is resummed, as done in ref. [36]. However, considering |c̄6| < 5, resummation

is not necessary given that c̄2
6
�ZSM,�

H
< 4%.

HVV-vertex

The HV V form factor, which will denote as V [HV V ], enters both the single and double

Higgs production calculation and can be written as

V µ1µ2 [HV V ] = V µ1µ2

0
[HV V ] + V µ1µ2

1
[HV V ]c̄6 . (B.4)

For our calculation the c̄6-independent part can be ignored, while in a generic gauge

V1[HV V ] is given by the three diagrams 22 in Fig. 19. Using the convention that the

corresponding Feynman rule is iV µ1µ2 [HV V ], as we will do also for the other form factors,

we can write V µ1µ2

1
[HV V ] as

V µ1µ2

1
[HV V ] =

�m2
V

16⇡2v
Tµ1µ2(p1, p2,mV ,mH) . (B.5)

In particular

Tµ1µ2(p1, p2,mV ,mH) = (�6B0 � 24m2

V
C0 + 24C00)g

µ1µ2 � 24pµ2

1
pµ1

2
C12 , (B.6)

where p1, p2 are the (incoming) momenta of the two vector bosons, µ1, µ2 are the corre-

sponding Lorentz indices, mV with V = W,Z is mass of the vector bosons, and B0, C0,

C00, C12 are one-loop scalar/tensor integrals defined according to the notation used, e.g.,

in ref. [51] and where the following variables are understood:

B0 =B0((p1 + p2)
2,m2

H
,m2

H
) , (B.7)

C0,00,12 =C0,00,12(p
2

1, (p1 + p2)
2, p22,m

2

V
,m2

H
,m2

H
) . (B.8)

We remind the reader that the 1

2
�ZNP

H
contribution from the external H has been removed

from V [HV V ].

22In the unitary gauge the second diagram does not appear
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HHH from single Higgs
p
ŝ [GeV] process ✏ [%] C1 [%] c̄6(±1�) c̄6(±2�)

CEPC 250 ZH 0.51 1.6 (�0.38, 0.42) [ (8.0, 8.8) (�0.73, 0.88) [ (7.5, 9.1)

FCC-ee

240 ZH 0.4 1.8 (�0.26, 0.28) [ (9.4, 9.9) (�0.51.0.57) [ (9.1, 10.2)

240 WBF H 2.2 0.66 (�2.81, 5.1) (�4.3, 6.6)

350 WBF H 0.6 0.65 (�1.15, 3.4) (�1.89, 4.1)

ILC
250 ZH 0.71 1.6 (�0.52, 0.59) [ (7.8, 8.9) (�0.98, 1.3) [ (7.1, 9.4)

500 WBF H 0.23 0.63 (�0.56, 2.7) (�0.97, 3.1)

1000 WBF H 0.33 0.61 (�0.78, 2.7) (�1.3, 3.3)

CLIC

350 ZH 1.65 0.59 (�2.48, 4.3) (�3.80, 5.6)

1400 WBF H 0.4 0.61 (�0.91, 2.9) (�1.50, 3.5)

3000 WBF H 0.3 0.59 (�0.75, 2.6) (�1.26, 3.1)

Table 4: Expected precision ✏ for the measurements of single Higgs production modes

and the expected 1� and 2� constraints on c̄6, assuming an SM measurement, are listed.

The value of ✏ for the CEPC has been taken or obtained via a luminosity rescaling from

ref. [45], for the FCC-ee from ref. [46], for the ILC from refs. [47, 59] and for the CLIC

from ref. [49].

In Tab. 4 we show 1� and 2� constraints on c̄6 that can be obtained via ZH and

WBF H at di↵erent energies and colliders, using eq. (3.7). We show also the value of C1

and the accuracy ✏ that can be achieved in any experimental setup, as provided in [45–

47, 49, 59] or obtained from them via a luminosity rescaling.13 In general in this work, unless

di↵erently specified, we assume Gaussian distributions for the errors and no correlations

among them, and the errors are rescaled according to cross section in BSM cases. In the

results of Tab. 4 we did not take into account e↵ects due to c̄6 in the Higgs decay, since, at

variance with the LHC case, they can be in principle neglected at e+e� colliders. Indeed,

the total cross section of e+e� ! ZH production can be measured via the recoiling mass

method [47], without selecting a particular H decay channel. Using the same method, the

branching ratio of any (visible) decay channel can be precisely measured and used as input

in the WBF H analysis, so that also in this case e↵ects due to c̄6 in the Higgs decay can

be neglected. Nevertheless, we explicitly checked that taking into account c̄6 e↵ects in the

decay for the H ! bb̄ channel, which will be the one most precisely measured, results in

Tab. 4 are almost unchanged.

As can be seen in eq. (3.7), not only a linearly c̄6 dependent term is present, but also

a c̄2
6
one. Since C2 is negative and C1 is positive for both ZH and WBF H, the SM cross

section value is degenerate in c̄6; besides the SM case c̄6 = 0 also a second di↵erent c̄6 6= 0

condition is giving the same value of the cross section. While for the WBF H this second

solution is close to c̄6 = 2, in ZH at 240-250 GeV this is around c̄6 = 9, depending on the

energy. As a result, the two solutions being close to each other, in WBF H the 1� and 2�

intervals are always broad, while in ZH at 240-250 GeV we see two narrow intervals: one

around c̄6 = 0 and one around c̄6 = 9. Note that for CLIC-350 also ZH is yielding a broad

interval as a constraint, since ✏ is larger and C1 is smaller. Via the combined measurement

13In the case of WBF H at ILC, e.g., only the H ! bb̄ has been considered for obtaining the value of ✏.

Thus, smaller values of ✏ may be also achieved.
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proportional to c̄8 or any other c2n coe�cient in this expansion, meaning that eq. (3.5) is

actually exact; no other terms can enter at all even for higher orders in the (v/⇤) expansion.

Furthermore, we remind that, at variance with the case of double Higgs production, in single

Higgs production at one-loop the anomalous coupling approach (3) is fully equivalent to

the calculation in the EFT (c̄6).

For our phenomenological study we ignore the SM NLO EW corrections [54, 55].

Our main focus is not the precise determination of c̄6, but the study of its impact via

its leading contributions. As discussed in detail in ref. [40], SM NLO EW corrections

have a tiny impact on the extraction of the value of c̄6 and do not a↵ect the accuracy of

the determination of c̄6. Therefore, we consider c̄6 e↵ects at one loop via the following

approximation

�pheno

NLO
(H) = �LO + �1c̄6 + �2c̄

2

6 . (3.6)

With this approximation, the sensitivity to the trilinear coupling can be expressed via the

ratio

��(H) ⌘
�pheno

NLO
� �LO

�LO
=

�1c̄6 + �2c̄26
�LO

= (3 � 1)C1 + (23 � 1)C2 , (3.7)

C2 = �ZSM,�

H
, (3.8)

where we have expressed the �i/�LO ratios directly5 using the symbols C1 and C2 intro-

duced in ref. [36]. C1 denotes the one-loop virtual contribution involving one triple Higgs

vertex, while C2 originates from the Higgs wave-function renormalisation constant (see

eqs. (A.2),(A.14) and (A.17)), which is the only source of c̄2
6
and thus 2

3
dependence at

one loop level. Both C1 and C2 are independently UV-finite and, for simplicity, we choose

not to resum higher-orders contributions to the wave function, at variance with ref. [36]. In-

deed, given the results already presented in ref. [31], we expect to bound 3 close to the SM

(3 = 1) and in this scenario such a resummation would not make a noticeable di↵erence

anyway. Moreover, even considering 3 in the range |3| < 6 from ref. [56], the di↵erence

between the formula in eq. (3.7) and including the resummed higher-order contributions

to ZH is below 1% (see also ref. [40]). Considering C2 in eq. (3.8), the di↵erence w.r.t. the

definition in ref. [36] is only due to this choice, however, in the limit c̄6 ! 0(3 ! 1) the

5Note that 2

3 � 1 = (3 � 1)2 + 2(3 � 1), so �2 = C2�LO and �1 = (C1 + 2C2)�LO

– 9 –

e−

e+

Z

Z

H

e−

ν̄e

νe

W

e+

W

H

Figure 1: Feynman diagrams for single Higgs production. The black blob corresponds to

the one-loop HV V form factors.

proportional to c̄8 or any other c2n coe�cient in this expansion, meaning that eq. (3.5) is

actually exact; no other terms can enter at all even for higher orders in the (v/⇤) expansion.

Furthermore, we remind that, at variance with the case of double Higgs production, in single

Higgs production at one-loop the anomalous coupling approach (3) is fully equivalent to

the calculation in the EFT (c̄6).

For our phenomenological study we ignore the SM NLO EW corrections [54, 55].

Our main focus is not the precise determination of c̄6, but the study of its impact via

its leading contributions. As discussed in detail in ref. [40], SM NLO EW corrections

have a tiny impact on the extraction of the value of c̄6 and do not a↵ect the accuracy of

the determination of c̄6. Therefore, we consider c̄6 e↵ects at one loop via the following

approximation

�pheno

NLO
(H) = �LO + �1c̄6 + �2c̄

2

6 . (3.6)

With this approximation, the sensitivity to the trilinear coupling can be expressed via the

ratio

��(H) ⌘
�pheno

NLO
� �LO

�LO
=

�1c̄6 + �2c̄26
�LO

= (3 � 1)C1 + (23 � 1)C2 , (3.7)

C2 = �ZSM,�

H
, (3.8)

where we have expressed the �i/�LO ratios directly5 using the symbols C1 and C2 intro-

duced in ref. [36]. C1 denotes the one-loop virtual contribution involving one triple Higgs

vertex, while C2 originates from the Higgs wave-function renormalisation constant (see

eqs. (A.2),(A.14) and (A.17)), which is the only source of c̄2
6
and thus 2

3
dependence at

one loop level. Both C1 and C2 are independently UV-finite and, for simplicity, we choose

not to resum higher-orders contributions to the wave function, at variance with ref. [36]. In-

deed, given the results already presented in ref. [31], we expect to bound 3 close to the SM

(3 = 1) and in this scenario such a resummation would not make a noticeable di↵erence

anyway. Moreover, even considering 3 in the range |3| < 6 from ref. [56], the di↵erence

between the formula in eq. (3.7) and including the resummed higher-order contributions

to ZH is below 1% (see also ref. [40]). Considering C2 in eq. (3.8), the di↵erence w.r.t. the

definition in ref. [36] is only due to this choice, however, in the limit c̄6 ! 0(3 ! 1) the

5Note that 2

3 � 1 = (3 � 1)2 + 2(3 � 1), so �2 = C2�LO and �1 = (C1 + 2C2)�LO
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Figure 2: LO cross section (left) and C1 (right) as function of the center of mass energy
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Figure 3: Representative Feynman diagrams for double Higgs production. The black

blobs correspond to the one-loop HHV V and HHH form factors.

where �0 is the SM result, �1 represents the leading contribution in the EFT expansion

(order (v/⇤)2), while �2 is the squared EFT term of order (v/⇤)4. Note that within our

choice of operators there is no contribution proportional to c̄8 in this expansion. Actually,

no c2n coe�cient with n > 3 enters at the tree level.

The NLO corrections involve several di↵erent contributions. First we classify all of

them and then we specify those relevant for our study. Using a notation that is analogous

to eq. (3.10), the cross section at NLO accuracy can be parametrised as

�NLO(HH) = �LO(HH) + �1�loop(HH) , (3.11)

�1�loop(HH) = �00 + �10c̄6 + �20c̄
2

6 (3.12)

+ �30c̄
3

6 + �40c̄
4

6 (3.13)

+ c̄8
h
�01 + �11c̄6 + �21c̄

2

6

i
(3.14)

+ c̄10
h
�001 + �101c̄6

i
, (3.15)

where the �ij quantities refer to the one-loop terms that factorise c̄i
6
c̄j
8
contributions and the

�i0j to those proportional to c̄i
6
c̄j
10
. Some comments on the terms in (3.12), (3.13), (3.14)

and (3.15) are in order.
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NLO EW and SMEFT in ZH
Asteriadis, Dawson, Giardino, Szafron ‘24

Figure 8. Contributions from modifications of the Higgs tri-linear coupling C� to the cross-section
for e+e� ! ZH correlated with those from C�D. The sensitivity to a 0.5%, 1% and 1%measurement
at

p
s = 240 GeV, 365 GeV and 500 GeV, respectively, is shown. Note that there is no sensitivity

to C� at tree level.
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Figure 9. Contributions from modifications of the Higgs tri-linear coupling C� on the cross-section
for e+e� ! ZH correlated with those from C�u[3, 3], which modifies the Ztt vertex, and from

C(1)
lq [1, 1, 3, 3] vertex which modifies the e+e�tt interaction. The sensitivity to a 0.5% measurement

at
p
s = 240 GeV is shown. Note that there is no sensitivity to C�, C�u[3, 3] or C(1)

lq [1, 1, 3, 3] at
tree level.

SM couplings except for the Higgs tri-linear coupling give the 95% CL limits,

ATLAS : �0.4 < � < 6.3 �! �11 < C�

✓
1 TeV

⇤

◆2

< 3 , (3.10)

CMS : �1.2 < � < 7.5 �! �14 < C�

✓
1 TeV

⇤

◆2

< 4.6 . (3.11)

Currently, the LHC limits from single Higgs production are similar to those from double

Higgs production. From Table 6, we see that a measurement of the total Higgsstrahlung

cross-section at
p
s = 240 GeV to 0.5% accuracy would restrict |C�| < 0.58. It is essential
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Figure 2. Sample virtual diagrams contributing to e+e� ! HZ at NLO in the dimension-6
SMEFT. We show contributions with one-loop vertex corrections (first row), planar and non-planar
box diagrams (second row), and contributions with 4-point interactions (third row).

where the first sum over k enumerates the loop expansion, and the second expansion,

enumerated by n, is performed in the inverse powers of ⇤: ⇤�n. For example, the LO

amplitude in SMEFT will be denoted by A
[0]. At the same time, the tree-level dimension-

6 SMEFT contribution is A
(0,2). We use this notation for both amplitudes and cross-

sections.

The LO SM amplitudes are

M (0,0)
L

=
2
p
2GFMZ

(s�M2
Z
)
(2M2

W �M2
Z) ,

M (0,0)
R

= �
4
p
2GFMZ(M2

Z
�M2

W
)

(s�M2
Z
)

.

(2.17)

The tree level SMEFT result for Higgsstrahlung is computed using the FeynRules [12] !

FeynCalc [13] tool-chain. We neglect all Yukawa couplings except for that of the top quark.

The NLO calculation of the e+e� ! ZH inclusive cross-section has three ingredients:

one-loop virtual contributions, the counter-terms needed for renormalization of the UV

divergences, and the real photon correction, which is required to obtain an IR finite result

according to the celebrated Kinoshita-Lee-Nauenberg (KLM) theorem [14, 15]. Our com-

plete SMEFT result reduces to the NLO SM result in the limit ⇤ ! 1 and we find perfect

agreement with the well-known SM one-loop result [2, 16–19].
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O t h e r o p e r a t o r s 
enter via EW loop 
c o r r e c t i o n s . A n 
example here:

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)$ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγµlt) Qee (ēpγµer)(ēsγµet) Qle (l̄pγµlr)(ēsγµet)

Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Qlu (l̄pγµlr)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Qld (l̄pγµlr)(d̄sγµdt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)

Q(3)
lq (l̄pγµτ I lr)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk

[
(dαp )

TCuβr
] [
(qγjs )TClkt

]

Q(1)
quqd (q̄jpur)εjk(q̄ksdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )

TCet
]

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt) Qqqq εαβγεjnεkm

[
(qαjp )TCqβkr
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(qγms )TClnt

]

Q(1)
lequ (l̄jper)εjk(q̄

k
sut) Qduu εαβγ

[
(dαp )

TCuβr
] [
(uγs )

TCet
]

Q(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 3: Four-fermion operators.

isospin and colour indices in the upper part of Tab. 3. In the lower-left block of that table,
colour indices are still contracted within the brackets, while the isospin ones are made explicit.
Colour indices are displayed only for operators that violate the baryon number B (lower-right
block of Tab. 3). All the other operators in Tabs. 2 and 3 conserve both B and L.

The bosonic operators (classes X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Those containing
X̃µν are CP-odd, while the remaining ones are CP-even. For the operators containing fermions,
Hermitian conjugation is equivalent to transposition of generation indices in each of the fermionic
currents in classes (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2 (except for Qϕud). For the
remaining operators with fermions, Hermitian conjugates are not listed explicitly.

If CP is defined in the weak eigenstate basis then Q−
(+)

Q† are CP-odd (-even) for all the
fermionic operators. It follows that CP-violation by any of those operators requires a non-
vanishing imaginary part of the corresponding Wilson coefficient. However, one should remem-
ber that such a CP is not equivalent to the usual (“experimental”) one defined in the mass
eigenstate basis, just because the two bases are related by a complex unitary transformation.

Counting the entries in Tabs. 2 and 3, we find 15 bosonic operators, 19 single-fermionic-
current ones, and 25 B-conserving four-fermion ones. In total, there are 15+19+25=59 inde-
pendent dimension-six operators, so long as B-conservation is imposed.
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µ W Jρ

ν WKµ
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QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)
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Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.
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NLO EW corrections at high energies
NLO EW corrections for energies of the order of few TeVs are as large as (or even more 
than) NLO QCD corrections at the LHC. Origin: EW Sudakov logarithms.

EW corrections should be considered not only for precision physics, since they give 
 effects. This includes also BSM scenarios.


 

𝒪(10 − 100%)

µ
+

µ
≠

æ X,
Ô

s = 3 TeV ‡
incl

LO
[fb] ‡

incl

NLO
[fb] ”EW [%]

W
+

W
≠ 4.6591(2) · 102 4.847(7) · 102 +4.0(2)

ZZ 2.5988(1) · 101 2.656(2) · 101 +2.19(6)
HZ 1.3719(1) · 100 1.3512(5) · 100

≠1.51(4)
HH 1.60216(7) · 10≠7 5.66(1) · 10≠7 ú

W
+

W
≠

Z 3.330(2) · 101 2.568(8) · 101
≠22.9(2)

W
+

W
≠

H 1.1253(5) · 100 0.895(2) · 100
≠20.5(2)

ZZZ 3.598(2) · 10≠1 2.68(1) · 10≠1
≠25.5(3)

HZZ 8.199(4) · 10≠2 6.60(3) · 10≠2
≠19.6(3)

HHZ 3.277(1) · 10≠2 2.451(5) · 10≠2
≠25.2(1)

HHH 2.9699(6) · 10≠8 0.86(7) · 10≠8 ú

W
+

W
≠

W
+

W
≠ 1.484(1) · 100 0.993(6) · 100

≠33.1(4)
W

+
W

≠
ZZ 1.209(1) · 100 0.699(7) · 100

≠42.2(6)
W

+
W

≠
HZ 8.754(8) · 10≠2 6.05(4) · 10≠2

≠30.9(5)
W

+
W

≠
HH 1.058(1) · 10≠2 0.655(5) · 10≠2

≠38.1(4)
ZZZZ 3.114(2) · 10≠3 1.799(7) · 10≠3

≠42.2(2)
HZZZ 2.693(2) · 10≠3 1.766(6) · 10≠3

≠34.4(2)
HHZZ 9.828(7) · 10≠4 6.24(2) · 10≠4

≠36.5(2)
HHHZ 1.568(1) · 10≠4 1.165(4) · 10≠4

≠25.7(2)

Table 1: Total inclusive cross sections at LO and NLO EW with corresponding relative
corrections ”EW, for two-, three- and four-boson production at

Ô
s = 3 TeV. For (*), with

dominant loop-induced contributions, we refer to the discussion in the text.

µ
+

µ
≠

æ X,
Ô

s = 10 TeV ‡
incl

LO
[fb] ‡

incl

NLO
[fb] ”EW [%]

W
+

W
≠ 5.8820(2) · 101 6.11(1) · 101 +3.9(2)

ZZ 3.2730(4) · 100 3.401(4) · 100 +3.9(1)
HZ 1.22929(8) · 10≠1 1.0557(8) · 10≠1

≠14.12(7)
HH 1.31569(5) · 10≠9 42.9(4) · 10≠9 ú

W
+

W
≠

Z 9.609(5) · 100 5.86(4) · 100
≠39.0(2)

W
+

W
≠
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≠38.5(9)

HZZ 1.4631(6) · 10≠2 0.952(6) · 10≠2
≠34.9(4)

HHZ 6.083(2) · 10≠3 2.95(3) · 10≠3
≠51.6(5)

HHH 2.3202(4) · 10≠9
≠1.0(2) · 10≠9 ú

Table 2: Total inclusive cross sections at LO and NLO with corresponding relative cor-
rection ”EW for di- and tri-boson production at

Ô
s = 10 TeV. For (*), with dominant

loop-induced contributions, we refer to remarks in the text.
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Bredt, Kilian, Reuter, Steinemeier ‘22
WHIZARD

3 TeV Muon Collider
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How large are expected to be the EW Sudakov at 1 loop?

lκσ

l̄κσ

qλρ

q̄λρ

A,Z

lκσ

q̄λρ

A,Z

lκσ

q̄λρ

Figure 2: Lowest-order diagrams for l̄κσl
κ
σ → q̄λρq

λ
ρ and q̄λρ l

κ
σ → q̄λρ l

κ
σ

The collinear or soft SL contributions (4.6) give

δCl̄κσ lκσqλρ q̄λρ =
∑

f
µ
τ =lκσ ,q

λ
ρ

[

3Cew
fµ lC −

1

4s2w

(

(1 + δµR)
m2

fτ

M2
W

+ δµL
m2

f−τ

M2
W

)

lYuk

+ 2Q2
fτ
lem(m2

fτ
)
]

, (6.12)

and the Yukawa contribution depends on the chiralities µ and on the masses of the
fermions fµ

τ and their isospin partners fµ
−τ .

The PR logarithms for NC processes are obtained from the renormalization of the
electric charge and the weak mixing angle in the Born amplitude (6.4). Using (5.6) and
(5.7) this gives the relative correction

δPRl̄κσ l
κ
σq

λ
ρ q̄

λ
ρ
=
[

sw
cw

bewAZ∆lκσq
λ
ρ
− bewAA

]

lPR + 2δZem
e , (6.13)

where

∆φiφk
:=

− 1
4c2w

Yφi
Yφk

+ c2w
s4w
T 3
φi
T 3
φk

Rφiφk

(6.14)

gives a chirality-dependent contribution owing to mixing-angle renormalization of (6.5),
and bewAA represents the universal contribution of electric charge renormalization.

In order to give an impression of the size of the genuine electroweak part of the
corrections, we consider the relative corrections δ

κeκf ,ew

e+e−→f̄f
to NC processes e+e− → f̄ f

with chiralities κe, κf = R or L, and give the numerical coefficients of the electroweak
logarithms for the cases f = µ, t, b. For muon-pair production we have

δRR,ew
e+e−→µ+µ− = −2.58L(s)− 5.15

(

log
t

u

)

l(s) + 0.29 lZ + 7.73 lC + 8.80 lPR,

δRL,ew
e+e−→µ+µ− = −4.96L(s)− 2.58

(

log
t

u

)

l(s) + 0.37 lZ + 14.9 lC + 8.80 lPR,

δLL,ewe+e−→µ+µ− = −7.35L(s)−
(

5.76 log
t

u
+ 13.9 log

|t|
s

)

l(s) + 0.45 lZ

+ 22.1 lC − 9.03 lPR, (6.15)

and δLR,ew
e+e−→µ+µ− = δRL,ew

e+e−→µ+µ−. For top-quark-pair production we find

δRR,ew
e+e−→t̄t = −1.86L(s) + 3.43

(

log
t

u

)

l(s) + 0.21 lZ + 5.58 lC − 10.6 lYuk + 8.80 lPR,
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Denner Pozzorini ‘01
The estimate done via the variation 
of a factor of 10 is actual ly 
conservative.

Just a representative example of a process

1000 5000 104
s [GeV]

0.5
1

5
10

50
100

%
Relative corrections in NLO EW

order 1

order 1 (times 10)

Single Log

Single Log (times 10)

Double Log

Double Log (times 10)

,    Single Log 

Double Log 

𝒪(1) →
α

4πs2
w

∼ 0.3 % →
α

4πs2
w

log(s/m2
W),

→
α

4πs2
w

log2(s/m2
W)

Taking into account only 
DL, and not SL, is not safe 
for partonic energies up to 
10 TeV.
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Future Colliders: are EW Sudakov logarithms a 
good and robust approximation for EW 

corrections at high energies?

Currently: exact NLO EW automated for SM 
but not for BSM.

Since EW corrections are expected to be  relevant 
also for BSM, can we safely use the high-energy 

Sudakov approximation? 

18



MadGraph5_aMC@NLO: EW corrections for FC
NLO EW hadron colliders: Frederix, Frixione, Hirshi, DP, Shao, Zaro ‘18

NLO EW  colliders: Bertone, Cacciari, Frixione, Stagnitto, Zaro, Zhao ’22 e+e−

One-loop EW Sudakov alone: DP, Zaro ‘21

one-loop EW virtual corrections 
 =

 [Sudakov Logs  +
 constant term  +

mass-suppressed terms ]

𝒪(α)

α 𝒪(−logk(s/m2
W), k = 1,2)

𝒪(1)
𝒪(m2

W /s)

Having separately exact NLO EW and EW Sudakov logarithms is possible to study 
the goodness of the high-energy approximation(s). SM as a test case!
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Master formula (Denner&Pozzorini)

• �i: the scalar doublet containing the Higgs particle H and the neutral and charged

Goldstone bosons �,�±.

An important technical point of the DP algorithm is that, since high-energy limit is as-

sumed, the Goldstone-boson equivalence theorem can be used. In fact, with this algorithm,

contributions from longitudinal gauge-bosons are always evaluated via the Goldstone-boson

equivalence theorem. We will return to this point in Sec. 5.1.

Following the same notation of Ref. [39], the couplings of each external field 'ik to the

gauge bosons Va is denoted by ieIVa('), namely, ieIVa
'i'i0

(') is the coupling corresponding

to the Va'̄i'i0 vertex, with all fields that are incoming. For simplicity, in the formulas

the components 'ik are replaced by their indices ik, namely, Ia
iki

0
k
(k). All the values and

formulas for the quantities Ia
iki

0
k
(k), as many other terms appearing in the next sections are

reported in detail in the appendices of Ref. [39]. We do not repeat them here, but we want

to warn the reader that the same exact conventions for Feynman rules have to be used in

order obtain consistent results.

For any process denoted as in (2.9), the Born matrix element reads

M
i1...in
0 (p1, . . . , pn). (2.10)

The O(↵) corrections to M0 in LA, �M, has the form

�M
i1...in(p1, . . . , pn) = M

i
0
1...i

0
n

0 (p1, . . . , pn)�i01i1...i0nin . (2.11)

Equation (2.11) means that the result can be written in a factorised form, but that involves

Born amplitudes for di↵erent processes. The contributions to �M have di↵erent origins:

� = �
LSC + �

SSC + �
C + �

PR
. (2.12)

The quantities �
LSC and �

SSC are respectively the leading and subleading soft-collinear

logarithms. They both emerge from the DL, which in turn originate from the eikonal ap-

proximation of one-loop diagrams where gauge bosons are exchanged between external legs

and are soft-collinear. The former represents the symmetric and solely energy-dependent
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C consists of the collinear logarithms, originating from virtual collinear gauge
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from parameter renormalisation, which can be determined by the running of the couplings,

corresponds to the term �
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0 = iM...�...

0 , (2.13)

are used and can be applied also for what concerns the di↵erent terms entering the definition

of �.

In the following subsections we provide the formulas entering the implementation in

MadGraph5 aMC@NLO, which is described in Sec. 5. We will discuss in details only the

aspects concerning the di↵erences w.r.t. Ref. [39].
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.
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masses. In other words, if k and l are two generic external particles with momenta pk and

pl respectively, then

rkl ⌘ (pk + pl)
2
' 2pkpl � M

2
W ' M

2
H ,m

2
t ,M

2
W ,M

2
Z . (2.2)

It is interesting to note that the condition (2.2) still allows for kinematic configurations

with rkl � rk0l0 � M
2
W
, where the quantities rkl and rk0l0 represent a generic pair of the

many possible invariants that one can build with two external momenta. However, since

the required formal accuracy consists of the DL and SL in (2.1), although logarithms of

the form
↵

4⇡
log2

rkl

rk0l0
and

↵

4⇡
log

rkl

rk0l0
, (2.3)

are present at O(↵) and can be non-negligible for configurations with rkl � rk0l0 � M
2
W
,

they are not taken into account. In other words, the algorithm assummes the regime (2.2),

but large logarithms may be anyway not captured unless the condition

rkl/rk0l0 ' 1 (2.4)

is satisfied for any possible pair of rkl and rk0l0 invariants.

In fact, condition (2.4) is quite unrealistic for actual calculations in collider physics,

since cross sections are dominated precisely by regions where one or more rkl invariants tend

to be much smaller than s ⌘ r12 � M
2
W
. Indeed, the rkl are related with the invariants

entering the propagators. Even if cuts are devised in order to maximise any possible value

of rkl for a given s, the fulfilment of condition (2.4) is strictly impossible. For instance,

if (2.2) is valid, one has that min(rkl/s) < 0.5 for a 2 ! 2 process. This bound is even

tighter and tighter for a generic 2 ! n process with n growing.1

It is worth to remind the reader an important limitation of the DP algorithm. For a

given process, at least one helicity configuration of the matrix element must not be mass

suppressed, i.e., it must not vanish in the limit M2
W
/s ! 0.2 Indeed, such an assumption is

one of the hypotheses under which the algorithm has been derived. On the other hand, most

of the processes do satisfy this hypothesis, having at least one helicity configuration that is

not mass suppressed3. Moreover, thanks to the condition (2.2), helicity configurations that

are notmass suppressed are by definition also dominant in the kinematic regime considered.

The condition (2.2) also implies that processes including unstable particles and their decays

cannot be treated in this approximation if physical observables are dominated by resonant

1Finding the configuration where all invariants are large in a 2 ! n process requires the determination

of the largest possible value for the minimum angle between any two of the n final-state momenta. This is

the typical example of a mathematical problem that it is easy to define and with a solution that is far from

trivial. See for example http://neilsloane.com/packings/index.html#I.
2An equivalent formulation of this condition is that the scaling of the matrix element M with the centre-

of-mass energy
p
s must coincide with what one expects from dimensional analysis: a non mass-suppressed

helicity configuration of a matrix elements with n external legs should scale as
p
s4�n. See footnote 3 for

a counterexample.
3 Exceptions are possible, an important one is Higgs production via vector-boson fusion. Dimensional

analysis for a 2 ! 3 matrix element requires [M] = GeV�1, and for this specific process the matrix element

scales with the energy as M / MW
s .
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final state).

Only the solid lines, having more angular 
information, correctly capture NLO EW.

One cannot forget terms as 
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All the results have been obtained by applying the following cuts:

pT (Zi) > 1 TeV , |⌘(Zi)| < 2.5 , m(Zi, Zj) > 1 TeV , �R(Zi, Zj) > 0.5 .

(7.3)

Similarly to (7.2), these cuts resemble realistic experimental cuts for high-energy objects,

but they also avoid additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

First of all, it is important to notice the size of the EW corrections. For most of

the spectrum of all distributions, they are negative and larger than the LO in absolute

value, reaching ⇠ �200% of it in the tail. Since they are negative, this means that fixed-

order NLO EW corrections are also negative in this regime and therefore non-physical.

These distributions are a clear example of how large Sudakov logarithms, and in turn NLO

EW corrections, can be at high energy. Also they clearly point to the necessity of resum

them for obtaining sensible predictions. Here, on the other hand, we are not providing

phenomenological predictions but rather showing the accuracy of the LA and testing its

implementation in MadGraph5 aMC@NLO.

As expected, for all distributions, the di↵erence between green and red lines (SDK0 and

SDKweak) amounts to only few percents of the LO, with no clear logarithmic enhancement

in the high-energy limit. Also as expected, the impact of the SSCs!rkl terms (solid versus

dashed lines) is much larger for this process than for Drell-Yan production. In the upper

plots of Fig. 5, the pT (Zi) distributions, the dashed lines are di↵ering from the solid ones

by 5-10% of the LO for the full spectra, with the latter in turn di↵ering only by a very

few percents from the exact NLO EW prediction. The di↵erence between dashed and solid

lines is even larger in the lower plots, the m(Zi, Zj) distributions, and especially a clear

logarithmic trend can be observed. It is worth to stress that for all these distributions,

with the exception of the far tail in the m(Zi, Zj) ones, the inclusion of the SSCs!rkl terms

leads to an accuracy of very few percents for corrections spanning from ⇠-80% to ⇠-200%.

This is not the case for the pure LA without the SSCs!rkl terms.

7.3 WZ

We now move to the case of a couple of processes where both the inclusion of the SSCs!rkl

terms and the use of SDKweak is relevant. We start by showing di↵erential distributions

for the process pp ! W
+
Z, where results have been obtained by using the following cuts

pT (Vi) > 1 TeV , |⌘(Vi)| < 2.5 , m(W+
, Z) > 1 TeV , �R(W+

, Z) > 0.5 .

(7.4)

Again, these cuts resemble realistic experimental cuts for high-energy objects, but they also

avoid (part of the) additional logarithmic enhancements from collinear splittings appearing

in the real-radiation processes or even at the Born.

In Fig. 7 we show the transverse momentum of the hardest (pT (V1)) and softest

(pT (V2)) recombined vector-bosons and their invariant mass (m(W+
, Z)). Similarly to

the case of leptons (7.1), the recombination is performed by recombining any charged vec-

tor boson Vi with photons that satisfy the condition �R(Vi, �) < 0.4. We also show the
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Figure 2. Parton luminosities dLij/d⌧ for (a) an e+e� collider at
p
s = 3 TeV, (b) a µ+µ� collider

at
p
s = 3 TeV, (c) an e+e� collider at

p
s = 10 TeV, and (d) a µ+µ� collider at

p
s = 10 TeV. The

factorization scale is chosen as Q =
p
ŝ/2 (solid curves) and

p
ŝ (dashed curves).

3 The standard processes and jet production

3.1 EW processes

In high-energy e+e� collisions, one would expect that the leading reactions are of the QED
and electroweak nature, including Bhabha scattering e+e� ! e+e�, Compton scattering
�e ! �e, and the s-channel annihilation processes for pair production e+e� ! µ+µ�, qq̄ and
W+W� once above the threshold. While the cross sections for the annihilation processes fall
with the c.m. energy as � ⇠ ↵2/s, the t-channel processes receive the collinear enhancement.
Nevertheless, with a detector angular acceptance ✓min, the cross sections for the 2 ! 2 t-
channel processes still fall as � ⇠ ↵2/(s ✓2

min
). Going beyond the fixed-order calculations, the

potentially large collinear logarithms (log ✓2) need to be resummed, leading to the appropriate
description of the parton distribution functions (PDFs), as presented in the previous section.
As such, there will be substantial contributions coming from partonic scattering processes
initiated by those in Eq. (2.23), far below the collider c.m. energy. Throughout this work,
the partonic cross sections are calculated at the leading order with the general purpose event
generatorMadGraph5 v2.6.7 [66]. The annihilation processes with the initial-state radiation
(ISR) are calculated with Whizard v2.8.5 [67].

We first present some leading order production cross sections of typical electroweak pro-
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The muon collider case
, where  is a generic final state involving . 


Thus  we select direct production, with no VBF contributions.
μ+μ− ⟶ F F W, Z, t, H

We require , so that neither VBF nor PDFs other 
than  are relevant.

m(F) > 0.8 S
μ

We apply further experimentally motivated cuts for each  
particle in :


, ,  

X, Y
F

pT(X) > 100 GeV |η(X) | < 2.44 ΔR(X, Y) > 0.4

Han, Ma, Xie ’20, ‘21

And we recombine photons with charged (also massive) 
particles.


The  PDF in the  is peaked at 
Bjorken-x=1, therefore:
Collider partonic 

μ μ

S ≃ s

Ma, DP, Zaro ‘24
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With such a definition of �SDKweak
, at high energies and expanding in powers of M2

W
/s

one gets that

�NLOEW
� �SDKweak

/ ↵
�
M

2
W /s

�n
with n � 0 , (3.18)

and in general, if �s!rkl is an e�cient approximation, as observed in many cases, if a given

invariant rkl is such that |rkl| ⌧ s, expanding in powers of |rkl|/s one gets

�NLOEW
� �SDKweak

/ ↵ (|rkl|/s)
n with n � 0 . (3.19)

In other words, Eqs. (3.18) and (3.19) say that if EWSL are correctly calculated, at high

energies they should correctly capture the bulk of the NLO EW corrections and only percents

e↵ects could be missed. When we study this aspect in Sec. 4 we will also introduce the

quantities �SDK0
and �SDK0

, that are analogous to �SDKweak
and �SDKweak

, respectively, but

based on the SDK0 approach. Also, we will study the impact of �s!rkl , by setting it to zero,

as in the original formulation of the DP algorithm.

At 10 TeV, but also at lower energies, the EWSL due to �DL as well as to �SL can be

very large and up to the point, as we will see in Sec. 4, that in some kinematic regimes

�SDKweak
< �100%, which implies �NLOEW

< 0. In these cases, resummation is therefore not

a procedure for improving the precision and accuracy of the predictions but for obtaining

sensible results, i.e., positive cross sections. Resummation of EWSL has already been studied

in the literature [85–87, 101–103, 163–177] and recently a detailed study on its limitations and

subtleties, considering terms up to Next-to-Leading-Logarithmic (NLL) accuracy have been

discussed in detail in Ref. [108]. Here we do not aim to reach such a precision or investigate

the resummation procedure; we want to simply asses when resummation is either desirable or

mandatory in order to obtain meaningful predictions in the case NLO EW corrections lead

to a vanishing or negative cross section. To this purpose, we define the following quantity:

�EXPEW
⌘

⇣
�LO e

�SDKweak

⌘
+ (�NLOEW

� �SDKweak
) = �NLOEW

+O(↵2)⇥ �LO. (3.20)

The r.h.s. of Eq. (3.20) says that if �EXPEW
is expanded in powers of ↵ the NLO EW prediction

is captured exactly, while beyond O(↵) the resummed tower of EWSL of order ↵n logk(s/M2
W
)

with n > 1 and k = 2n, 2n � 1 is approximated via simple exponentiation. We stress again

that we do not claim we are doing NLL resummation of EWSL. We instead want to study

when and if it is necessary this procedure, by comparing �NLOEW
with the relative corrections

induced by �EXPEW
, namely

�EXPEW
⌘

�EXPEW
� �LO

�LO
= �NLOEW

+O(↵2) . (3.21)

In the exponentiation procedure, we do not include the contributions from HBR. As it

will be manifest in Sec. 4, the e↵ects due to the HBR (real) are in general much smaller than

the one induced by the virtual loops. Thus, the resummation of such contributions is clearly

not necessary as their virtual counterpart. However, we do see a case where both NLO EW

corrections and HBR are relevant, the multi EW jet (jEW) production, for which we calculate

additional quantities.
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At 10 TeV resummation 
i s u n a v o i d a b l e f o r 
sensible predictions, and 
i t i s n e c e s s a r y f o r 
precision at 3 TeV.

Exponentiation as an 
approximation of proper 
resummation.
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What about extra radiation of Z (and H)?

We know that unlike QCD in virtual+real there is not the exact cancellation of 
logarithms.


But a cancellation is still present, how much large?


Is it really Heavy-Boson-Radiation (HBR) leading to  corrections?𝒪(1)

25

EW is the new QCD,

 but it is not exactly as the QCD!



Very small effects from Z and H radiation, especially in the bulk: pT(W) ≃ S /2

It is a general pattern: radiation of heavy bosons is much less important than 
loops!
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EW Sudakov and SMEFT: tt̄

El Faham, Mimasu, DP, Severi, 
Vryonidou, Zaro: in preparation

10 Tev -collμ

Only Four-Fermion operators are considered in the study. 

B o t h Q C D a n d E W 
corrections are different for 
SM, SM-SMEFT interference, 
and SMEFT^2 contributions 
of dim-6.

QCD and EW cancel each 
other: both are important.

K-factors can be different in SM and BSM! 
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Figure 10. Differential distribution and corresponding K-factors for top pair production in a
10 TeV muon collider, with the same notation and structure of Figure 6, for the operator Ot`.
[DP: what is QCD? QCD corrections or LO +NLO QCD? why the red curves are flat while the
sum QCD+EW in the first bin is super large?]

studies, and may even lead to a sizeable impact on projections for statistical uncertainties
in experimental analyses.

Further, the SM, the linear SMEFT term, and the quadratic SMEFT term, generally
exhibit different K-factors, both in their size and energy dependence. Therefore, the point
made in the previous two Sections that the approximate inclusion of NLO corrections via
K-factor will not provide an accurate physical description is also valid for this process. In
fact, the K-factors for the full prediction at low p

t,max
T

are considerably more important in
the SM, being as low as 0.15 in the first bin, significantly enhancing the relative impact of
the four-fermion operators. For the rest of the bins, the full NLO relative impacts essentially
track those of the NLO EW accurate predictions, indicating that the dominant corrections
to take into account for this process are of EW, rather than QCD type.

4.4 Lifting flat directions

The improved accuracy of higher order predictions can lead to new conclusions on how
data can indirectly constrain new physics. In the event that evidence for non-zero Wilson
coefficients is observed, higher order corrections will also be essential to accurately and
precisely pinpoint their new physics origin. Independently of any discovery, in a highly
multidimensional approach such as the SMEFT, correlations among Wilson coefficients in
a given dataset are key. It is essential to identify the presence of weakly-constrained or
flat directions in order to motivate future measurements aimed at globally closing in on
the parameter space. These features can be sensitive to higher order corrections, given the
non-trivial K-factors that we have highlighted in the previous section. In order to highlight
this fact, we will first consider pp ! tt̄ in Sec. 4.4.1 as a simple example. Afterward, in
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Here, i = 1, 2 [HF: perhaps use i and j for generality?] [HF: the bilinears qq, uu and dd

are allowed in the first two generation under the flavour assumption, no?] represents the
flavour of the fermion fields.

[DP: If I understand correctly there could be also operators with only Q and not q.
They are not present at LO and we ignore them at NLO. Why not saying this? ]

Top quark pair production at a muon [HF: lepton?] collider In the context of
top quark pair production at a muon collider, we consider the following two-quark-two-
lepton operators: [KM: I removed the part about neglecting lepton PDFs, as it didn’t seem
relevant, but happy to add it back if others disagree.] [CS: Moved this to the section on
MC details.]

Ote = (t�
µ
t)(ei�µei), (3.9)

Obe = (b�
µ
b)(ei�µei), (3.10)

OQe = (Q�
µ
Q)(ei�µei), (3.11)

Otl = (t�
µ
t)(li�µli), (3.12)

Obl = (b�
µ
b)(li�µli), (3.13)

O
(3)
Ql

= (Q�
µ
⌧
I
Q)(li�µ⌧

I
li), (3.14)

O
(1)
Ql

= (Q�
µ
Q)(li�µli), (3.15)

with i = 1, 2 indicating the first or second fermion generation. In line with the conventions
of Refs. [13? ], two redefinitions of the Wilson coefficients are required. These redefinitions
are applied through the following rotation and will be used in extracting our SMEFT
predictions:

C
�

Ql
= C

(1)
Ql

� C
(3)
Ql

, (3.16)

C
3
Ql

= C
(3)
Ql

. (3.17)

Drell-Yan For electron-positron pair production at the LHC, under the flavor assumption
in (3.1), we consider the following two-quark-two-lepton operators:

Oue = (ui�
µ
ui)(e�µe), (3.18)

Ode = (di�
µ
di)(e�µe), (3.19)

Oqe = (qi�
µ
qi)(e�

µ
e), (3.20)

Ou` = (ui�
µ
ui)(l�µl), (3.21)

Od` = (di�
µ
di)(l�µl), (3.22)

O
(3)
ql

= (qi�
µ
⌧
I
qi)(l�µ⌧

I
l), (3.23)

O
(1)
ql

= (qi�
µ
qi)(l�µl), (3.24)

where e and l denote the right- and left- handed first generation fermion field and as in
previous cases, i = 1, 2 indicating the first or second fermion generation. Following the
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CONCLUSION

- EW corrections are mandatory for phenomenology at future colliders, especially for high 
energies. Not only for the SM also for BSM!


- For precision: both NNLO (  and ) corrections and NNL accuracy for PDFs are 
mandatory. 


- EW corrections open up sensitivity to new (BSM) interactions: HHH(H) in 
single(double) H.


- Sudakov logs are the dominant contribution of EW corrections at high energy (muon 
Collider) and they are a good approximation of them, but only IF: single logs present, 
logs among invariants present and other features not discussed here in the plot.


- Heavy-Boson Radiation has an impact, but not always so large and typically smaller 
than the virtual contributions.


- Resummation may be mandatory for sensible results in many configurations and in 
general for precision.

αsα α2
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Figure 15: Combined 2� constraints in the (c̄6, c̄8) assuming SM cross sections, at the

ILC (left) and CLIC (right), in the Scenario 2 described in the text. ILC-H and CLIC-H

refer to a combination of all single Higgs measurements at all energy stages for each collider

under study.

5 Conclusions

Determining whether the scalar potential for the Higgs boson is the minimal one predicted

by the SM is among the main targets of the current and future colliders. In this work, we

have investigated the possibility of setting constraints on the shape of the Higgs potential

via the measurements of single, double and triple Higgs production at future e+e� collid-

ers, considering the two dominant channels, i.e., Z boson associate production (ZHn) and

W boson fusion WBF. In order to leave the possibility for the trilinear and quadrilinear

couplings to vary independently, we have added to the SM potential two EFT operators
c6

⇤2

�
�†��

1

2
v2
�3

and c8

⇤4

�
�†��

1

2
v2
�4

and calculated the tree-level and one-loop depen-

dence on c6 and c8 for single and double Higgs production as well as tree-level results for

triple Higgs production (see also Tab. 1 in sec.1).

One-loop corrections to single Higgs production, which depends only on �3 and thus c6,

have already been calculated and studied in the literature and we have confirmed previous

results. On the other hand, the one-loop dependence on �4 and therefore on c6 and c8 of

double Higgs production has been calculated for the first time here. At variance with the

case of single Higgs production, the EFT parametrisation is in this case compulsory and

an anomalous coupling approach cannot be consistently used; the c6 parameter is itself

renormalised and receives corrections from both c6 and c8. We have provided all the neces-

sary renormalisation constants and counterterms and expressed the finite one-loop results

via analytical form factors that can be directly used in phenomenological applications.

We have also motivated the inclusion of the “�1

2
v2” term in the EFT parametrisation,

which simplifies the renormalisation procedure by preserving the relations among the SM

counterterms. Nevertheless, results can always be easily translated to the
c
0
6

⇤2

�
�†�

�3
and

c
0
8

⇤4

�
�†�

�4
basis.

In our phenomenological analyses we have considered several experimental setups at
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Figure 12: 2� bounds in the (c̄6, c̄8) plane assuming BSM cross sections in double Higgs

production corresponding to (c̄true
6

, c̄true
8

= 0) in the Scenario 2 described in the text, with

c̄true
6

= �4,�2,�1, 1, 2, 4 marked in the plots with a cross. All plots show results for ZHH

at ILC-500 and WBF HH at CLIC-1400.

sensitivity on c̄8, due to the large value of �02 factorising the c̄2
8
dependence. Thus, limits

on c̄6 and c̄8 can be set, but only considering Scenario 2 where c̄8 can be di↵erent from

zero.

At variance with double Higgs production, given the very small number of events, we

cannot set limits on the (c̄6, c̄8) plane by assuming �measured(HHH) = �LO(c̄6 = c̄true
6

, c̄8 =

– 24 –
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Figure 11: 2� bounds in the (c̄6, c̄8) plane assuming SM cross sections for double Higgs

production in the Scenario 2 described in the text. Left: ZHH at ILC-500 and WBF HH

at ILC-1000. Right: WBF HH at CLIC-1400 and CLIC-3000.

c̄true
6

6= 0.17 In Fig. 12 we show the plots for the values of c̄true
6

= �4,�2,�1, 1, 2, 4; in each

plot the point (c̄true
6

, c̄true
8

= 0) is displayed with a cross and the value of c̄true
6

is given. For

these plots, only results for ZHH at ILC-500 and WBF HH at ILC-1000 are displayed.

Similarly to the SM case, given a value of c̄true
6

, the constraints on c̄6 independent from

c̄8 are weaker than those in Scenario 1. However, also in these cases, the largest part

of the (c̄6, c̄8) plane can be excluded and the shapes of the bands strongly depend both

on the process and the value of c̄true
6

. In all cases, ZHH and WBF HH sensitivities are

complementary; as we will see in sec. 4.4, their combination improves the constraints in

the (c̄6, c̄8) plane. This is a clear advantage for the ILC, where both ZHH and WBF HH

can be precisely measured.

The shapes of the green and red bands can be qualitatively explained as follow. With-

out c̄8 e↵ects the green and red bands would simply consist of either two separate (narrow)

bands or a single large band, consistently with the results that could be obtained by verti-

cally slicing the bands in Fig. 10. The c̄8 e↵ects bend the bands, leading to the shapes that

can be observed in Fig. 12. It is interesting to note that the improvement from CLIC-1400

to CLIC-3000 is rather mild. The main reason is that the increment of the WBF HH cross

section is compensated by the decrement of its dependence on c̄6, which can be directly

observed in the top-left plot of Fig. 6.

4.3 Triple Higgs production

We now consider the case of triple Higgs production. In the SM ZHHH and WBF HHH

production processes have a too small cross section for being observed. As an example, if we

consider LR-polarised beams at 1 TeV and the dominant decay into a bb̄ pair for the three

Higgs bosons and into jets for the Z boson, about 6 ab�1 of integrated luminosity would

be necessary for one signal event in the SM. As can be seen in Fig. 8, with WBF HHH

the cross section is even smaller in the SM, on the other hand this process has a strong

17As the total cross section depends on c̄8 mildly, we do not expect that the constraints depend on c̄
true

8
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NLO EW: some open questions/issues

Resummation?
When is it necessary to resum EW (Sudakov) corrections?

BSM?
What features of NLO EW corrections are universal and can be extended to 
the BSM case?

Heavy Boson Radiation (HBR)?
What should one do with Z,W radiation? Experimental set-up may impact 
the calculation result. 

PDFs or VBF with matrix elements?
If PDFs involve weak effects, weak counter terms in NLO EW corrections 
should be included. Resum logs or keep power corrections? Both?
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What are EW Sudakov logarithms?
QCD: virtual and real terms are separately IR divergent (  poles). In physical cross 
sections the contributions are combined and poles cancel.


QED: same story, but I can also regularise IR divergencies via a photon-mass . So  
poles  , where  is a generic scale.


EW: with weak interactions  and W and Z radiation are typically not taken 
into account, which is anyway IR-safe.


Therefore, at high energies EW loops induce corrections of order





where k is the number of loops and . These logs are physical. Even including 
the real radiation of W and Z, there is not the full cancellation of this kind of logarithms. 

1/ϵ

λ 1/ϵ
→ log(Q2/λ2) Q

λ → mW, mZ

−αk logn(s/m2
W)

n ≤ 2k
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 production at 100 TeV FCC-hhe+e−

Orange: NLO EW, (dotted: NLO EW no  PDF)

Green = , Red = 

Dashed: standard approach for amplitudes.

Solid: our formulation (more angular information)
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We use the PDF set NNPDF3.1 [132, 133] in particular the NNPDF31_nlo_as_0118_luxqed

distributions, which include NLO QED evolution and especially a photon density following

the LUXqed parameterisation [134, 135]. The renormalisation (µR) and factorisation (µF )

scales are both set equal to the partonic center-of-mass energy
p
s. This set-up is common

with all the other processes discussed in this section.

In the Drell-Yan simulation the following cuts are imposed on the dressed leptons:

pT (`
±) > 200 GeV , |⌘(`±)| < 2.5 , m(`+, `�) > 400 GeV , �R(`+, `�) > 0.5 .

(7.2)

On the one hand, these cuts are imposed in order to resemble realistic experimental cuts for

high-energy objects. On the other hand, they avoid additional logarithmic enhancements

from collinear splittings appearing in the real radiation processes or even at the Born.

In Fig. 5 we show di↵erential distributions for the transverse momentum of the electron,

pT (`�), for the transverse momentum of the leading (trailing) lepton, pT (`1) (pT (`2)), and

for the dilepton invariant mass m(`+, `�).

The layout of each plot in Fig. 5, and in general of each plot in this section21, is

the following. In the main panel we show the di↵erential distribution at LO (solid blue

line) and NLO EW (solid orange line) accuracy, where the exact O(↵) corrections are

taken into account. If the NLO EW prediction turns negative, meaning that NLO EW

corrections are negative and larger than the LO in absolute value, the curve corresponds

to its absolute value and is drawn as dashed. In the first inset we show the relative

impact of EW corrections, �X ⌘ X/LO� 1, in di↵erent approximations. The solid orange

line corresponds to the one in the main panel with the same style, i.e. the exact O(↵)

corrections (NLO EW), and the dotted orange line corresponds to the same case where the

photon PDF has been set equal to zero (NLO EW, no �). The other curves correspond

to results in LA, with di↵erent assumptions. First, the solid curves include the SSCs!rkl

contribution (SDKX , s ! rkl), while the dashed ones do not (SDKX). Second, the green

lines are obtained by simply omitting the QED and IR-sensitive terms, which are dubbed

as “em” in the DP algorithm. This is analogous to the approach of e.g. Refs. [79, 91]

and dubbed here as SDK0. The red lines are instead obtained by completely removing

the QED contribution, namely, following the procedure described in Sec. 4.1, the SDKweak

approach. Both the SDK0 and SDKweak predictions, similarly to the NLO EW ones in

this section, include also the LO contribution. Needless to say, the closest a line is to

the solid orange one, the better is the approximation of the exact NLO EW corrections.

Therefore, in order to better judge this characteristic, in the second inset we zoom on the

lines by simply plotting for each line in the first inset the di↵erence with the solid orange

one. Clearly, the reference prediction in LA is the solid red line, which both includes the

SSCs!rkl contribution and is obtained via the SDKweak approach.

dressed lepton pair can originate from a configuration where the bare leptons have m(`+bare, `
�
bare) ' MZ and

one of them is recombined with a hard photon, leading to m(`+, `�) � MZ and therefore passing the cuts.

This configuration is not associated to any enhancement and therefore very rare, but in the on-shell scheme

it leads to the evaluation of a resonant Z propagator with zero width and therefore it is inconsistent.
21An important di↵erence is present for Figs. 7 and 8 and explained later in the text.
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Only the approach correctly 
captures the NLO EW prediction.

Solid and dashed very similar.

Photon PDF cannot be ignored.

SDKweak

Larger invariant -> larger correction

DP, Zaro ‘21
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For smaller  , larger 
corrections.

pT

S u d a k o v ( i n t h e 
 scheme) 

capture NLO EW 
corrections up to 
the % level.

SDKweak

If double logs are 
written in the form 

, t h e 
shapes observed 
here are all arising 
from single logs.

log2(s/m2
W)
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Unlike ZZ,  for  also at 
10 TeV resummation is 
necessary only for 
precision.

tt̄

With such a definition of �SDKweak
, at high energies and expanding in powers of M2

W
/s

one gets that

�NLOEW
� �SDKweak

/ ↵
�
M

2
W /s

�n
with n � 0 , (3.18)

and in general, if �s!rkl is an e�cient approximation, as observed in many cases, if a given

invariant rkl is such that |rkl| ⌧ s, expanding in powers of |rkl|/s one gets

�NLOEW
� �SDKweak

/ ↵ (|rkl|/s)
n with n � 0 . (3.19)

In other words, Eqs. (3.18) and (3.19) say that if EWSL are correctly calculated, at high

energies they should correctly capture the bulk of the NLO EW corrections and only percents

e↵ects could be missed. When we study this aspect in Sec. 4 we will also introduce the

quantities �SDK0
and �SDK0

, that are analogous to �SDKweak
and �SDKweak

, respectively, but

based on the SDK0 approach. Also, we will study the impact of �s!rkl , by setting it to zero,

as in the original formulation of the DP algorithm.

At 10 TeV, but also at lower energies, the EWSL due to �DL as well as to �SL can be

very large and up to the point, as we will see in Sec. 4, that in some kinematic regimes

�SDKweak
< �100%, which implies �NLOEW

< 0. In these cases, resummation is therefore not

a procedure for improving the precision and accuracy of the predictions but for obtaining

sensible results, i.e., positive cross sections. Resummation of EWSL has already been studied

in the literature [85–87, 101–103, 163–177] and recently a detailed study on its limitations and

subtleties, considering terms up to Next-to-Leading-Logarithmic (NLL) accuracy have been

discussed in detail in Ref. [108]. Here we do not aim to reach such a precision or investigate

the resummation procedure; we want to simply asses when resummation is either desirable or

mandatory in order to obtain meaningful predictions in the case NLO EW corrections lead

to a vanishing or negative cross section. To this purpose, we define the following quantity:

�EXPEW
⌘

⇣
�LO e

�SDKweak

⌘
+ (�NLOEW

� �SDKweak
) = �NLOEW

+O(↵2)⇥ �LO. (3.20)

The r.h.s. of Eq. (3.20) says that if �EXPEW
is expanded in powers of ↵ the NLO EW prediction

is captured exactly, while beyond O(↵) the resummed tower of EWSL of order ↵n logk(s/M2
W
)

with n > 1 and k = 2n, 2n � 1 is approximated via simple exponentiation. We stress again

that we do not claim we are doing NLL resummation of EWSL. We instead want to study

when and if it is necessary this procedure, by comparing �NLOEW
with the relative corrections

induced by �EXPEW
, namely

�EXPEW
⌘

�EXPEW
� �LO

�LO
= �NLOEW

+O(↵2) . (3.21)

In the exponentiation procedure, we do not include the contributions from HBR. As it

will be manifest in Sec. 4, the e↵ects due to the HBR (real) are in general much smaller than

the one induced by the virtual loops. Thus, the resummation of such contributions is clearly

not necessary as their virtual counterpart. However, we do see a case where both NLO EW

corrections and HBR are relevant, the multi EW jet (jEW) production, for which we calculate

additional quantities.

– 16 –

Exponentiation as an 
approximation of proper 
resummation.

tt̄
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NLO EW corrections are 
flat.

Sudakov logarithms work 
very well at low pt and 
very bad at high pt.
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Sudakov may completely fail: ZHH
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For High pt of the Z boson, 
the two Higgs can have 
very small  and so small 

, recoiling against 
the Z.


I n t h a t c o n fi g u r a t i o n , 
formally mass suppressed 
te rms  can 

b e c o m e n u m e r i c a l l y 
s i zeab le , and the DP 
algorithm fails. 

ΔR
m(HH)

∼
v

m(H1H2)

Sudakov may completely fail: ZHH
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Very small effects from Z and H radiation, especially in the bulk: pT(t) ≃ S /2
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Notice that in order to allow more phase space we required just   .

Still HBR << NLO EW in absolute value.

m(F) > 0.5 S
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EW Sudakov and SMEFT: tt̄

El Faham, Mimasu, DP, Severi, 
Vryonidou, Zaro: in preparation

Figure 14. Comparison between methods [a], solid line, [b], dashed line, [c], dotted line, for NLO
EW corrections to uū ! e

�
e
+ in the SM, similar to Figure 13. Insets: difference with [a].
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Figure 15. Same as Figure 6 for the operator O
8
tu.
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This section outlines our computational setup for the sample processes introduced in
Table 1: top quark pair production, both at the LHC and in a lepton collider, and electron-
positron pair production at the LHC. After introducing the relevant SMEFT operators in
Section 3.1, we validate our implementation of the DP algorithm in Section 3.2, showing
through an analytical calculation that it accurately reproduces the high-energy behavior of
exact NLO EW corrections. Next, in Section 3.3, we discuss our Monte Carlo implemen-
tation, based on MadGraph5_aMC@NLO, which will be made public together with this
work [HF: are we?].

3.1 Operators and notation

In this section, we introduce the dimension-6 four-fermion SMEFT operators that are the
focus of this study, along with the corresponding notation. These four-fermion operators
describe contact interactions that mediate 2 ! 2 scattering processes of constituent fermion
fields. We calculate the SMEFT contributions involving four-fermion operators under a
specific flavour symmetry assumption that singles out the top quark interactions:

U(3)l ⇥ U(3)e ⇥ U(2)q ⇥ U(2)u ⇥ U(3)d ⌘ U(2)
2
⇥ U(3)

3
, (3.1)

where the subscripts correspond to the five fermionic representations in the SM. This min-
imal breaking of the U(3)

5 symmetry allows for chirality-flipping top quark interactions,
such as dipole operators and modifications to the top-Yukawa coupling. Throughout, we
adopt the notation and operator conventions from Refs. [13, 54? ] [HF: add refs]. Unless
otherwise mentioned, we use q, u, and d to denote the left (q)- and right-handed quarks
(u, d) of the first two generations, and similarly, Q, t, and b for the third generation:

qi =
�
u
i

L, d
i

L

�
, ui = u

i

R, di = d
i

R, i = 1, 2.

Q = (tL, bL) , t = tR, b = bR.

Similarly, for the lepton fields, e and l represent right-handed fermion singlets and left-
handed fermion doublets.

Top quark pair production at the LHC In the context of top quark pair production
at the LHC, we focus on the four-fermion colour-octet operators. Due to their colour
structure, these operators provide the leading contribution to this process at O(1/⇤

2
) [HF:

at dimension six?]. This is in contrast to colour-singlet operators, which do not interfere
with the dominant SM amplitude for gluon-mediated qq̄ ! tt̄ scattering. The relevant
operators are defined as follows [HF: mention something about the chiral structure?]:

O
8
tu = (t�

µ
T
A
t)(ui�µT

A
ui), (3.2)

O
8
td

= (t�
µ
T
A
t)(di�µT

A
di), (3.3)

O
8
tq = (qi�

µ
T
A
qi)(t�µT

A
t), (3.4)

O
8
Qu = (Q�

µ
T
A
Q)(ui�µT

A
ui), (3.5)

O
8
Qd

= (Q�
µ
T
A
Q)(di�µT

A
di), (3.6)

O
1,8
Qq

= (Q�
µ
T
A
Q)(qi�µT

A
qi), (3.7)

O
3,8
Qq

= (Q�
µ
T
A
⌧
I
Q)(qi�µT

A
⌧
I
qi). (3.8)
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LHC

Only Four-Fermion operators are considered in the study. 

B o t h Q C D a n d E W 
corrections are different for 
SM, SM-SMEFT interference, 
and SMEFT^2 contributions 
of dim-6.

QCD and EW cancel each 
other: both are important.

K-factors can be different in SM and BSM! 
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Our revisitation and automation: Amplitude level
We have revisited and automated in aMG5 the Denner&Pozzorini 
algorithm for the evaluation of one-loop EW Sudakov corrections to 
amplitudes (Denner, Pozzorini ’01). In particular we have introduced the 
following novelties. 


- IR QED divergencies are dealt with via Dimensional Regularisation, 
with strictly massless photons and light fermions.


- Additional logarithms that involve ratios between invariants, and 
therefore angular dependences, are taken into account.


- We correctly take into account an imaginary term that was previously 
omitted in the literature. Relevant for  processes with 

- Moving to the level of interferences of tree and one-loop amplitudes, 
we take into account NLO EW contributions originating from QCD 
loops on top of subleading LO terms.

2 → n n > 2

40



Derivation of LSC and SSC

the logarithms l(M2
W,M2

Z), l(m
2
t ,M

2
W), and l(M2

H,M
2
W) are neglected. Furthermore, in the

limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms

n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

Va

k

l

Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give

δMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

∫ d4q

(2π)4
−4ie2pkplI

Va

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k ...i

′
l...in

0

(q2 −M2
Va
)[(pk + q)2 −m2

k′][(pl − q)2 −m2
l′ ]
, (3.1)

and in LA, using the high-energy expansion of the scalar three-point function [ 21], one
obtains

δMi1...in =
1

2

n
∑

k=1

∑

l !=k

∑

Va=A,Z,W±

IVa

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k...i

′
l
...in

0 [L(|rkl|,M2
Va
)− δVaAL(m

2
k,λ

2)].

(3.2)

5

  

2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge

bosons Va = A,Z,W
± connecting two external legs. In particular, they originate from

regions where the gauge boson is soft and collinear to one of the external legs. Their

expressions can be derived by evaluating them in the eikonal approximation.

In Ref. [39], DL have been in general identified as

L(|rkl|,M
2) = L(s,M2) + 2l(s,M2) log

|rkl|

s
+ L(|rkl|, s)

= L(s) + 2l(s) log
M

2
W

M2
+ 2l(s) log

|rkl|

s
+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are

further rearranged such that if M 6= MW , the mass-ratio logarithm log
M

2
W

M2 is kept only

when multiplying l(s). The dots at the end stand for the terms that are dropped in the

splitting of the logarithms. In Ref. [39], the first two terms in the second line of eq. (2.14)

are identified as the leading soft-collinear (LSC) contribution, which as already mentioned

is angular-independent and involves only the s/M2
W

ratio in the logarithms. The remaining

term leads to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W
± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],

C0(pk, pl,M,Mk,Ml) /
1

rkl

✓
log2

|rkl|

M2
� 2i⇡⇥(rkl) log

|rkl|

M2

◆
, (2.15)

where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) . (2.16)

The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not

– 10 –

configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.

– 7 –

Denner&Pozzorini

LSC SSC

The relation  is used in all logs, unless they multiply .rkl = rk′￼l′￼
= s l(s)

the logarithms l(M2
W,M2

Z), l(m
2
t ,M

2
W), and l(M2

H,M
2
W) are neglected. Furthermore, in the

limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms

n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

Va

k

l

Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give

δMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

∫ d4q

(2π)4
−4ie2pkplI

Va

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k ...i

′
l...in

0

(q2 −M2
Va
)[(pk + q)2 −m2

k′][(pl − q)2 −m2
l′ ]
, (3.1)

and in LA, using the high-energy expansion of the scalar three-point function [ 21], one
obtains

δMi1...in =
1

2

n
∑

k=1

∑

l !=k

∑

Va=A,Z,W±

IVa

i′
k
ik
(k)I V̄a

i′
l
il
(l)Mi1...i′k...i

′
l
...in

0 [L(|rkl|,M2
Va
)− δVaAL(m

2
k,λ

2)].

(3.2)
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2.2 Logarithm splittings

As already mentioned, the DL corrections come from loop diagrams with virtual gauge

bosons Va = A,Z,W
± connecting two external legs. In particular, they originate from

regions where the gauge boson is soft and collinear to one of the external legs. Their

expressions can be derived by evaluating them in the eikonal approximation.

In Ref. [39], DL have been in general identified as

L(|rkl|,M
2) = L(s,M2) + 2l(s,M2) log

|rkl|

s
+ L(|rkl|, s)

= L(s) + 2l(s) log
M

2
W

M2
+ 2l(s) log

|rkl|

s
+ · · · (2.14)

where the invariant rkl depends on the angle between the momenta pk and pl. Equation

(2.14) precisely represents the first of the logarithm splittings that has been mentioned

before. In the first line of (2.14) the quantity L(|rkl|,M2) is split into L(s,M2), which

is symmetric and energy dependent, and other two terms, of which the second can be

neglected in the approximation (2.4). Moving to the second line, the remaining terms are

further rearranged such that if M 6= MW , the mass-ratio logarithm log
M

2
W

M2 is kept only

when multiplying l(s). The dots at the end stand for the terms that are dropped in the

splitting of the logarithms. In Ref. [39], the first two terms in the second line of eq. (2.14)

are identified as the leading soft-collinear (LSC) contribution, which as already mentioned

is angular-independent and involves only the s/M2
W

ratio in the logarithms. The remaining

term leads to the angular-dependent subleading soft-collinear (SSC) contribution.

When loop diagrams with virtual gauge bosons Va = A,Z,W
± connecting two external

legs are evaluated in the eikonal approximation, the logarithmic dependence can be derived

by the expansion of the C0 function in the high-energy limit, namely condition (2.2). The

expression can be found in Ref. [96]. If the gauge boson V with mass M is exchanged

between the external particles �k and �l, the relevant quantity is, following the conventions

of Ref. [96],

C0(pk, pl,M,Mk,Ml) /
1

rkl

✓
log2

|rkl|

M2
� 2i⇡⇥(rkl) log

|rkl|

M2

◆
, (2.15)

where ⇥ is the Heaviside step function. It is then clear that rather than starting from

L(|rkl|,M2) as in eq. (2.14) the correct quantity to be taken into account is

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) . (2.16)

The di↵erence is an imaginary component that involves a term proportional to l(s). For

2 ! 2 processes, this is completely irrelevant and therefore all the results presented for

specific processes in Ref. [39] are not a↵ected by this additional term. Indeed, since 2 !

2 tree-level amplitudes are always real (as a consequence of the optical theorem), the

imaginary part of the one-loop (or Sudakov-approximated) amplitude drops out when the

real part of the loop-tree interference is considered. However, this is no longer the case

starting from 2 ! 3 processes, and indeed we do find that this imaginary part is not
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Our approach:    
irrelevant. We therefore repeat the procedure of eq. (2.14) in order to identify how the

impact of the term 2i⇡⇥(rkl) translates into the DP algorithm. Moreover we keep track of

the terms that would be otherwise discarded assuming condition (2.4).

Starting from (2.16) we obtain

L(|rkl|,M
2)� 2i⇡⇥(rkl)l(|rkl|,M

2) =

= L(s,M2) + 2l(s,M2)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s) =

= L(s) + 2l(s) log
M

2
W

M2
| {z }

LSC

+2l(s)

✓
log

|rkl|

s
� i⇡⇥(rkl)

◆

| {z }
SSC

+ (2.17)

2l(M2
W ,M

2) log
|rkl|

s
+ L(|rkl|, s)� 2i⇡⇥(rkl)l(|rkl|, s)

| {z }
SSCs!rkl

+ · · ·

where we have dropped in the splitting of the logarithms only terms involving neither s

nor rkl.5 In the third line of eq. (2.17) there are terms that are relevant for the formal

expansion in LA, i.e., the correct expression to be used instead of (2.14). The first two

terms in the sum give the LSC logarithms, while the third one contributes to the SSC

ones. On the contrary in the fourth line there are further terms that become relevant when

s � rkl � M , i.e., departing from condition (2.4). Formally, they do not enter the LA so

cannot be identified neither as LSC nor as SSC. On the other hand, since they depend on

rkl, we will take into account their contribution in the expression of the SSC logarithms

(Sec. 2.4). For this reason we have denoted them in eq. (2.17) as SSCs!rkl .

2.3 LSC: Leading soft-collinear contributions

The LSC logarithms can be rearranged as a single sum over the external legs,

�
LSC

M
i1...in =

nX

k=1

�
LSC
i
0
kik

(k)M
i1...i

0
k...in

0 , (2.18)

where �
LSC
i
0
kik

(k) reads

�
LSC
i
0
kik

(k) = �
1

2


C

ew
i
0
kik

(k)L(s)� 2(IZ(k))2
i
0
kik

log
M

2
Z

M
2
W

l(s) + �i0kik
Q

2
k
L
em(s,Q2

,m
2
k
)

�
.

(2.19)

In this case, besides the term L
em(s,Q2

,m
2
k
), the expression is the same of Ref. [39].

The expressions for the electroweak Casimir operator Cew, the squared Z-boson coupling

(IZ(k))2
i
0
kik

and charge Q
2
k
for a generic particle k and a specific polarisation can be found

in Ref. [39]. It is important to note that the first two quantities have indexes and can

5These terms are L(M2
W ,M2) and �i⇡⇥(rkl)l(M

2
W ,M2), which are indeed neglected unless the vector

boson is the photon and M2 ! Q2. In that case these contributions are retained. The former, together

with the term 2l(s) log
M2

W
M2 from the LSC, is entering the definition of Lem(s,Q2,m2

k) in eq. (2.20). The

latter, again only for the photons, enters directly eq. (2.23) together with the term 2l(M2
W ,M2) log |rkl|

s

from the SSCs!rkl .
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          in the expressionsrkl = rk′￼l′￼
= s

The conceptual derivation 
relies on the assumption 

, but is not actually 
used in the expressions.

Therefore, further angular 
dependencies are taken 
into account.

s = rkl

Previously omitted
imaginary term

  
New angular 

dependences via ratios 
among invariants

LSC SSC

DP, Zaro ‘21
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more on the very small effects from Z and H radiation
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EW jets

It is a general pattern: radiation of heavy bosons is much less important than 
loops!

43
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3.2.3 Quantities relevant to EW jets

The definition of EW jets has been provided in Sec. 3.1, and in Sec. 4.3.2 we will use it

for studying inclusive EW-dijet production, µ
+
µ
�

! 2jEW(+X). For such a process we

introduce additional quantities. First of all,

�X(2jEW) ⌘ �X(2V ) for X = LO, NLO EW, SDKweak , (3.22)

which means that the LO prediction, �LO(2jEW), is given by the prediction for the production

of 2V = W
+
W

�
, ZZ at LO and applying the clustering for obtaining the EW jets. Similar

considerations apply for X = NLO EW, SDKweak. It is also clear that

�HBR(2jEW) ⌘ �LO(3V ) , (3.23)

�NLOEW+HBR(2jEW) ⌘ �NLOEW
(2V ) + �LO(3V ) , (3.24)

and in addition we also define:

�nNLOEW+HBRNLO
(2jEW) ⌘ �LO(2V )

 
1 + �NLOEW

+
�
2
SDKweak

2

!

+ �NLOEW
(3V ) + �LO(4V ) . (3.25)

The prediction �NLOEW+HBR takes into account all the corrections of O(↵): the NLO EW

corrections to 2V and HBR, meaning 3V production at LO. The prediction �nNLOEW+HBRNLO

instead takes into account all the corrections of O(↵), as �NLOEW+HBR, and those of O(↵2),

where the two-loop corrections to 2V are approximated via their Sudakov component in the

SDKweak scheme;14 it corresponds to �NLOEW+HBR plus NLO EW corrections to HBR, double

HBR, and the approximation of the two-loop corrections that we have just mentioned.

For all these quantities we understand, consistently with the notation already used before:

�X ⌘
�X � �LO

�LO
. (3.26)

One should notice the exception of the case of HBR, Eq. (3.11).

3.3 List of aspects investigated in this work

In this section, we list the di↵erent aspects that we want to investigate, which are all related

to EW corrections to direct-production process at high-energy muon colliders.

1. First of all we want to give an overview of how large EW corrections can be, especially

when di↵erential distributions are considered. Our work considers only SM processes

and therefore total rates can be very small for some of them. However, the features of

EW corrections that we will discuss in Sec. 4 are not specific to the SM itself but can

be extended, in principle, to any BSM theory involving EW-charged particles. Thus,

we will focus on relative corrections rather than the rates. The SM can be considered

as a test case for a more general EW-interacting theory.

14The first line of Eq. (3.25) corresponds to �EXPEW
truncated at O(↵2) w.r.t. LO prediction.
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Figure 23. The pT (jEW,1) distribution in µ
+
µ
�

! 2jEW. The left (right) plot shows results at
p
S = 3 TeV (

p
S = 10 TeV). The histograms show LO (dashed) and NLO (solid predictions) for

W
+
W

� (green), ZZ (blue), 2V = W
+
W

� + ZZ (orange), 3V (red), and 4V (violet, only at the
LO). In the second inset, the quantities �nNLOEW+HBRNLO

and �NLOEW+HBR are shown respectively as
black-solid and black-dashed lines. These quantities are defined by Eq. (3.26) in terms of respectively
Eq. (3.25) and Eq. (3.24). The solid grey line shows the quantity �

2
SDKweak

/2, which enters only in
�nNLOEW+HBRNLO

.

In the plot in Fig. 23 we show the transverse momentum distribution of the hardest jEW,

pT (jEW,1), while in Fig. 24 the same distribution for the second-hardest jEW, pT (jEW,2). The

plots have a di↵erent colour code with respect to those shown in the previous sections and we

describe them in the following. In the main panel we show the contribution from the WW

final state (green) and ZZ (blue) which once summed leads to the 2V prediction (orange).

The total 3V contribution is in red and the 4V one in violet. All LO contributions are shown

as dashed lines while those at NLOEW accuracy as solid lines.

In the first inset we plot the quantities

�X(2V ) ⌘
�X(2V )� �LO(2V )

�LO(2V )
. (4.2)

�X(3V ) ⌘
�X(3V )

�LO(2V )
(4.3)

�X(4V ) ⌘
�X(4V )

�LO(2V )
(4.4)

where �LO(2V ) corresponds to the LO predictions for 2jEW production. Similarly, �NLOEW
(2V )
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Cross-sections: our approach.
FOR WHAT EW SUDAKOV ARE USEFUL?
For providing a very good approximation of NLO EW in the high-energy limit. 


HOW SHOULD ONE PERFORM THE CALCULATION IN THE HIGH-ENERGY LIMIT?
Photons have to be always clustered with massless charged particle for IR-safety reasons. But from 
an experimental point of view, at high energy also clustering tops and W bosons with photons is 
very reasonable, either if you imagine to tag heavy object directly or via their massless decay products.

The QED Logs, involving  and  (or ), cancel against their real-emission 
counterparts and PDF counterterms. The only one surviving are those from tops in vacuum 
polarisation for external (not tagged) photons, both in the initial and final state:

s λ2 Q2

SDKweak
Almost all the contributions of QED are removed 

(e.g. , ), 
but NOT in the parameter renormalisation .

CEW(k) → CEW(k) − Q2
k Q2

k = 0
δPR

DP, Zaro ‘21
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Implementation

• �i: the scalar doublet containing the Higgs particle H and the neutral and charged

Goldstone bosons �,�±.

An important technical point of the DP algorithm is that, since high-energy limit is as-

sumed, the Goldstone-boson equivalence theorem can be used. In fact, with this algorithm,

contributions from longitudinal gauge-bosons are always evaluated via the Goldstone-boson

equivalence theorem. We will return to this point in Sec. 5.1.

Following the same notation of Ref. [39], the couplings of each external field 'ik to the

gauge bosons Va is denoted by ieIVa('), namely, ieIVa
'i'i0

(') is the coupling corresponding

to the Va'̄i'i0 vertex, with all fields that are incoming. For simplicity, in the formulas

the components 'ik are replaced by their indices ik, namely, Ia
iki

0
k
(k). All the values and

formulas for the quantities Ia
iki

0
k
(k), as many other terms appearing in the next sections are

reported in detail in the appendices of Ref. [39]. We do not repeat them here, but we want

to warn the reader that the same exact conventions for Feynman rules have to be used in

order obtain consistent results.

For any process denoted as in (2.9), the Born matrix element reads

M
i1...in
0 (p1, . . . , pn). (2.10)

The O(↵) corrections to M0 in LA, �M, has the form

�M
i1...in(p1, . . . , pn) = M

i
0
1...i

0
n

0 (p1, . . . , pn)�i01i1...i0nin . (2.11)

Equation (2.11) means that the result can be written in a factorised form, but that involves

Born amplitudes for di↵erent processes. The contributions to �M have di↵erent origins:

� = �
LSC + �

SSC + �
C + �

PR
. (2.12)

The quantities �
LSC and �

SSC are respectively the leading and subleading soft-collinear

logarithms. They both emerge from the DL, which in turn originate from the eikonal ap-

proximation of one-loop diagrams where gauge bosons are exchanged between external legs

and are soft-collinear. The former represents the symmetric and solely energy-dependent

class of logarithms, while the latter involves mass ratios and ratios of invariants. The

quantity �
C consists of the collinear logarithms, originating from virtual collinear gauge

bosons from external lines and field renormalisation constants. The logarithms resulting

from parameter renormalisation, which can be determined by the running of the couplings,

corresponds to the term �
PR. In the case of longitudinally polarised bosons the equivalences

M
...W

±
L ...

0 = M
...�

±
...

0 ,

M
...ZL...

0 = iM...�...

0 , (2.13)

are used and can be applied also for what concerns the di↵erent terms entering the definition

of �.

In the following subsections we provide the formulas entering the implementation in

MadGraph5 aMC@NLO, which is described in Sec. 5. We will discuss in details only the

aspects concerning the di↵erences w.r.t. Ref. [39].
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Born amplitude:

One-loop EW 
Sudakov corrections:

the logsother tree-level

amplitudes

and techniques for tensor-integral reduction [112–114], all automated within the module

MadLoop [18]. Moreover, the codes CutTools [115], Ninja [116, 117] and Collier [118]

are employed within MadLoop, which has been optimised by taking inspiration from Open-

Loops [20] for the integrand evaluation.

As already possible in the code, NLO QCD and EW corrections can be invoked via the

syntax [QCD] [QED], see Refs. [16, 17] for more details. However, now the code allows also

for the evaluation of virtual one-loop Sudakov logarithms by adding after the command

generate or add process the flag --ewsudakov. As we have said, the code works for the

moment for O(↵) corrections to the ⌃LOi contribution with i = 1 and i = k, according to

eqs. (3.1) and (3.2). In order to implement the DP algorithm in MadGraph5 aMC@NLO,

three main technical features had to be implemented:

1. The generation of all the amplitudes that are necessary for the computation of the

DL and SL.

2. The evaluation of the amplitudes, especially the interferences of amplitudes involving

di↵erent external legs.

3. The evaluation of the derivatives of the amplitudes, which enter the formulas con-

cerning the PR terms.

In the following subsections we address each of the previous points.

5.1 Generation of the amplitudes

We start discussing the case of a generic partonic process

'i1(p1)'i2(p2) ! 'i3(p3) . . .'in(pn) , (5.1)

and at the end we return to the case of proton–proton collisions.

The formulas of Sec. 2, which are given for n ! 0 processes, can be easily reframed in

terms of more common 2 ! n� 2 amplitudes, via crossing symmetry.

Mi1...in(p1, . . . , pn) ⌘ M('i1(p1) . . .'in(pn) ! 0)

= M('i1(p1)'i2(p2) ! '̄i3(�p3) . . . '̄in(�pn)) (5.2)

As a first step, the algorithm checks if longitudinally polarised Z or W bosons are present

in the external legs. In such a case all the possible amplitudes that can be obtained

with one or more substitutions according to eq. (2.13) are generated. In other words,

starting from Mi1...{nWW±}{nZZ}...in , where {nWW
±
} and {nZZ} stands for nW and nZ

appearances of W and Z bosons respectively, the amplitudes Mi1...{(nW�1)W±}�±{nZZ}...in
and Mi1...{nW±}{(nZ�1)Z}�...in are recursively generated via the substitutions

Z �! � , (5.3)

W
±

�! �
±
, (5.4)

up to the point that allW and/or Z bosons are transformed into Goldstone bosons. Clearly,

any of the previous substitutions can lead to a process for which no tree-level Feynman
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G B E t h e o r e m f o r 
longitudinal W and Z 
bosons.

diagram can contribute to the amplitude. Such a case is automatically detected by the

code and the amplitude is not generated. From this point on, while the original amplitude

Mi1...{nWW±}{nZZ}...in is retained and used for the computation of the LO cross section,

the complete set of amplitudes

Mi1...{(nW�kW )W±}{kW�±}{(nZ�kZ)Z}{kZ�}...in , (5.5)

with 0  kW  nW and 0  kZ  nZ is used for the following steps in the generation of

the amplitudes.

As discussed in Sec. 2, the formulas for the di↵erent contributions leading to DL and SL

involve amplitudes with external particles that are di↵erent from the original ones in M0.

In particular, starting from the process in (2.9) it is necessary to generate the amplitudes

for all the processes

'i1(p1) . . .'i
0
k
. . .'in(pn)! 0 , (5.6)

with 1  k  n that can be obtained applying the substitution 'ik ! 'i
0
k
of the form:

Z  ! A , (5.7)

H  ! � . (5.8)

With the symbol  ! we understand that the substitution works in the two directions.

Substitution (5.7) is necessary for the non-diagonal components of Cew entering the LSC

terms and of bew
N 0N entering the C terms. Substitution (5.8) is necessary for the non-diagonal

components of (IZ)2 entering the neutral SSC terms. Moreover it is necessary to generate

also the amplitudes for the processes

'i1(p1) . . .'i
0
k
. . .'i

0
l
. . .'in(pn)! 0 , (5.9)

that can be obtained either applying two substitutions 'ik ! 'i
0
k
and 'il ! 'i

0
l
of the

form (5.8), again for the non-diagonal components of (IZ)2 in the neutral SSC terms, or

two di↵erent 'ik ! 'i
0
k
and 'il ! 'i

0
l
substitutions that together do not violate charge

conservation, each one of them of the form:

f�  ! f�� , (5.10)

H  ! �
±
, (5.11)

�  ! �
±
, (5.12)

A  ! W
±
, (5.13)

Z  ! W
±
. (5.14)

The substitutions (5.10)–(5.14) originate from the purely non-diagonal structure of

I
±
I
⌥ entering the charged SSC terms. We remind the reader that both the substitutions

(5.7)–(5.8) for the processes (5.6) and (5.10)–(5.14) for the processes (5.9) have to be

performed starting from each one of the possible processes in (5.5) that can be obtained

from (2.9) via the substitutions (5.3)–(5.4).

For hadronic calculations the initial-state at the Born is itself given by a set of di↵erent

partonic initial states. The procedure described so far has to be therefore repeated for

each partonic initial-state that can contribute at the Born level to the final-state that is

considered.
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Relevant for LSC and C 
contributions.

R e l e v a n t f o r S S C 
charged contributions.

Amplitudes with one or 2 
different external particles w.r.t. 
the Born have to be generated.45



Organisation of the logs in the algorithm

The DL term containing the invariant rkl depends on the angle between the momenta pk
and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s), (3.3)

the angular-dependent part is isolated in logarithms of rkl/s, and gives a subleading soft–
collinear (SSC) contribution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s) can be
neglected in LA. The remaining part, together with the additional contributions from
photon loops in (3.2), gives the leading soft–collinear (LSC) contribution and is angular-
independent. The eikonal approximation (3.1) applies to chiral fermions, Higgs bosons,
and transverse gauge bosons, and depends on their gauge couplings IVa(k).

Owing to the longitudinal polarization vectors (4.24) which grow with energy, matrix
elements involving longitudinal gauge bosons have to be treated with the equivalence
theorem, i.e. they have to be expressed by matrix elements involving the corresponding
Goldstone bosons. A detailed description of the equivalence theorem is given in Section 4.
As explained there, the equivalence theorem for Born matrix elements (4.26) receives no
DL one-loop corrections. Therefore, the soft-collinear corrections for external longitudinal
gauge bosons can be obtained using the simple relations

δDLM...W±

L
... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global SU(2) × U(1) transformations
implies

0 = δVaMi1...in = ie
∑

k

IVa

i′
k
ik
(k)Mi1...i′k...in . (3.5)

For external Goldstone fields extra contributions proportional to the Higgs vacuum ex-
pectation value appear, which are, however, irrelevant in the high-energy limit. Using
(3.5), the LSC logarithms in (3.2) can be written as a single sum over external legs,

δLSCMi1...in =
n
∑

k=1

δLSCi′
k
ik
(k)Mi1...i′k ...in

0 . (3.6)

After evaluating the sum over A, Z, and W in (3.2), the correction factors read

δLSCi′
k
ik
(k) = −

1

2

[

Cew
i′
k
ik
(k)L(s)− 2(IZ(k))2i′

k
ik
log

M2
Z

M2
W

l(s) + δi′
k
ikQ

2
kL

em(s,λ2, m2
k)

]

. (3.7)

The first term represents the DL symmetric-electroweak part and is proportional to the
electroweak Casimir operator Cew defined in (B.10). This is always diagonal in the SU(2)
indices, except for external transverse neutral gauge bosons in the physical basis (B.14),
where it gives rise to mixing between amplitudes involving photons and Z bosons. The

6

with

δCi′
k
ik
(k) = δcolli′

k
ik
(k) +

1

2
δZϕ

i′
k
ik

∣

∣

∣

∣

µ2=s
. (4.3)

The collinear factors δcoll(k) and the corrections δC(k) depend on the quantum numbers of
the external fields ϕik . In the following we give the results for chiral fermions, transverse
charged gauge bosons WT, transverse neutral gauge bosons AT,ZT, longitudinal gauge
bosons WL,ZL, and Higgs bosons. We use the conventions of Ref. [ 16] for the Feynman
rules, the self-energies, and the renormalization constants.

Chiral fermions

In LA the FRCs for fermions fκ
σ with chirality κ = R,L and isospin indices σ = ± are

given by

δZκ
fσfσ′

= δσσ′

{

−
[

Cew
fκ +

1

4s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(µ2)

+Q2
fσ

[

2l(M2
W,λ2)− 3l(M2

W, m2
fσ)
]}

, (4.4)

where the contribution of a non-trivial quark-mixing matrix is not considered. The FRCs
depend on the chirality of the fermions, and contain Yukawa terms proportional to the
masses of the fermion fσ and of its isospin partner f−σ. While these are negligible for
leptons and light quarks, they give large contributions for fκ

σ = tR, tL, and bL, where one
of the masses is mt.

From the mass-singular loop diagrams we obtain the factor [ 18]

δcollfσfσ′
(fκ) = δσσ′

[

2Cew
fκ l(µ2) + 2Q2

fσ
l(M2

W, m2
fσ
)
]

, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′
(fκ) = δσσ′

{[

3

2
Cew

fκ −
1

8s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(s) +Q2
fσ
lem(m2

fσ
)

}

,

(4.6)
where the pure electromagnetic logarithms

lem(m2
f ) :=

1

2
l(M2

W, m2
f ) + l(M2

W,λ2) (4.7)

originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)
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with

δCi′
k
ik
(k) = δcolli′

k
ik
(k) +

1

2
δZϕ

i′
k
ik

∣

∣

∣

∣

µ2=s
. (4.3)

The collinear factors δcoll(k) and the corrections δC(k) depend on the quantum numbers of
the external fields ϕik . In the following we give the results for chiral fermions, transverse
charged gauge bosons WT, transverse neutral gauge bosons AT,ZT, longitudinal gauge
bosons WL,ZL, and Higgs bosons. We use the conventions of Ref. [ 16] for the Feynman
rules, the self-energies, and the renormalization constants.

Chiral fermions

In LA the FRCs for fermions fκ
σ with chirality κ = R,L and isospin indices σ = ± are

given by

δZκ
fσfσ′

= δσσ′

{

−
[

Cew
fκ +

1

4s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(µ2)

+Q2
fσ

[

2l(M2
W,λ2)− 3l(M2

W, m2
fσ)
]}

, (4.4)

where the contribution of a non-trivial quark-mixing matrix is not considered. The FRCs
depend on the chirality of the fermions, and contain Yukawa terms proportional to the
masses of the fermion fσ and of its isospin partner f−σ. While these are negligible for
leptons and light quarks, they give large contributions for fκ

σ = tR, tL, and bL, where one
of the masses is mt.

From the mass-singular loop diagrams we obtain the factor [ 18]

δcollfσfσ′
(fκ) = δσσ′

[

2Cew
fκ l(µ2) + 2Q2

fσ
l(M2

W, m2
fσ
)
]

, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′
(fκ) = δσσ′

{[

3

2
Cew

fκ −
1

8s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(s) +Q2
fσ
lem(m2

fσ
)

}

,

(4.6)
where the pure electromagnetic logarithms

lem(m2
f ) :=

1

2
l(M2

W, m2
f ) + l(M2

W,λ2) (4.7)

originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)
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second term originates from Z-boson loops, owing to the difference between MW and MZ,
and

Lem(s,λ2, m2
k) := 2l(s) log

(

M2
W

λ2

)

+ L(M2
W,λ2)− L(m2

k,λ
2) (3.8)

contains all logarithms of pure electromagnetic origin. The LSC corrections for external
longitudinal gauge bosons are directly obtained from (3.7) by using the quantum numbers
of the corresponding Goldstone bosons. Formula (3.7) is in agreement with Refs. [ 9, 11].
In Ref. [ 10] the logarithm L(m2

k,λ
2) that depends on the mass of the external state is

missing.

Subleading soft–collinear contributions

The contribution of the second term of (3.3) to (3.2) remains a sum over pairs of
external legs,

δSSCMi1...in =
n
∑

k=1

∑

l<k

∑

Va=A,Z,W±

δVa,SSC
i′
k
iki

′
l
il
(k, l)Mi1...i

′
k...i

′
l...in

0 , (3.9)

with angular-dependent terms. The exchange of soft, neutral gauge bosons contributes
with

δA,SSC
i′
k
iki

′
l
il
(k, l) = 2

[

l(s) + l(M2
W,λ2)

]

log
|rkl|
s

IAi′
k
ik
(k)IAi′

l
il
(l),

δZ,SSCi′
k
iki

′
l
il
(k, l) = 2l(s) log

|rkl|
s

IZi′
k
ik
(k)IZi′

l
il
(l), (3.10)

and, except for IZ in the neutral scalar sector H,χ (see App. B), the couplings IN are
diagonal matrices. The exchange of charged gauge bosons yields

δW
±,SSC

i′
k
iki

′
l
il

(k, l) = 2l(s) log
|rkl|
s

I±i′
k
ik
(k)I∓i′

l
il
(l), (3.11)

and owing to the non-diagonal matrices I±(k) [cf. (B.17), (B.22) and (B.26)], contributions
of SU(2)-transformed Born matrix elements appear on the left-hand side of (3.9). In
general, these transformed Born matrix elements are not related to the original Born
matrix element and have to be evaluated explicitly.

The SSC corrections for external longitudinal gauge bosons are obtained from (3.9)
with the equivalence theorem (3.4) , i.e. the couplings and the Born matrix elements for
Goldstone bosons3 have to be used on the right-hand side of (3.9).

The application of the above formulas is illustrated in Section 6 for the case of 4-
particle processes, where owing to r12 = r34, r13 = r24 and r14 = r23, (3.9) reduces to

δSSCMi1i2i3i4 =
∑

Va=A,Z,W±

2
[

l(s) + l(M2
W,M2

Va
)
]

× (3.12)

{

log
|r12|
s

[

IVa

i′1i1
(1)I V̄a

i′2i2
(2)Mi′1i

′
2i3i4

0 + IVa

i′3i3
(3)I V̄a

i′4i4
(4)Mi1i2i′3i

′
4

0

]

3Note that for Goldstone bosons χ, the equivalence theorem as well as the couplings (B.23) and (B.21)
contain the imaginary constant i.
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.

– 7 –

Two examples: LSC and C for fermions

Casimir for the entire
SU(2)L × U(1)B

Charge for
U(1)QED

The full EW is present between  and , while only QED is present between  and .s M2
W M2

W λ2

So the QED contribution is split between the intervals . But the division at 
 is simply determined by convenience, in parallel with the weak case. In this case  is 

just a technical parameter and not a physical quantity. 

(s, M2
W) + (M2

W, λ2)
M2

W M2
W
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Cross-sections: standard approach in the literature

The DL term containing the invariant rkl depends on the angle between the momenta pk
and pl. Writing

L(|rkl|,M2) = L(s,M2) + 2l(s,M2) log
|rkl|
s

+ L(|rkl|, s), (3.3)

the angular-dependent part is isolated in logarithms of rkl/s, and gives a subleading soft–
collinear (SSC) contribution of order l(s) log(|rkl|/s), whereas terms L(|rkl|, s) can be
neglected in LA. The remaining part, together with the additional contributions from
photon loops in (3.2), gives the leading soft–collinear (LSC) contribution and is angular-
independent. The eikonal approximation (3.1) applies to chiral fermions, Higgs bosons,
and transverse gauge bosons, and depends on their gauge couplings IVa(k).

Owing to the longitudinal polarization vectors (4.24) which grow with energy, matrix
elements involving longitudinal gauge bosons have to be treated with the equivalence
theorem, i.e. they have to be expressed by matrix elements involving the corresponding
Goldstone bosons. A detailed description of the equivalence theorem is given in Section 4.
As explained there, the equivalence theorem for Born matrix elements (4.26) receives no
DL one-loop corrections. Therefore, the soft-collinear corrections for external longitudinal
gauge bosons can be obtained using the simple relations

δDLM...W±

L
... = δDLM...φ±...,

δDLM...ZL... = iδDLM...χ..., (3.4)

from the corrections (3.2) for external Goldstone bosons.

Leading soft–collinear contributions

The invariance of the S matrix with respect to global SU(2) × U(1) transformations
implies

0 = δVaMi1...in = ie
∑

k

IVa

i′
k
ik
(k)Mi1...i′k...in . (3.5)

For external Goldstone fields extra contributions proportional to the Higgs vacuum ex-
pectation value appear, which are, however, irrelevant in the high-energy limit. Using
(3.5), the LSC logarithms in (3.2) can be written as a single sum over external legs,

δLSCMi1...in =
n
∑

k=1

δLSCi′
k
ik
(k)Mi1...i′k ...in

0 . (3.6)

After evaluating the sum over A, Z, and W in (3.2), the correction factors read

δLSCi′
k
ik
(k) = −

1

2

[

Cew
i′
k
ik
(k)L(s)− 2(IZ(k))2i′

k
ik
log

M2
Z

M2
W

l(s) + δi′
k
ikQ

2
kL

em(s,λ2, m2
k)

]

. (3.7)

The first term represents the DL symmetric-electroweak part and is proportional to the
electroweak Casimir operator Cew defined in (B.10). This is always diagonal in the SU(2)
indices, except for external transverse neutral gauge bosons in the physical basis (B.14),
where it gives rise to mixing between amplitudes involving photons and Z bosons. The
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with

δCi′
k
ik
(k) = δcolli′

k
ik
(k) +

1

2
δZϕ

i′
k
ik

∣

∣

∣

∣

µ2=s
. (4.3)

The collinear factors δcoll(k) and the corrections δC(k) depend on the quantum numbers of
the external fields ϕik . In the following we give the results for chiral fermions, transverse
charged gauge bosons WT, transverse neutral gauge bosons AT,ZT, longitudinal gauge
bosons WL,ZL, and Higgs bosons. We use the conventions of Ref. [ 16] for the Feynman
rules, the self-energies, and the renormalization constants.

Chiral fermions

In LA the FRCs for fermions fκ
σ with chirality κ = R,L and isospin indices σ = ± are

given by

δZκ
fσfσ′

= δσσ′

{

−
[

Cew
fκ +

1

4s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(µ2)

+Q2
fσ

[

2l(M2
W,λ2)− 3l(M2

W, m2
fσ)
]}

, (4.4)

where the contribution of a non-trivial quark-mixing matrix is not considered. The FRCs
depend on the chirality of the fermions, and contain Yukawa terms proportional to the
masses of the fermion fσ and of its isospin partner f−σ. While these are negligible for
leptons and light quarks, they give large contributions for fκ

σ = tR, tL, and bL, where one
of the masses is mt.

From the mass-singular loop diagrams we obtain the factor [ 18]

δcollfσfσ′
(fκ) = δσσ′

[

2Cew
fκ l(µ2) + 2Q2

fσ
l(M2

W, m2
fσ
)
]

, (4.5)

and the complete contribution (4.3) reads

δCfσfσ′
(fκ) = δσσ′

{[

3

2
Cew

fκ −
1

8s2w

(

(1 + δκR)
m2

fσ

M2
W

+ δκL
m2

f−σ

M2
W

)]

l(s) +Q2
fσ
lem(m2

fσ
)

}

,

(4.6)
where the pure electromagnetic logarithms

lem(m2
f ) :=

1

2
l(M2

W, m2
f ) + l(M2

W,λ2) (4.7)

originate from the photonic loops as a result of the gap between the electromagnetic and
weak scales. The symmetric-electroweak part of (4.6), i.e. the term proportional to l(s),
agrees with Refs. [ 7, 15] up to the Yukawa contributions, and the electromagnetic part
(4.7) agrees with Ref. [ 15].

Transverse charged gauge bosons W

The FRC of W± bosons in LA reads

δZWW = −
∂ΣWW

T (k2)

∂k2

∣

∣

∣

∣

∣

k2=M2
W

= [bewW − 2Cew
W ] l(µ2) + 2Q2

Wl(M2
W,λ2), (4.8)
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configurations. Rather, the process without decays should be first considered and the

decays should be then taken into account only after applying the DP algorithm.

Being aware of all the possible limitations given by the conditions (2.2) and (2.4), we

describe the DP algorithm and some modifications we have introduced in order to achieve

the formal leading and subleading logarithmic accuracy (LA), i.e., taking into account only

enhanced DL and SL terms of the form (2.1), for one-loop EW virtual corrections to any

SM amplitudes, in DR and therefore with possibly massless particles. The problems related

to the validity of condition (2.4) will be also addressed, giving a pragmatic solution.

The starting point of the DP algorithm is that since all the terms considered are

logarithmic, they can be expressed via the quantities

L(|rkl|,M
2) ⌘

↵

4⇡
log2

|rkl|

M2
and l(|rkl|,M

2) ⌘
↵

4⇡
log

|rkl|

M2
, (2.5)

where rkl can be any of the invariants4 and M any of the masses among MW ,MH , mt and

MZ , depending on the associated Feynman diagrams. Moreover, in the case of massless

particles, the regularisation of the divergences will lead to logarithms of the form (2.5) where

M ! Q and Q being the IR-regularisation scale. The most important point, in order to

understand the novelties introduced in this section, is that the DP algorithm splits twice

the logarithms of the form in (2.5); both splittings are connected to the modifications of

the DP algorithm that we present in this work.

First, logarithms of the form in (2.5) are split into two classes: a symmetric and solely

energy-dependent class, which is associated to the scales MW and
p
s and parametrised by

the quantities

L(s) ⌘ L(s,M2
W ) and l(s) ⌘ l(s,M2

W ) , (2.6)

and a remaining class of logarithms involving mass ratios and ratios of invariants. This

splitting involves the imaginary component that we are going to introduce in the formulas

and that is not present in Ref. [39]. It also involves the modifications that take care of the

violation of condition (2.4).

Second, while above the scale MW all one-loop EW contributions are treated in an

unified approach, without separating purely QED from purely weak e↵ects, below the MW

scale only the QED component is present, involving logarithms between MW and the IR

scale. In other words, for the contribution from QED loops MW works as a technical

separator. Above MW we have for example (see eq. (2.19)) quantities parametrised via

the electroweak Casimir operator Cew, which involves the entire SU(2)⇥U(1) group, while

below MW we have only quantities that involve the charges Qk of the external particles.

The latter class of contributions is denoted by the apex “em”, standing for electromagnetic,

and in Ref. [39] it arises from the energy hierarchy MH ,mt,MW ,MZ � mf 6=t � �, where

� is the mass of the photon. In this separation the logarithms l(M2
W
,M

2
Z
), l(m2

t ,M
2
W
), and

4As it will be also explained later (see eq. (2.9)), the DP algorithm is derived for n ! 0 processes with

all the momenta incoming, but it can be easily adapted to the usual 2 ! n � 2 processes via crossing

symmetry. Momentum conservation therefore implies that some of the momenta must have, e.g., negative

energy and that some of the rjk are negative. For instance, crossing a 4 ! 0 process into a 2 ! 2 process

r13 = (p1 + (�p3))
2 = t.

– 7 –

Two examples: LSC and C for fermions

Casimir for the entire
SU(2)L × U(1)B

Charge for
U(1)QED

The logarithms between  and the infrared scale are simply removed. Equivalently in the 
case of DR, logarithms involving  and the IR regulator .


Easy, but not very well motivated.

We will denote in the following this approach as .

M2
W

M2
W Q2

SDK0

SDK0
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