

Simulation and prototyping of Pixelated readout TPC for CEPC

<u>Xin She</u>, <u>Canwen Liu</u>

On behalf of CEPC TPC study group

CEPC2024 Workshop Hangzhou, China Oct 25, 2024 Motivation: TPC detector for future e+e- collider

- Simulation of beam-induced background in TPC
- Progress on pixelated readout TPC prototype
- Summary

TPC detector for future e+e- collider

- A TPC is a promising main tracking detector candidate for future e+e- colliders experiments
 - Baseline detector in CEPC CDR and ILD
 - **Pixelated TPC** is the baseline main track detector (MTK) in CEPC Ref-TDR
- Pixelated readout TPC is potential to **improve PID requirements of Flavor Physics** at e+e- collider.
- TPC technology can be interest for other future colliders (EIC, KEKb...)

Azimuth = -10.2

booster

(Optional

Experiment

Betatron 8

momentu

collimation

Beam dum

TPC challenges at Higgs/Z

- CEPC operation stages in TDR: 10-years Higgs \rightarrow 2-years Z-pole \rightarrow 1-year W
- TPC's inner radius and half length increase to 60cm/290cm in CEPC Ref-TDR
- Challenges:
 - Hit density and Voxel Occupancy
 - Beam induced background
 - Space Charge effect and Distortion

Simulation of beam-induced background in TPC

The sources of hits/space charge in TPC

Space charge in TPC volume:

- > Physics events: $H \rightarrow ss/cc/sb$, $Z \rightarrow qq...(High P_T)$
- > Beam background : (Low P_T)
 - **Beamstrahlung** (Luminosity related)
 - Beam-Gas, Beam Thermal Photon, SR...(Single Beam)
 - Injection background
- > IBF at the MPGDs

Simulation flow:

TPC hit density caused by pair-production

- 10000 BS file (provided by *Haoyu Shi*) are exported to CEPCSW for full detector simulation
- All hits have been extracted to calculate the distribution of the hit density:
 - > ~2 MHz /cm²/s @Z-pole, ~0.36 MHz/cm²/s @Higgs
 - Max. Voxel Occupancy 1.5‰ @ Z-pole, (500um × 500um pixel, 300ns time window)
 - > Pixelated readout TPC can handle the high-count rate environment, especially for

TPC hits distribution at Higgs/Z-pole mode in the same time-scale

TPC hit density at a function of radius at Higgs/Z-pole mode

CEPC Z-pole mode

TPC distortion caused by primary ions

- Radial distortion (Δ_r) is much smaller than azimuthal distortion, almost imperceptible when along the track for most P_T track
- Azimuthal distortion ($\Delta_{r\phi}$) has much serous impact both on high/low P_T tracks
- The maximum $\Delta_{r_{\varphi}}$ is 20µm @Higgs (acceptable) and 150µm @Z-pole (need to optimization)

← Azimuthal distorti ← Radial distortion

High P_T

Low P_T

Progress on Pixelated readout TPC prototype

Readout scheme for Pixelated TPC

- Pixel readout electronics
 - Multi-ROIC chips + Interposer PCB as RDL
 - High metal coverage
 - Four-side buttable
- Low-power energy/time measurement ASIC: TEPIX
 - Low noise: ~100 e- noise
 - 5 ns drift time resolution
 - Low power: 100 mW/cm^2 (0.25mW/ch)

Readout ASIC for Pixelated TPC

- Block diagram
 - Charge Sensitive Preamplifier(CSA)
 - CDS amplifier provides additional gain and noise shaping
 - Wilkinson type ADC each pixel
 - Timing discriminator with Time of Arrival information

Readout ASIC for Pixelated TPC

- Top-level Design
 - On-chip data zero-compression
 - Only the fired event can be readout

Readout ASIC for Pixelated TPC

- Waveform monitoring for outputs of CSA and CDS
- Electronic functional verification

In-pixel calibration source

TEPIX ASIC chips test results

- TEPIX: Low power Energy/Timing measurement
 - Low power Consumption ~ 0.5mW/ch
 - Timing ~ <10 LSB(10ns)
 - Noise ~ < 300e⁻ (even high gain)

Parameter	Spec
Number of channels	128
Power Consumption	Analog<30mW
	Digital<30mW
ENC	~300 e(high gain)
Dynamic Range	25fC(high gain)
	150fC(low gain)
INL	<1%
Time Resolution	<10ns

Pixelated readout TPC modules

- There are 248×2 readout modules planned for the TPC endcap in CEPC Ref-TDR
- TPC modules for Beam test:
 - Pixel size ~ 500 um × 500 um
 - 10×300 readout channels
 - Can mounted in the large TPC prototype at DESY

Pixelated TPC module for Beam test

Offline analysis program

• Offline analysis program (*cepcPixTPC*) is developing

• Features:

- Raw binary data to ROOT data
- MC data generation
- Chips and Channels <-> readout Pixel Mapping
- Events reconstruction
- External libraries:
 - Full simulation framework of Pixelated TPC (Yue Chang)
 - Garfield++/ROOT, for simulation and visualization
 - KalTest, for track reconstruction and fitting
 - Nlohmann, for tasks configuration

Preliminary test results with prototype

- Raw binary data from DAQ can convert to root data successfully
- Got expected energy/Trigger Time value according to the charged injected
 - Charge injected ~6fC
 - 4 Triggers, gap between each trigger 40us
- The uniformity test result : <8%
- Detailed TPC events reconstruction algorithm is under developing.

Readout Pixel uniformity test for 500 readout pixels

TPC hit reconstruction process

Summary

- The Pixelated TPC is the baseline main track detector and an irreplaceable tool for large 3-D track reconstruction and PID.
- Occupancy is acceptable, even for High luminosity Z-Pole
- Beam induced background has significant impact on TPC, especially at High Luminosity Z-pole conditions
- A low-power consumption pixelated readout chip **TEPIX** has been developed
- Validation with pixelated prototype is underway in preparation (including detector and offline program)

Thanks!

Back up 1: BS pairs vertex distribution

-60

-40

-100 -80

-20

20

0

40

60

80 100

z [mm]

10°

Back up 2: BS pairs cosz distribution

Back up 3: BS pairs endpoint

Back up 4: Pt of background particle in TPC

Back up 5: Background events display

Preliminary test result with self-calibration signal:

- Charge injected ~6fC;
- ➢ 4 triggers, gap between each trigger 40us

Trigger time and energy statistic:

Result:

- got expected trigger time.
- got expected energy value according to the charge injected.
- some channels has lower energy of 1st trigger, need further investigation.

Detector implementation in CEPC Ref-TDR

- <u>DD4hep</u> is adopted to provide the full detector description in <u>CEPCSW</u>, instead of Mokka
 - Easy to setup detectors, "Plug and Play"
- Detector models:
 - **CEPC_v4**: baseline detector in CDR
 - CEPC_TDR: Ref-TDR detector
- New TPC geometry has been implemented by
 <u>DD4hep</u> and exported to CEPCSW
- Verification of the new TPC geometry's material budget and hit-map has been completed
 - $0.6\% X_0$ at barrel and $\sim 15\% X_0$ at Endplate

Space charge density in TPC

- Number of primary ions can be calculated by Edep/effective ionization potential of Ar [26 eV]
- The ion charge density at any time is given by:
- ~0.55s assuming 5m/s ion drift velocity

- **Ref Daniel Jeans' slides**
- $\bullet \rho_{sc} \sim \text{primary ions/BX} \times \text{BX} \text{ frequency} \times \text{max drift time of ion} \times 50\%$ [ion already reached cathode]
- BX frequency: 1/23ns @Z-pole, 1/355ns @Higgs
- The space charge in CEPC TPC is ~50× smaller than FCCee, ref KEK *Daniel Jeans* simulation results

Beam background in a TPC at a circular collider

Calculation method of the distortion

- Distorted electrical field can be solved analytically based on Green's function:
- The potential due to a arbitrary space charge density can be evaluated via:

$$\Phi(r,\varphi,z) = \frac{1}{\dot{o}_0} \int r' dr' \int d\varphi' \int dz' \rho_{sc}(r',\varphi',z') \cdot G(r,\varphi,z;r',\varphi',z')$$

 \succ For distorted transverse electrical filed (average over ϕ) :

$$E_{r}(r,z) = \frac{2}{b_{0}L} \sum_{n=1}^{\infty} \frac{\sin\beta_{n}z}{R_{0}^{0}(\beta_{n},a,b)} \int_{0}^{L} \sin(\beta_{n}z')dz' [$$

$$(K_{0}(\beta_{n}a)I_{1}(\beta_{n}r) + I_{0}(\beta_{n}a)K_{1}(\beta_{n}r)) \int_{r}^{b} r'R_{0}^{0}(\beta_{n},b,r')\rho_{sc}(r')dr' + (K_{0}(\beta_{n}b)I_{1}(\beta_{n}r) + I_{0}(\beta_{n}b)K_{1}(\beta_{n}r)) \int_{a}^{r} r'R_{0}^{0}(\beta_{n},a,r')\rho_{sc}(r')dr']$$
In practice, n>200, $\beta_{n} > n\pi/L$

> TPC distortions under different drift length:

LANGEVIN equation:
$$m_e \frac{d\vec{v}}{dt} = e \cdot \vec{E} + e \cdot (\vec{v} \times \vec{B} - k \cdot \vec{v})$$
 Ref K. Fujii and ALICE slides

$$\Delta_{r\varphi} = \int_0^L \frac{\omega \tau}{1 + \omega^2 \tau^2} \times \frac{E_r}{E_z} dz$$
 $\omega \tau = BField[kGauss] * \frac{-10. * |Drift Velocity[cm/\mu sec]|}{|Electric Drift Field Strength [V/cm]|}$

