Development of a Highly Granular Crystal ECAL for CEPC

Ji-Yuan CHEN

On Behalf of CEPC Calorimeter Working Group

23 October 2024

中國科學院為能物記酬完備 Institute of High Energy Physics Chinese Academy of Sciences

SHANGHAI JIAO TONG UNIVERSITY

The 2024 International Workshop on the High-Energy CEPC, Hangzhou, 23–27 October 2024

CEPC as a Higgs Factory

- CEPC studies the Higgs boson, and uses it to explore new physics BSM.
- CEPC will also act as *W/Z* and top factories.

- CEPC requires a boson mass resolution (BMR) of (3-4)% and jet energy resolution (JER) of $\sim 30\% / \sqrt{E [GeV]}$.
- The 4th detector concept, based on particle flow algorithm (PFA).

- Two designs: SiW-ECAL & ScW-ECAL.
- Energy resolution: $(15-20)\%/\sqrt{E[GeV]}$ (from beam tests).
- **Restriction:** not sensitive enough to photons.

- Intrinsic EM energy resolution: $\sim 3\%/\sqrt{E [GeV]} \oplus 1\%$.
- Structure: crossed-bar BGO crystals, dual read-out with SiPM.

- **Target:** improve 3D position resolution.
- Preliminary results: an energy resolution of ~0.35% for 5 GeV photons.

Shanghai Jiao Tong University

PART ONE

Performance Study of SiPMs & Crystals

Dynamic Range and Linearity of SiPM

- Set-up: pico-second laser, PMT, Si-PD, SiPM.
- Conclusions:
 - Saturation value is ~90% of the pixel number.
 - Linearity ends at $\sim 7.5 \times 10^3$ pe.

Uniformity of BGO Crystal Bars

- Set-up: 1×1×40 cm³ BGO crystal bar, air/grease-coupled to SiPM, scanning with Cs-137 source (~8 mm collimator).
- Conclusions:
 - Good uniformity at ~2.5% level along a single crystal bar.
 - \circ Optical grease increases the number of detected photons by ~59%.

Time Resolution of BGO Crystal Bars

- Set-up: 1×1×40 cm³ BGO crystal bar, dual read-out with SiPM.
- Methods: leading-edge fitting & constant fraction timing.
- Conclusions:
 - **Leading-edge fitting** yields the best time resolution.
 - Time resolution of ~1 ns at 1 MIP signal level.

Time Resolution vs. Fraction

Overview of the 2023 Beam Tests

- At CERN in May: small-scale crystal module $(10.7X_0)$.
- At DESY in October: module with twice thickness $(21.4X_0)$, crystal bars of different sizes.

Overview of the 2024 CERN Beam Test

- **Set-up:** crystal module, crystal bars, external trigger, water-cooling board.
- **Targets**:
 - Study the **EM energy resolution** of the crystal module. Ο
 - Study the time resolution of single crystal bars of different sizes.

5 GeV e⁻

Shanghai Jiao Tong University

PART TWO

Simulation & Reconstruction with CEPCSW

Realisation of Crystal ECAL in CEPCSW

- **Targets:** maximise E_{dep} in crystals; avoid cracks pointing to IP.
- Dead materials: ESR, PCB, SiPM, carbon fibre, cooling plate.

• Additional issues: linearity of SiPM, radiation damage, attenuation in crystal bars, photon detection efficiency, etc.

Key Parameters	Value	Remarks
MIP Light Yield	~200 pe/MeV	8.9 MeV/MIP in 1 cm BGO
Energy Threshold	0.1 MIP	Depends on S/N and light yield
Crystal Non-Uniformity	< 1%	Along the crystal and among the crystals
Dynamic Range	(0.1–3000) MIP/channel	Up to 30 GeV per crystal bar
Time Resolution	~500 ps @ 1 MIP	Ideal performance from Geant4 simulation

Linearity and Energy Resolution

- Set-up: ECAL-only; (0.25-80) GeV photon (discrete energies), barrel region.
- **Conclusion:** good linearity (> 10 GeV), high energy resolution (1.694%/ $\sqrt{E [GeV]} \oplus 0.1513\%$ after digitisation).

- Motivation: a golden channel for precision measurements of Higgs properties.
- Conclusion: BMR = (0.439 ± 0.015)%.
- **Remark:** the performance of CyberPFA reconstruction is still being studied.

• Summary:

- Tests of SiPMs and crystals display the rationality of using crystals for ECAL.
- o Beam tests of crystal modules show the room for improvement of digitisation models.
- Simulation within CEPCSW reveals the potential of crystal ECAL in studying physical processes with photon final states.

• Outlook:

- Further studies of single SiPMs and crystals will be carried out.
- o Using beam test data, simulation and digitisation models will be better validated.
- Performance of reconstruction with crystal ECAL in CEPCSW will be improved, and more physical processes will be studied.

Shanghai Jiao Tong University

Appendix

- Laser diode with a driver circuit: 1.6 W diode, 450 nm peak wavelength, < 5 ns pulse width, kHz trigger rate (by AWG), (0–30) V power supply.
- The pulse duration is longer than pixel recovery time.
- The number of detected pe may exceed the saturation value.

Dynamic Range and Linearity of SiPMs

Type of SiPM	Active Area / mm ²	Pixel Pitch / µm	/ µm Pixel Number	
HPK S13360-6025PE	6×6	25	57,600	
<u>HPK S14160-3010PS</u>	3×3	10	89,984	
NDL EQR06 11-3030D-S	3×3	6	244,719	
$\int_{1}^{10^{3}} \int_{0}^{10^{3}} \int_{0$	$ \begin{array}{c} 100 \times 10^{3} \\ 90 \\ 80 \\ 70 \\ 60 \\ 50 \\ 50 \\ 60 \\ 40 \\ 50 \\ 60 \\ 40 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	$= 89984$ $= \in N_{trurh}$ $= (N_{trurh})$ $= $	Saturation: half of pixel pur $\frac{1}{500}$ $\frac{1}{1000}$ $\frac{1}{1500}$ $\frac{1}{2000}$ $\frac{1}{2500}$ $\frac{1}{3000}$ $\frac{1}{3000}$ $\frac{1}{10^3}$	
HPK S13360-6025PE	HPK S14160-301	IOPS NDL	. EQR06 11-3030D-S	

- Toy MC model with SiPM pixel density, PDE spectrum, cross-talk and BGO emission spectrum.
- MC strictly saturates to pixel number, different from experimental results; but the results reveal the trends of the experiments.

 Toy MC model with SiPM pixel density, PDE spectrum, cross-talk, waveform properties, multi-fire effect of pixels, BGO emission spectrum and detection time of scintillation photons.

23

Timing Methods

- Leading-edge fitting: $y = \left[1 \exp\left(-\frac{x-p_0}{p_1}\right)\right] \cdot p_2$.
- Waveform fitting: $y = \left[1 \exp\left(-\frac{x}{p_0} + 1\right)\right] \cdot p_2 \cdot \exp\left(-\frac{x}{p_3} + p_4\right)$.
- Leading-edge fitting yields the best time resolution.

Characterising Digitisation Parameters

Category	Parameter	Value	Note	Value from the Module
Scintillation	Intrinsic Light Yield	8,200 ph/MeV	Property of BGO, (8,000–10,000) ph/MeV	8,200 ph/MeV
	Effective Light Yield	200 pe/MIP	$LY_{int} \cdot LCE \cdot PDE$, 1×1×40 cm ³ BGO	760 or 1,340 pe/MIP (module 1 or 2)
	MIP Energy	8.9 MeV	5 GeV μ^- penetrate 1 cm BGO	17.8 MeV (2 cm BGO)
	Non-Uniformity Along Bar	0.03%	$[(Ch1 + 2)_{max} - (Ch1 + 2)_{min}]/(Ch1 + 2)_{min}$	— (< 1% in measurement)
	Difference Between Two Ends	5%	$(Ch1_{max} - Ch2_{min})/Ch2_{min}$	— (< 1% in measurement)
	Light Collection Efficiency	1.1%	To ensure the effective light yield	3.1% or 5.4%
	Photon Detection Efficiency	25%	SiPM, <u>NDL EQR06</u>	17% or 30% (<u>HPK S14160-3010/15PS</u>)
SiPM	Active Area	3×3 mm ²	SiPM, <u>NDL EQR06</u>	3×3 mm ² (<u>HPK S14160-3010/15PS</u>)
	Pixel Pitch	6 µm	SiPM, <u>NDL EQR06</u>	10 or 15 μm
	Pixel Number	244,719	SiPM, <u>NDL EQR06</u>	89,984 or 57,600
	DCR	2.5 MHz	SiPM, <u>NDL EQR06</u>	0.7 MHz
	Gain Fluctuation	8%	SiPM, <u>NDL EQR06</u>	5%
	Cross-Talk	12%	SiPM, <u>NDL EQR06</u>	0.5%
ADC	Time Window	2 µs	Assumption, depends on shaping time	87.5 ns
	Number of Gain Modes	3	Assumption	2 (CAEN A5202, Citiroc-1A)
	Dynamic Range	(0.1–4,885) MIP	Accurately measured within 30 GeV	(0.1–80) MIP
	Vertical Accuracy	13-bit, 8,192 ADC	Citiroc-1A	13-bit, 8,192 ADC
	Switching Point	8,000 ADC	Citiroc-1A	7,900 ADC
	Pedestal Position	50 ADC	Citiroc-1A	(40–80) ADC
	Pedestal Width	4 ADC	SiPM dark noise is not included	(3–10) ADC, with dark noise 25

Mechanical Design of Barrel ECAL

Mechanical Design of End-Cap ECAL

Potential of Crystal ECAL in Flavour Physics

- The performance of ECAL is characterised by $B_{(s)}^0$ mass resolution.
- Crystal ECAL improves the accuracy in $B_{(s)}^0 \to \pi^0 \pi^0$ by a factor of **3–5**.

Type of ECAL	EM Energy Resolution	σ_{m_B} /MeV	Accuracy in $B^0 o \pi^0 \pi^0$	Accuracy in $B^0_s o \pi^0 \pi^0$
SiW-ECAL	$17\%/\sqrt{E \ [GeV]} \oplus 1\%$	170	~1.2%	~21%
Crystal ECAL	$3\%/\sqrt{E \text{ [GeV]}} \oplus 0.3\%$	30	~0.4%	~4%

https://indico.ihep.ac.cn/event/19839/contributions/138701/attachments/71081/85973/Yuexin_CKMalpha_20230814.pdf

• Selection of MC photons:

- An event has two and only two photons (**PDGID = 22**);
- Both photons satisfy $\theta \in [60^\circ, 120^\circ]$.
- Selection of particle flow objects (PFOs):
 - Discard PFOs with $E \leq 0$ at first.
 - > 2 PFOs: iterate all combinations, then select the two PFOs that correspond to an invariant mass closest to $m_{\pi^0} = 134.9768$ MeV.
- **Remark:** with current CyberPFA, if an event has only 1 PFO, then it corresponds to two merged photons and is mis-identified as one photon (cannot be used for reconstruction).

Reconstruction of $\pi^0 \rightarrow \gamma \gamma$ **Process**

- Lorentz boost dominates, especially at high energies $(E_{k,\pi^0} \gg m_{\pi^0})$, making two photons difficult to separate.
- Few minor clusters are formed, since *E*_{total} is not too high.

Kinematics in $\pi^0 \rightarrow \gamma \gamma$ Process

- The energy of the MC photons cannot be effectively reconstructed at high energies.
- Minor clusters result in the long tails on the left.

- Motivation: $B_{(s)}^0 \to \pi^0 \pi^0$ help determine CKM angle α (ϕ_2).
- **Conclusion:** crystal ECAL achieves a π^0 mass resolution of ~3% at 3 GeV.
- **Remark:** the distributions of invariant mass become irregular at high energies.

• Selection of MC photons:

- An event has two and only two photons (PDGID = 22), and their mother particle is the Higgs boson ($p_{\gamma} \ge 30 \text{ GeV}$); 9,573/9,600 = 99.72%
- Both photons satisfy $\theta \in [60^\circ, 120^\circ]$;
- Shower begins at $r = \sqrt{x^2 + y^2} \ge 1$, 830 mm.
- Selection of PFOs: similar to Event Selection of $\pi^0 \rightarrow \gamma\gamma$, but select the pair with an invariant mass closest to $m_H = 125.25$ GeV. 3,980/9,600 = 41.46%
- **Remark:** with current CyberPFA, if photon conversion happens within the tracker, more than one PFOs will be reconstructed.

4,840/9,600 = 50.42%

3,980/9,600 = 41.46%

- $E_{k,H} \ll m_H$, Lorentz boost does not significantly affect the angle between two MC photons, and the photons can be separated effectively.
- Scattered hits form a large number of minor clusters.

Kinematics in $H \rightarrow \gamma \gamma$ Process

- In general, the energy of the MC photons can be effectively reconstructed.
- Minor clusters result in the long tails on the left.
- Energy leakage to HCAL is mainly **below 10%**.

