Status of drift chamber for CEPC

Mingyi Dong

On behalf of CEPC drift chamber group

The 2024 international workshop on the high energy Circular Electron Positron Collider , Oct 22 – 27, 2024, Hangzhou

Outline

- Introduction of drift chamber for CEPC
- Performance study
- Preliminary design of mechanics and Readout scheme
- R & D progress
- Summary

Drift Chamber for CEPC reference detector

- PID is essential for CEPC, especially for flavor physics
- Combined tracking system that includes a silicon tracker and a drift chamber is an important option.
- Drift chamber will be optimized for its PID capability
- Provides better than 3σ separation power for K/π with momentum up to 20GeV/c
- Benefits tracking and momentum measurement

Ionization measurement with dN/dX

Key issues with dN/dx measurement

- Detector optimization and performance study (dN/dx resolution and PID capability)
 - Geometry of the detector
 - Mechanical structure, material budget
 - Gas mixture: low drift velocity, suitable ionization density gas with low diffusion and low multi electron ionization
- Precise testing of waveforms
 - Fast and low noise electronics
- dN/dx reconstruction algorithm
 - Identifying primary and secondary ionization signals
 - Reducing noise impacts
 - Improve the reconstruction efficiency

Waveform-based full simulation

Machine learning reconstruction algorithm

- LSTM-based peak finding and DGCNN-based clusterization
- ~ 10% improvement of PID performance with ML

Long Short-Term Memory (LSTM)-based peak finding higher efficiency than the derivative-based algorithm, especially for the pile-up recovery

dN/dx Resolution

The reconstructed n_{cls} distributions are very well Gaussian-like

- dN/dx resolution (1.2 m track length):
 - 2.5%-2.6% for Pion
 - 2.6%-2.7% for Kaon

- 1.2 m track length
- For 20 GeV/c K/π, Separation power: 3.2σ

Momentum Resolution

$$\sigma(1/p_t) = a \pm b/p_t$$

	Higgs	Z-pole
a (1/GeV)	2.1×10 ⁻⁵	3.2×10 ⁻⁵
b	0.77×10 ⁻³	1.16×10 ⁻³

Momentum resolution is comparable with TPC at Higgs and Z mode

Overall mechanical design

End plates + CF frame structure

CF frame structure

- CF frame structure: 8 longitudinal hollow beams + 8 annular hollow rings + inner CF cylinder and outer CF cylinder
 - Length: 5800 mm
 - Inner diameter: 1200 mm, Outer diameter: 3600 mm
- Each End plate: including 4 steps, thickness: 20 mm, weight: 880 kg

Wire tensions

	Cell number/step	0	U	•	Total tension/step (kg)
step1	9172	5668	86.92	133.56	4472.08
step2	7528	5122	70.98	109.07	2997.38
step3	5845	4526	55.43	85.16	1817.14
step4	3939				
total	26483		11.75	01.11	10209

Diameter of field wire (Al coated with Au) : 60µm Diameter of sense wire (W coated with Au): 20µm Sag = 280 µm

Meet requirements of stability condition:

$$T > (\frac{VLC}{d})^2 / (4\pi\varepsilon_0)$$

Finite element analysis

- Max Mises tress of End plate : 30MPa
- Endplate deformation
 2.7mm

- Max Mises tress of CF frame : 235MPa
- CF frame deformation 1.1mm

The structure is stable

Preliminary readout scheme of drift chamber

Considering : radiation hardness Power consumption, Material budget

FEE-1:

Rad-hard analog preamps FEE-2:

ADC and FPGA board for data readout and buffering, put in low dose region

High Bandwidth Preamp 100mW/ch -> ~2.6kW in total

1.3kW for each end plate, air cooling is OK no additional material budget

Analog signal on Cable 2.8mm per co-ax 12 signals + 1 Power 3dB attenuation @ 280MHz

0.5Gbps/12 channels--

compatible with requirement of CEPC overall readout scheme $_{13}$

Preliminary design parameters

R extension	600-1800mm		
Length of outermost wires $(\cos\theta=0.85)$	5800mm		
Thickness of inner CF cylinder: (for gas tightness, without load)	200µm		
Thickness of outer CF cylinder: (for gas tightness, without load)	300µm		
Outer CF frame structure	Equivalent CF thickness: 1.8 mm		
Thickness of end Al plate:	20mm		
Cell size:	~ 18 mm × 18 mm		
Cell number	26483		
Ratio of field wires to sense wires	3:1		
Gas mixture	He/iC ₄ H ₁₀ =90:10		

Detector R&D and test

Scintillator

- Two drift tubes + preamps + ADC (DT 5751 digitizer with 1GHz sampling rate)
- Two scintillators provide trigger signals

Preliminary results

- Clear peaks
- Rise time : ~ ns
- The performance of preamplifiers:
 - Low noise
 - high bandwidth

Multi-layer prototype design

- Prototype with 12 layers (120 cells) was designed for dN/dx resolution study
- Components (wires, feedthroughs, connectors) were prepared
- Cell size : 18 mm imes 18 mm
- Sense wire: 20 μm Au-plated tungsten
- Field wire: 60 μm Aluminum or 80 μm Au-plated Aluminum

Readout electronics design

- A readout prototype system is developed, consisting of a preamplifier board, an ADC board and an FPGA board
- The ADC board is based on two high-speed ADCs (ADI AD9695), 14 bit resolution, and a maximum sampling of 1.4 Gsps

Test of the readout electronics

- The readout system was tested with a detector prototype
- The tested waveforms seem ok. Clear peaks and low noise
- The ADC board and an FPGA board will be integrated into one board in next version

Collaboration with INFN (IDEA DC group)

- Beam tests organized by INFN group:
 - Two muon beam tests performed at CERN-H8 (βγ > 400) in Nov. 2021 and July 2022
 - A muon beam test (from 4 to 12 GeV/c) in 2023 performed at CERN
 - Test in July 2024 aimd to fully exploit the relativistic rise
- Contributions from IHEP group:
 - Participate data taking and collaboratively analyze the test beam data
 - Develop the machine learning reconstruction algorithm

Nicola De Filippis, 2023 CEPC workshop, Nanjing 23-27, 2023

Summary

- R&D progress of CEPC drift chamber:
 - Simulation studies show that 3.2 σ K/ π separation at 20GeV/c can be achieved with 1.2m track length
 - Preliminary mechanical design and FEA show the structure is stable, and global electronics scheme is reasonable
 - Fast electronics development is under progress. Preliminary tests validated the performance of the readout electronics and the feasibility of dN/dx method
- Further study plan
 - Detector prototyping and testing
 - Fine detector optimization
 - Optimize deep learning algorithm and FPGA implementation

Thanks for your attention

Garfield++ simulation

