Studies on the dynamic range of SiPMs with high pixel densities

<u>Zhiyu Zhao^{3,4,5}</u>, Baohua Qi^{1,2}, Shu Li^{3,4,5}, Yong Liu^{1,2}

- 1. Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing, 100049, China
- 2. University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing, 100049, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, 1 Lisuo Road, Shanghai 201210, China
- 4. Institute of Nuclear and Particle Physics, School of Physics and Astronomy, 800 Dongchuan Road, Shanghai 200240, China
- 5. Key Laboratory for Particle Astrophysics and Cosmology (MOE), Shanghai Key Laboratory for Particle Physics and Cosmology (SKLPPC), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

Energy dynamic range of CEPC Crystal ECAL

The future Circular Electron-Positron Collider (CEPC) is envisioned as a large-scale Higgs factory. A highly granular crystal ECAL has been proposed to address major challenges in jet reconstruction and achieve optimal EM resolution of around 2–3%/ \sqrt{E} for CEPC. This calorimeter features a homogeneous structure with BGO long crystal bars as the active material, and SiPMs as optional photon sensors.

SiPM response to pico-second laser

ullet

At center-of-mass energies ranging from 240GeV to 360GeV, the energy deposition in a single crystal bar can reach up to 30GeV, potentially resulting in the detection of approximately 337k photoelectrons per channel. This places significant demands on the dynamic range of SiPMs.

Experiment setup

An experiment using PMT operated at different gains as a scaler to measure the intrinsic dynamic range of SiPM with large pixel densities.

PMT – main scaler: by applying different bias voltages to operate at different gains, linear response is maintained across the entire input range

- Saturation values are close to but a little smaller than their pixels number.

SiPM	Nominal pixel counts	Max. photon counts	5% non-linearity
S13360-6025PE	57600	51347	4246
S14160-3010PS	89984	82664	11750
EQR06 11-3030D-S	244719	125775	2433

Non-linearity starts at very beginning region, and saturation value is only half of its pixel number. (Further researches are need for this type of SiPM)

Simulation – SiPM response to BGO scintillation

A Monte Carlo model to simulate the SiPM response to BGO($40 \times 1 \times 1 cm^3$) scintillation light. The model includes both BGO and SiPM properties.

- The non-linear behaviors of SiPM are delayed due to the long decay time of
- SiPMs with 10µm pixels are potentially

Summary

- Design an experiment to measure the intrinsic dynamic range of SiPMs with large pixel numbers under pico-second laser.
- Build a MC model for simulating the SiPM response to BGO scintillation. The simulation results show that SiPM with $10\mu m$ pixels can keep a linear response within the 30GeV (337k p.e. per channel) energy dynamic range.

The 2024 International Workshop on the High Energy Circular Electron Positron Collider – Hangzhou