

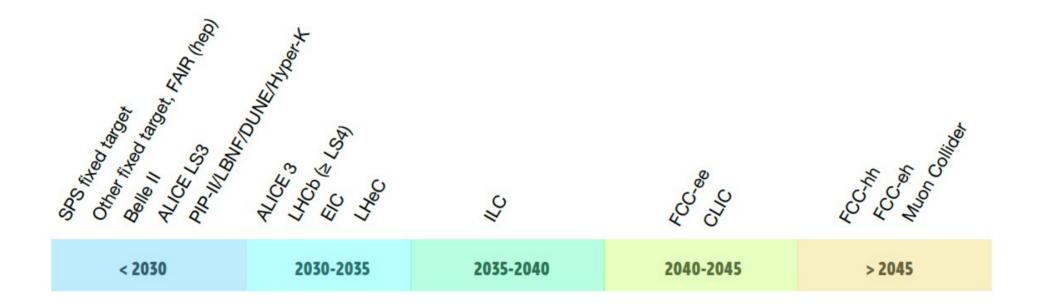
Istituto Nazionale di Fisica Nucleare Sezione di Pavia

- ECFA R&D Roadmap
 - CERN-ESU-017
 - 248 pages full text and 8 page synopsis
- Endorsed by ECFA and presented to CERN Council in December 2021

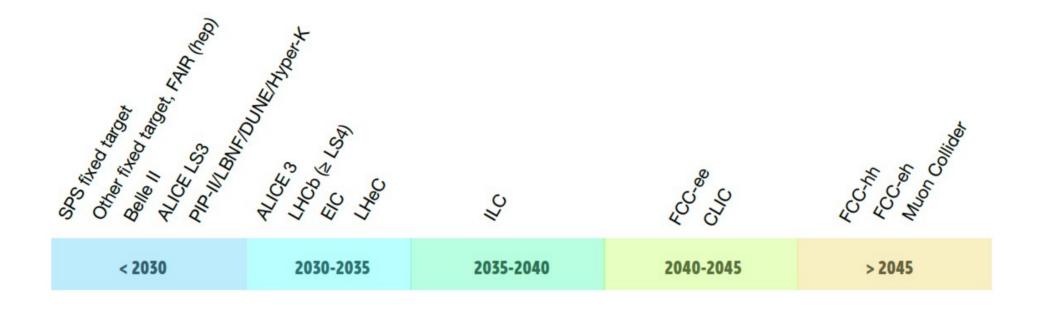
Roadmap identified:

- General Strategic Recommendations (GSRs)
- Detector R&D Themes (DRDTs) per task-force topic
- Concrete R&D Tasks

THE 2021 ECFA DETECTOR RESEARCH AND DEVELOPMENT ROADMAP


The European Committee for Future Accelerators Detector R&D Roadmap Process Group

Timescale of projects as approved by European Lab Director Group (LDG)

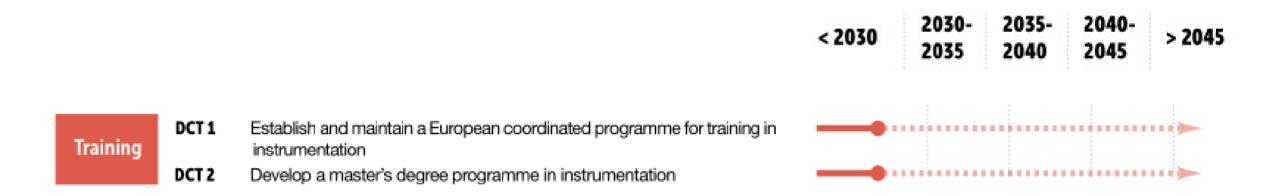


Timescale of projects as approved by European Lab Director Group (LDG)

Guiding principle for DRDs: any project realisation must *NOT* be delayed by detectors

 \rightarrow main focus is strategic R&D

however also "blue-sky" R&D *MUST* be covered

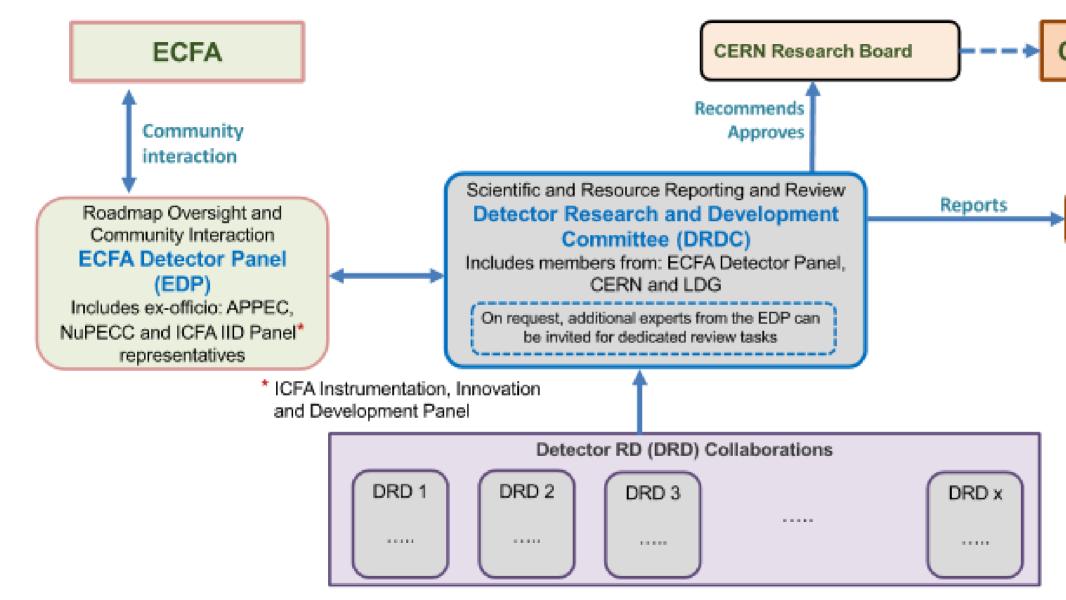


Detector R&D Themes

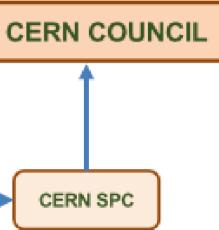
> 2045

			< 2030	2030- 2035	2035- 2040	2040- 2045	> 204
	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with			-	>	
Gaseous	DRDT 1.2	long-term stability Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out			-	>	
	DRDT 1.3	schemes Develop environmentally friendly gaseous detectors for very large					
	DRDT 1.4	areas with high-rate capability Achieve high sensitivity in both low and high-pressure TPCs					
	DRDT 2.1	Develop readout technology to increase spatial and energy resolution for liquid detectors		•			
	DRDT 2.2	Advance noise reduction in liquid detectors to lower signal energy thresholds		•			
Liquid	DRDT 2.3	Improve the material properties of target and detector components in liquid detectors		•			
	DRDT 2.4	Realise liquid detector technologies scalable for integration in large systems		\rightarrow			
	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors		•	•	•	\rightarrow
Solid	DRDT 3.2	Develop solid state sensors with 4D-capabilities for tracking and			-		\rightarrow
state	DRDT 3.3	calorimetry Extend capabilities of solid state sensors to operate at extreme fluences				•	
	DRDT 3.4	Develop full 3D-interconnection technologies for solid state devices in particle physics					\rightarrow
DID and	DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors			•	-	->
PID and Photon	DRDT 4.2	Develop photosensors for extreme environments	-	•	•	•	
	DRDT 4.3	Develop RICH and imaging detectors with low mass and high resolution timing			-	\rightarrow	
		Develop compact high performance time-of-flight detectors				-	
		Promote the development of advanced quantum sensing technologies Investigate and adapt state-of-the-art developments in quantum					
Quantum	DRDT 5.3	technologies to particle physics Establish the necessary frameworks and mechanisms to allow		>			
	DRDT 5.4	exploration of emerging technologies Develop and provide advanced enabling capabilities and infrastructure					
		Develop radiation-hard calorimeters with enhanced electromagnetic					
Calorimetry	DRDT 6.2	energy and timing resolution Develop high-granular calorimeters with multi-dimensional readout			-	>	
	DRDT 6.3	for optimised use of particle flow methods Develop calorimeters for extreme radiation, rate and pile-up environments					->
		Advance technologies to deal with greatly increased data density Develop technologies for increased intelligence on the detector					
		Develop technologies in support of 4D- and 5D-techniques					
Electronics		Develop novel technologies to cope with extreme environments and			_		
	DRDT 7.5	required longevity Evaluate and adapt to emerging electronics and data processing technologies					>
	DRDT 8.1	Develop novel magnet systems	_	_		_	->
		Develop improved technologies and systems for cooling				-	>
Integration		Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.	-	•	•		
	DRDT 8.4	Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects			•	-	->

w/ key focus on inclusivity and diversity



- **GSR1-** Supporting R&D facilities
- GSR2- Engineering support for detector R&D
- GSR3- Specific software for instrumentation
- GSR4- International coordination and organisation of R&D activities
- GSR5- Distributed R&D activities with centralised facilities
- GSR6- Establish long-term strategic funding programmes
- GSR7- Blue-sky R&D
- GSR 8 Attract, nurture, recognise and sustain the careers of R&D experts
- **GSR 9 Industrial partnerships**
- GSR 10 Open Science



Implementation

- DRD1 : Gaseous Detectors [ex RD51]
- DRD2 : Liquid Detectors
- DRD3 : Semiconductor Detectors [ex RD50, RD42, ...]
- DRD4 : Photodetectors and Particle ID
- DRD5: Quantum Sensors
- DRD6: Calorimetry
- DRD7: Electronics
- DRD8: Integration

- World-wide collaborations
- Built upon established detector R&D communities (RD50, RD51, Calice, Crystal Clear, ...) as well as (proto-)colloaborations for present or proposed facilities
- As inclusive as possible
- Identify and/or develop synergies \rightarrow minimise duplications / optimise resource utilisation
- Try to assure that nothing was left or fell out ...
- Huge programme with short-term, middle-term, long-term targets

- Community-driven "resource-loaded" Work Packages (WPs) w/ dedicated (independent) funding lines
- Scientific organisation in Working Groups (Wgs): forum for sharing expertise and identifying joint projects
- Common projects (in case): short-term blue-sky R&D or common tool development

Each DRD independently formed & organised \rightarrow community-driven process

Technology driven \rightarrow gaseous detectors, liquid detectors, ... but calorimetry

 \rightarrow calorimeters: big, complex systems with system issues

 \rightarrow strong bidirectional relations with other DRDs

DRD6 – Calorimetry

Coordinators: Roberto Ferrari, Gabriella Gaudio (INFN-Pavia), Roman Pöschl (IJCLab)

Representative from ECFA Detector R&D Panel: Felix Sefkow (DESY)

WP 1: Sandwich calorimeters with fully embedded electronics – Main and forward calorimeters Conveners: Adrian Irles (IFIC), Frank Simon (KIT), Jim Brau (University of Oregon), Wataru Ootani (University of Tokyo), Imad Laktineh (I2PI), Lucia Masetti (J.G. Universität Mainz), Mary-Cruz Fouz (CIEMAT)

WP 2: Liquified noble gas calorimeters

Conveners: Martin Aleksa (CERN), Nicolas Morange (IJCLab), Marc-Andre Pleier (BNL)

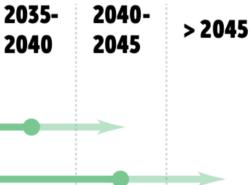
WP 3: Optical calorimeters: Scintillating based sampling and homogenous calorimeters Conveners: Etiennette Auffray (CERN), Macro Lucchini (University and INFN Milano-Bicocca), Philipp Roloff (CERN), Sarah Eno (University of Maryland), Hwidong Yoo (Yonsei University), Michaela Mlynarikova (CERN)

WP 4: Electronics and DAQ

Christophe de la Taille (OMEGA)

Transversal Activities

Photodetectors: Alberto Gola (FBK)


ECFA **DRD6 – Future facilities and DRDTs for calorimetry**

	DRDT 6.1	Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution		
Calorimetry	DRDT 6.2	Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods	 	
	DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up environments		:

- DRDTs and (provisional) time scale of facilities set high-level boundary conditions
- Both as well as GSRs should be taken into account when formulating R&D proposals few details in next slides

2030-

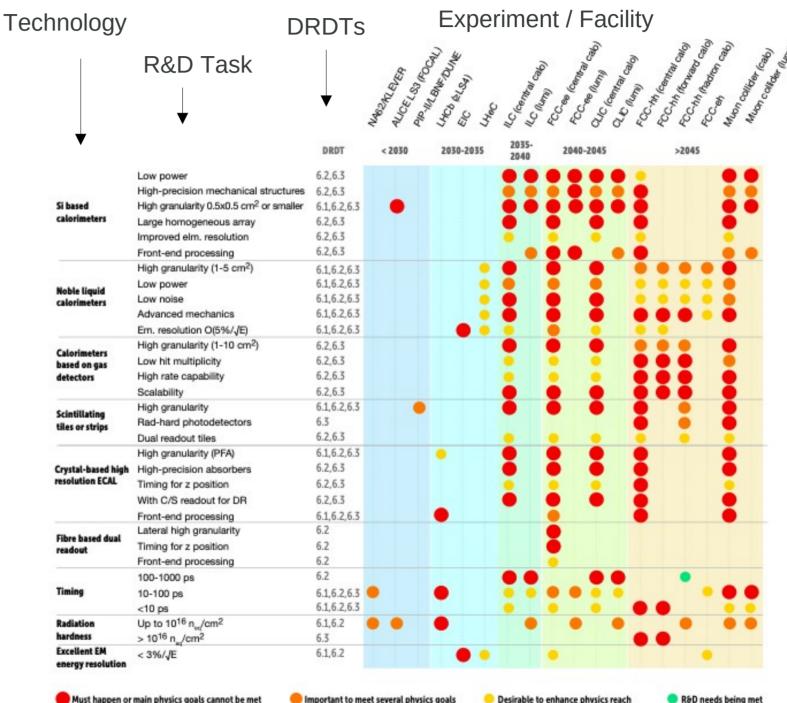
2035

< 2030

DRD6 – Calorimetry overview table

Project	~Earliest Start of data taking	Current Calorimeter options					
		Solid state	Scintilling tiles/strips	Crystals	Fibre based r/o (including DR)	Gaseous	Liquid Noble Gas
HL-LHC (>LS4)	2030			~	~		
SuperKEKb (>2030)	2030			~			
ILC	2035	v	v			v	
CLIC	2045	~	~				
CEPC	2035	v	V	V	v	V	v
FCC-ee	2045	v	~	~	v	~	~
EiC	2030		v	v	v		
FCC-hh (eh)	>2050	~	v				~
Muon Collider	> 2050	~	~	~	~	~	
Fixed target	"continous"		~	~	~		
Neutrino Exp.	2030		~				(v)

in most cases, final choices still to be made


ECFA **DRD6 – Identified key technologies and R&D tasks**

Key technologies and requirements identified in roadmap

- Si based calorimeters
- Liquid Noble Gas calorimeters
- Calorimeters based on gas detectors
- Scintillating tiles and strips
- Crystal based high-resolution ECal.s
- Fibre-based dual readout

• R&D should in particular enable

- Precision timing
- Radiation hardness
- High granularity
- R&D Tasks grouped into
 - Must happen
 - Important
 - Desirable
 - Already met

Must happen or main physics goals cannot be met

Important to meet several physics goals

DRD6 – Reminder on today's "ecosystem" for calorimetry $F(F\Delta$

- European projects such as AIDAinnova and EURO-Labs
- CERN EP-Programme
- Existing collaborations (LHC Experiments, Belle II, DUNE, NA62, KLEVER, ...)
- R&D Collaborations and communities (CALICE, FCAL, Crystal Clear, GranuLAr, CalVision, ...)
- Proto collaborations (ILD, SiD, CLICdp, FCC Detector with LAr, IDEA, EpIC, ...)

 \rightarrow DRD 6 process successfully built integrating existing R&D activities

FCFA **DRD6 – Common issues – lot of room for collaboration**

New active materials:

- Fast, high-density, low-cost, scintillating materials
- Fast and rad-hard WLS fibres

Sensors + FF elx:

- Low x-talk, low-noise, low-power budget
- High granularity \rightarrow high integration \rightarrow embedded FE elx
- High-precision timing \rightarrow from O(100) ps down to O(10) ps
- Radiation hardness
- Si/GaAs sensors: high integration, very-front-end integration, sensor bonding
- CMOS sensors: MAPS, digital SiPMs
- Photosensor architecture: MCP-PMTs, SiPMs, LGADs, ...,
- Photosensor performance: dynamic range, light yield, timing, UV sensitivity, ...
- ASICs: architecture, timing performance
- Components / connectors reliability
- High data rate \rightarrow on-chip processing (DNN) for data selection and compression

FCFA **DRD6 – Common issues – lot of room for collaboration (2)**

Mechanics / production issues:

- Low-material budget
- High mechanical precision
- Industrialisation, engineering, scalability \rightarrow relation w/ industry
- High-density absorber (e.g. W) production \rightarrow (e.g.) 3D-printing

Services:

- Cooling
- Powering and control
- Clock distribution for O(10) ps timing

Others:

- Beam test infrastructure, setup & DAQ software (EUDAQ)
- Beam line features + common beam requests
- MC samples \rightarrow common benchmarks
- Software tools (DD4hep, EDM4hep, Key4hep, ...), event-data format (?)
- Test benches, but also ... PFA and dual readout

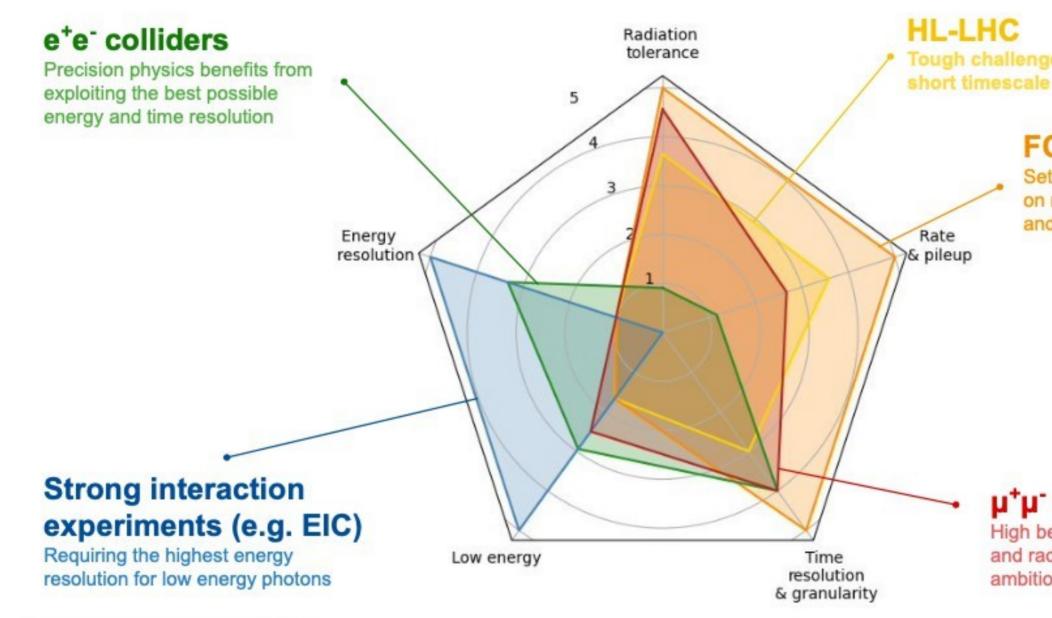
add transversal package to cover overarching topics?

With respect to other DRDs:

- Gaseous Detectors (TF1) for hadron calorimetry
- Solid State Detectors (TF3) for CMOS sensors
- PID and Photon Detectors (TF4) for all optical readout calorimetry
- Electronics and On-detector Processing (TF7)
- Integration (TF8) for cooling

Other fields: above all, medical imaging

High granularity \rightarrow critical for PFA (but not only)


Timing resolution \rightarrow critical for hadron colliders (but not only)

Hadronic energy resolution \rightarrow critical for lepton colliders

ECFA DRD6 – Requirements for calorimetry at future colliders

Inspired from https://indico.cern.ch/event/994685/

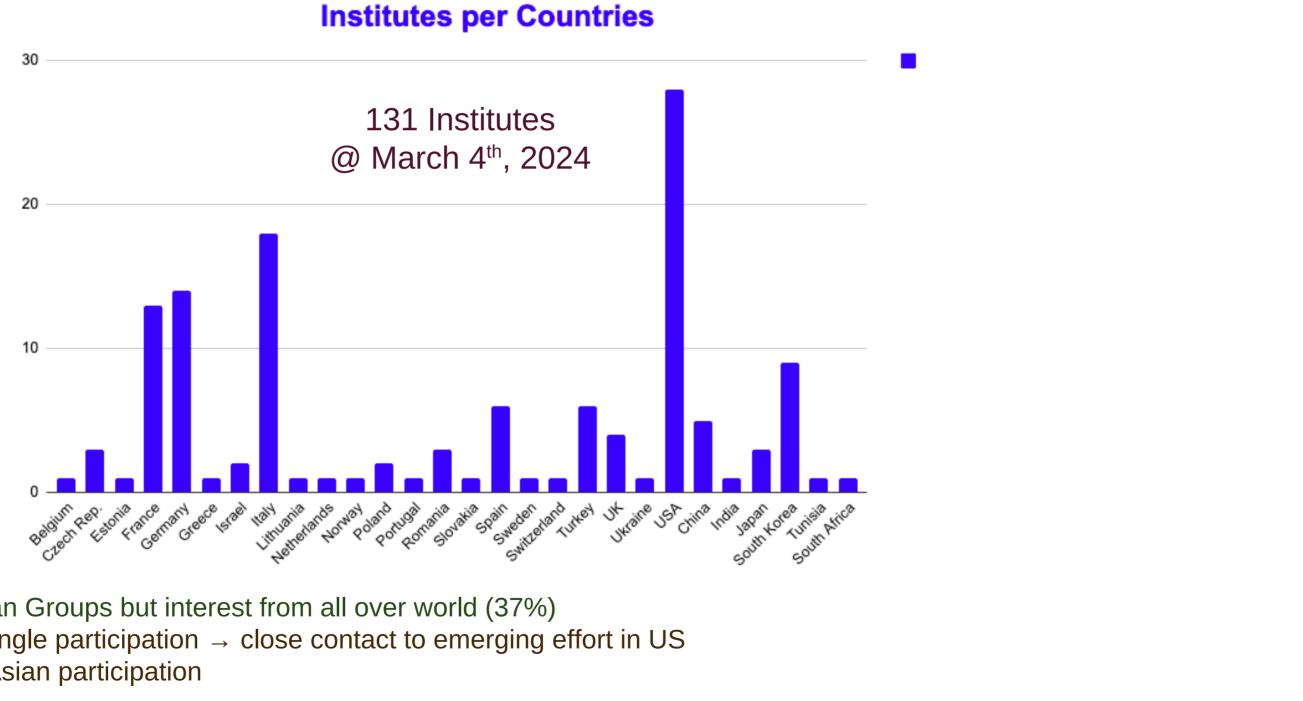
Tough challenges on a

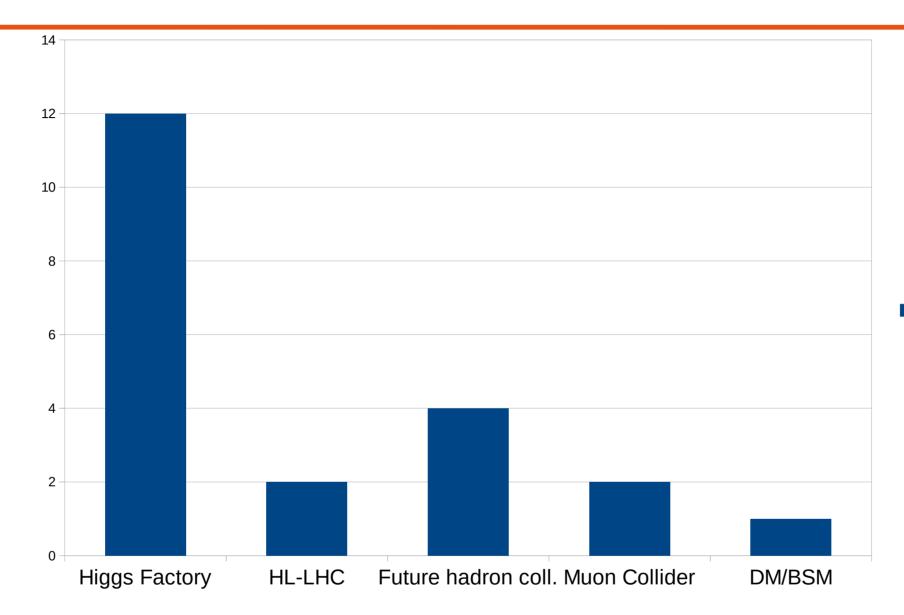
FCC-hh Setting the toughest challenge on radiation tolerance and pileup conditions

Very high energy (longitudinal containment)

µ⁺µ⁻ colliders High beam induced background

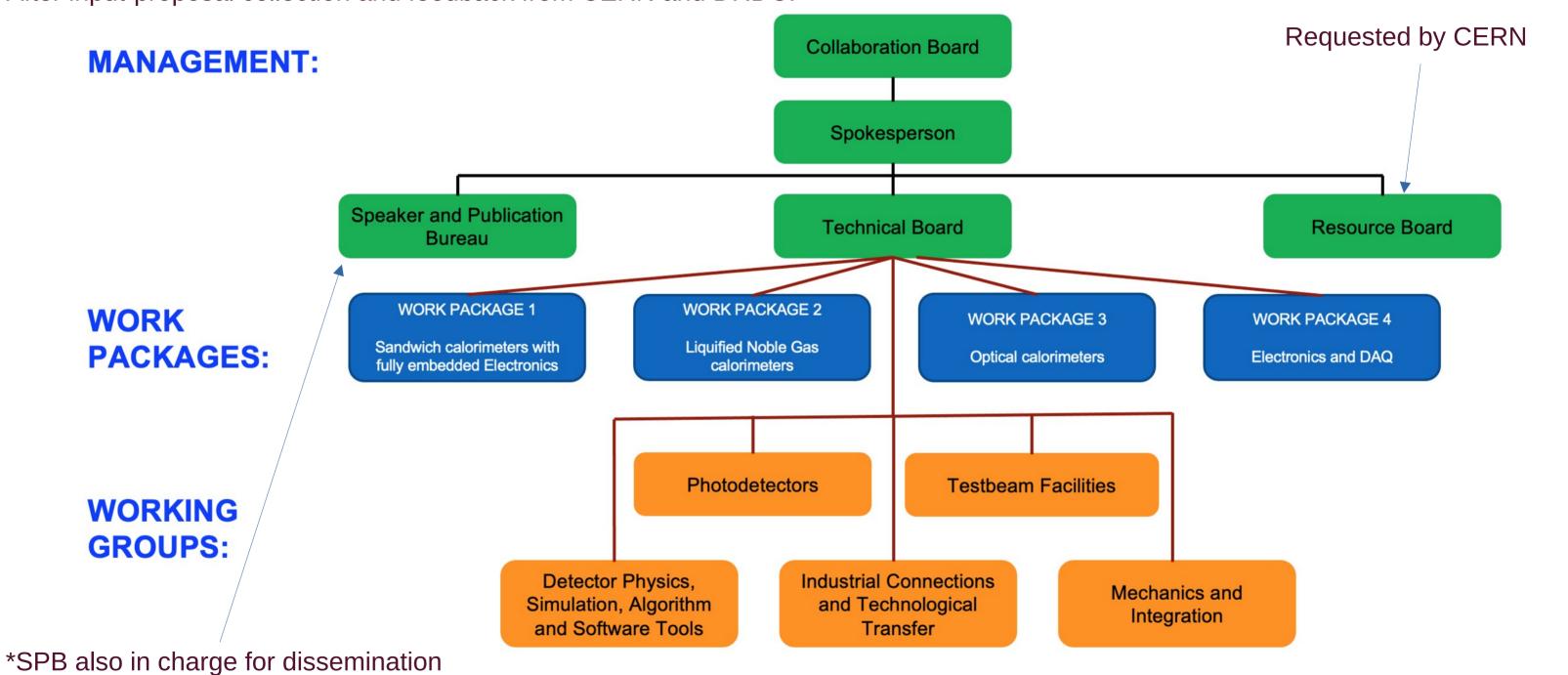
and radiation levels, need for ambitious time resolution


DRD6 Collaboration


DRD6 Collaboration

- Mainly European Groups but interest from all over world (37%)
 - US biggest single participation \rightarrow close contact to emerging effort in US
 - Very visible Asian participation

DRD6 – Target projects


- Higgs factories dominate \rightarrow heavy-flavour physics programme often requires superb em energy resolutions
- Already now, orientation towards future hadron collider and muon collider

CEPC International Workshop 2024 - Hangzhou, 23.10.2024

■ # Target Project

After input-proposal collection and feedback from CERN and DRDC:

In 2023: Input from Community (and from DRDC)

November 17th, 2023 - Submission of DRD Calo Proposal December 4th, 2023 - Discussion in DRDC Meeting December 6th, 2023 - Approval of DRD Calo by CERN Research Board

January 2024: formation of Proto-Collaboration Board ~ beginning of March: election of CB Chair

April 10-12, 2024: 1^{st} Collaboration Meeting ~ end of April: election of Spokesperson

October 30 - Nov 1, 2024: 2nd Collaboration Meeting

CB Members as of today: participation confirmed by 125 Institutes

Spokesperson: Roman Poschl (IJCLAB) Spokesperson Deputies: Mary-Cruz Fouz (CIEMAT), Marc-André Pleier (BNL)

Collaboration Board Chair: Roberto Ferrari (INFN Pavia)

Technical Board Chair (Technical Coordinator): Gabriella Gaudio (INFN Pavia)

Speaker and Publication Bureau Chair: Wataru Ootani (ICEPP, University of Tokyo)

Resource Board Chair (also Resource Coordinator): yet-to-be-identified (Resource Board on hold until full understanding of role)

WP1 Coordinator (yet-to-be-endorsed): Lucia Masetti (J. Gutenberg Universitaet Mainz) Deputy: Adrian Irles (IFIC CSIC, UniversUV)

WP2 Coordinator: Nicolas Morange (IJCLAB)

WP3 Coordinator: Michaela Mlynarikova (CERN) Deputy: Marco Lucchini (Università di Milano Bicocca)

WP4 Coordinator (yet-to-be-endorsed): Christophe de la Taille (OMEGA)

WP 1: Sandwich calorimeters with fully embedded electronics

- » Task 1.1: Highly pixelised electromagnetic section (4 sub-tasks)
- » Task 1.2: Hadronic section with optical tiles (2 sub-tasks)
- » Task 1.3: Hadronic section with gaseous readout (3 sub-tasks)

WP 2: Liquefied-noble-gas calorimeters

WP 3: Optical calorimeters: scintillating-based sampling and homogeneous calorimeters

- » Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters (3 sub-tasks)
- » Task 3.2: Innovative sampling EM calorimeters (3 sub-tasks)
- » Task 3.3: Hadronic sampling calorimeters (2 sub-tasks)
- » Task 3.4: Materials (2 sub-tasks)

WP 4: Electronics and DAQ

Each sub-task is an independent working unit

DRD6 WP4 – Electronics and DAQ

Name	Track	Active media	readout
LAr	2	LAr	cold/warm elx"HGCROC/CALICElike ASICs"
ScintCal	3	several	SiPM
Cryogenic DBD	3	several	TES/KID/NTL
HGCC	3	Crystal	SiPM
MaxInfo	3	Crystals	SIPM
Crilin	3	PbF2	UV-SiPM
DSC	3	PBbGlass+PbW04	SiPM
ADRIANO3	3	Heavy Glass, Plastic Scint, RPC	SIPM
FiberDR	3	Scint+Cher Fibres	PMT/SiPM,timing via CAENFERS, AARDVARC-v3,DRS
SpaCal	3	scint fibres	PMT/SiPMSPIDER ASIC for timing
Radical	3	Lyso:CE, WLS	SiPM
Grainita	3	BGO, ZnWO4	SiPM
TileHCal	3	organic scnt. tiles	SiPM
GlassScintTile	1	SciGlass	SiPM
Scint-Strip	1	Scint.Strips	SiPM
T-SDHCAL	1	GRPC	pad boards
MPGD-Calo	1	muRWELL,MMegas	pad boards(FATIC ASIC/MOSAIC)
Si-W ECAL	1	Silicon sensors	direct withdedicated ASICS (SKIROCN)
Si/GaAS-W ECAL	1	Silicon/GaAS	direct withdedicated ASICS (FLAME, FLAXE)
DECAL	1	CMOS/MAPS	Sensor=ASIC
AHCAL	1	Scint. Tiles	SiPM
MODE	4	-	-
Common RO ASIC	4	-	common R/O ASIC Si/SiPM/Lar

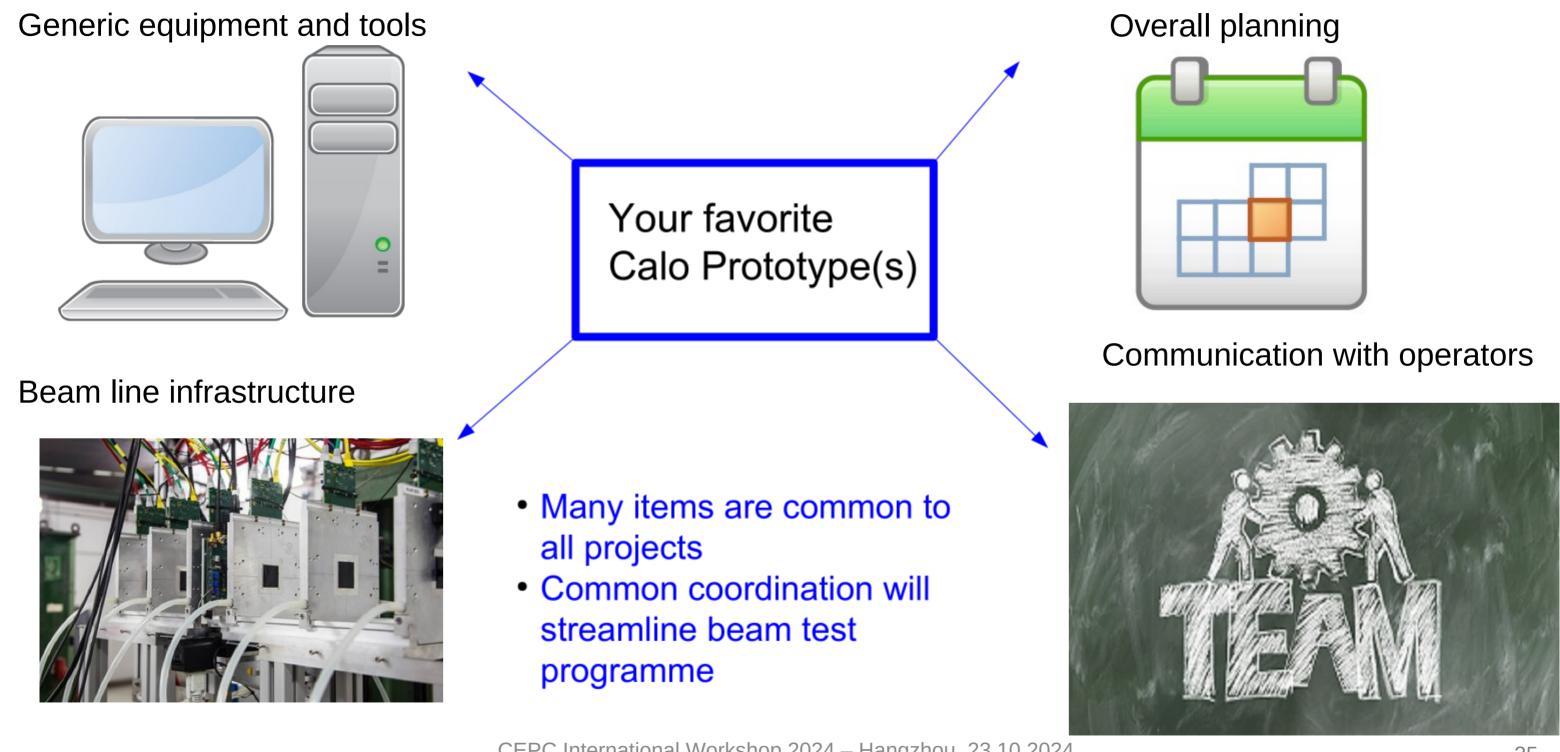
Diffferent calorimeter technology but similar challenges:

- # channels,
- Power budget (cooling?)
- Noise
- Data reduction

- Avoid parallel developments
 - Take CALICE as example
- ASICs needed for prototypes >2025/26 possibly produced in common MPW run serving more projects
 - ASICs should be available ~ one year before data taking at latest

 \rightarrow common ASIC production: overarching goal of DRD Calo

- Evoke possibility to hook onto production for other large projects (EiC?)
 - Agree on sharing among DRD Calo institutes and maybe with MPW runs in other DRDs
- Requires close communication with DRD3 and DRD7 (and maybe also DRD4)


FCFA

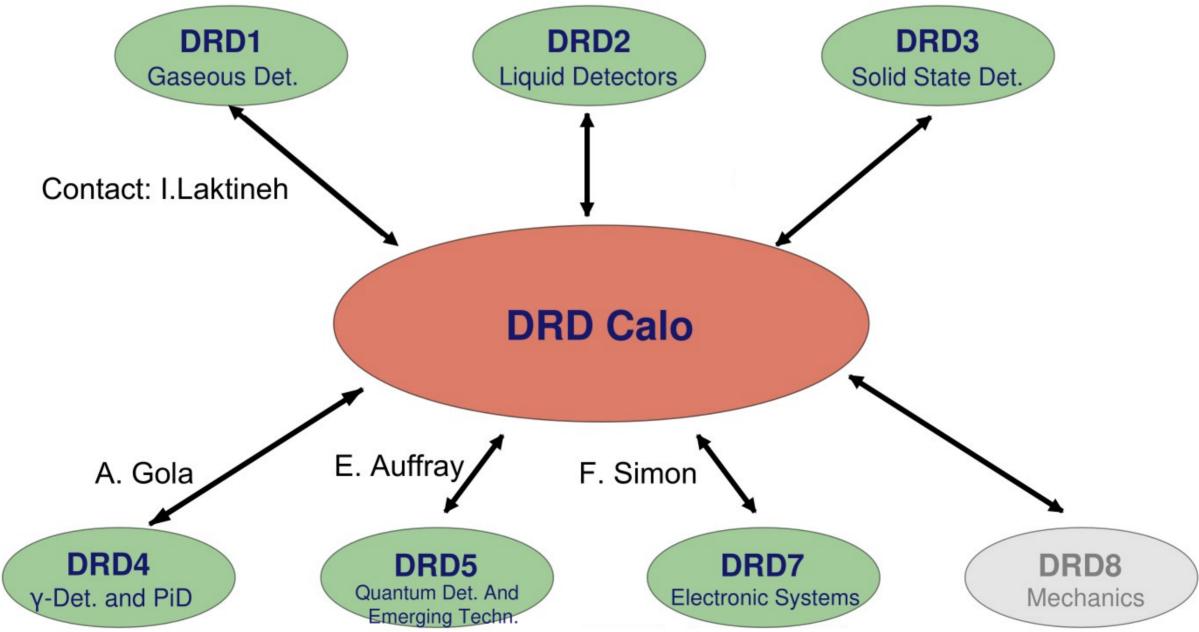
- Working Groups will address work that is common to all work packages in the DRD.
- They thus ensure coherence and synergy of the scientific program of the DRD itself
- In general Working Groups ensure that scientific goals can be reached
 - Funds and personpower need to be included in the budget of the corresponding Work Packages
- Some Working Groups cover service tasks
 - Organisation and conduction of beam tests, if possible in a dedicated beam line for calorimetry
 - Software tools
 - The funding of these service tasks should be the subject of dedicated discussions in the course or shortly after the formation of the DRD
- The detailed organisation of the work within each working group is under the responsibility of dedicated coordinator(s) or directly under the responsibility of Technical Coordination

DRD6 Working Groups – Testbeams

Calorimetric beam tests \rightarrow small experiment, quite common requirements:

wide energy range several kinds of beam particles beam purity and energy beam instrumentation for time, position and PID big moving tables for big detectors magnetic field

coordination of beam requests coordination of and support for data taking


 \rightarrow dedicated calorimetry beamline (in dedicated time slots)?

 \rightarrow default facility: SPS

ECFA

No R&D on primary elements (apart from scint. materials) but adaptation, tuning and integration

- Must be very stable over time: any update will require new full signature cycle \rightarrow very heavy process
- Anything subject to evolution must go in Annexes
- Strong requirement by CERN for uniformity over DRDs
 - However each DRD likely has specific issues (due to history, problematics, ...)
 - Some adaptation will be needed (in our opinion)
- Most controversial point: IP policy \rightarrow many iterations between CERN Legal Service and CERN KT offices
- Resource Board needed
 - Responsible for common fund / common resources
 - Monitoring role over WP activities
 - Funding Agencies are represented in RB
 - MoU (Article 2): "A Funding Agency may be a Collaborating Institution or a body acting on behalf of one or more Collaborating Institutions in the conclusion of the MoU."
 - FAs can be represented by link persons \rightarrow RB could be subset of CB

FCFΔ

- Should provide all needed flexibility
 - Revised once per year + updated any time is needed
- Annex 1: list of current Collaboration members
- Annex 2: essentially define Resource Board
 - Composition not fully crystal clear
 - Assembly of all FAs independently of commitments (i.e. including also FAs not yet committed to something) ?
 - In any case, members have to be agreed with corresponding FAs
- Annex 7
 - All deliverables should go there or only those for which funding is assured ?
 - Tables require listing of resources and therefore commitments
 - Understand level of commitment any given FA is ready to make ?
 - May/should have first table entries by end of 2024
- How much are FAs aware of the "bureaucratic consequences" of the DRDs ?
 - There seem to be different levels of awareness present draft has been sent to all major FAs

ECFA

• Built around deliverables

Number	Title	Description	Start date	End date	I
Dj.1					
Di.2					
Di.3					

- •
- With detailed commitments of Fas

	Deliverable							Total				
		Di1			Di2		Þ.	Di3		lotai		
Institution / Funding Agency	Material / <u>kCHF</u>	Physicists: FUE months	Engineers and technicians: FTF months	Material / kCHF	Physicists: FIE months	Engineers and technicians: FTF months	Material / kCHF	Physicists: FTE months	Engineers and technicians: ETE months	Material / <u>kCHF</u>	Physicists: FUE months	Engineers and technicians: EUE months
Major (e.g. national) Funding Agencies												
FA A via Institution 1												
FA A via Institution 2												

• What about activities not yet (or not fully) funded?

FCFA

- Define collaboration structure + responsibilities and decisional processes
 - Membership
 - Voting procedures
 - Boards and their role
 - \rightarrow Efficient operation without too much overhead
 - \rightarrow WPs should be largely autonomous
- Not yet complete (Resource Board part still missing)
- Role of Speaker and Publication Bureau in WP-specific activities ?
- Living document -> may undergo changes, expecially in first phase
 - At least role of Resource Board has to be better understood
- Draft prepared by DRD6 Proposal Team ready to be discussed and voted by CB next week
 - Result of several iterations in Proposal Team
 - First feedback received by Institutes and action taken
- Should go in Annex 4 of MoU

DRD6 is taking shape and momentum

- Already providing added value (e.g. time at CERN SPS beam lines)
- Should become a brand
- Above all, should allow sinergies and critical issues to be efficiently identified and tackled

Backup

CEPC International Workshop 2024 – Hangzhou, 23.10.2024

ECFA Detector R&D Roadmap: General Strategic Recommendations European Strategy

GSR 1 - Supporting R&D facilities

It is recommended that the structures to provide Europe-wide coordinated infrastructure in the areas of: test beams, large scale generic prototyping and irradiation be consolidated and enhanced to meet the needs of next generation experiments with adequate centralised investment to avoid less cost-effective, more widely distributed, solutions, and to maintain a network structure for existing distributed facilities, e.g. for irradiation

GSR 2 - Engineering support for detector R&D

In response to ever more integrated detector concepts, requiring holistic design approaches and large component counts, the R&D should be supported with adequate mechanical and electronics engineering resources, to bring in expertise in state-of-the-art microelectronics as well as advanced materials and manufacturing techniques, to tackle generic integration challenges, and to maintain scalability of production and quality control from the earliest stages.

GSR 3 - Specific software for instrumentation

Across DRDTs and through adequate capital investments, the availability to the community of state-of-the-art R&D-specific software packages must be maintained and continuously updated. The expert development of these packages - for core software frameworks, but also for commonly used simulation and reconstruction tools - should continue to be highly recognised and valued and the community effort to support these needs to be organised at a European level.

GSR 4 - International coordination and organisation of R&D activities

With a view to creating a vibrant ecosystem for R&D, connecting and involving all partners, there is a need to refresh the CERN RD programme structure and encourage new programmes for next generation detectors, where CERN and the other national laboratories can assist as major catalysers for these. It is also recommended to revisit and streamline the process of creating and reviewing these programmes, with an extended framework to help share the associated load and increase involvement, while enhancing the visibility of the detector R&D community and easing communication with neighbouring disciplines, for example in cooperation with the ICFA Instrumentation Panel.

GSR 5 - Distributed R&D activities with centralised facilities

Establish in the relevant R&D areas a distributed yet connected and supportive tier-ed system for R&D efforts across **Europe.** Keeping in mind the growing complexity, the specialisation required, the learning curve and the increased cost, consider more focused investment for those themes where leverage can be reached through centralisation at large institutions, while addressing the challenge that distributed resources remain accessible to researchers across Europe and through them also be available to help provide enhanced training opportunities.

GSR 6 - Establish long-term strategic funding programmes

Establish, additional to short-term funding programmes for the early proof of principle phase of R&D, also long-term strategic funding programmes to sustain both research and development of the multi-decade DRDTs in order for the technology to mature and to be able to deliver the experimental requirements. Beyond capital investments of single funding agencies, international collaboration and support at the EU level should be established. In general, the cost for R&D has increased, which further strengthens the vital need to make concerted investments.

GSR 7 – "Blue-sky" R&D

It is essential that adequate resources be provided to support more speculative R&D which can be riskier in terms of immediate benefits but can bring significant and potentially transformational returns if successful both to particle physics: unlocking new physics may only be possible by unlocking novel technologies in instrumentation, and to society. Innovative instrumentation research is one of the defining characteristics of the field of particle physics. "Blue-sky" developments in particle physics have often been of broader application and had immense societal benefit. Examples include: the development of the World Wide Web, Magnetic Resonance Imaging, Positron Emission Tomography and X-ray imaging for photon science.

ECFA Detector R&D Roadmap: General Strategic Recommendations European Strategy

GSR 8 - Attract, nurture, recognise and sustain the careers of R&D experts

Innovation in instrumentation is essential to make progress in particle physics, and R&D experts are essential for innovation. It is recommended that ECFA, with the involvement and support of its Detector R&D Panel, continues the study of recognition with a view to consolidate the route to an adequate number of positions with a sustained career in instrumentation R&D to realise the strategic aspirations expressed in the EPPSU. It is suggested that ECFA should explore mechanisms to develop concrete proposals in this area and to find mechanisms to follow up on these in terms of their implementation. Consideration needs to be given to creating sufficiently attractive remuneration packages to retain those with key skills which typically command much higher salaries outside academic research. It should be emphasised that, in parallel, society benefits from the training particle physics provides because the knowledge and skills acquired are in high demand by industries in high-technology economies.

GSR 9 - Industrial partnerships

It is recommended to identify promising areas for close collaboration between academic and industrial partners, to create international frameworks for exchange on academic and industrial trends, drivers and needs, and to establish strategic and resources-loaded cooperation schemes on a European scale to intensify the collaboration with industry, in particular for developments in solid state sensors and micro-electronics.

GSR 10 – Open Science

It is recommended that the concept of Open Science be explicitly supported in the context of instrumentation, taking account of the constraints of commercial confidentiality where these apply due to partnerships with industry. Specifically, for publicly-funded research the default, wherever possible, should be open access publication of results and it is proposed that the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP³) should explore ensuring similar access is available to instrumentation journals (including for conference proceedings) as to other particle physics publications.

Several Phase-II and Phase-III HL-LHC upgrades:

CMS ECAL, LHCb ECal, ALICE FoCal

and also:

LUXE (XFEL), BELLE II ECal, EIC EEMCal

but ... all, except FoCal, EM calorimeters

CEPC International Workshop 2024 - Hangzhou, 23.10.2024

High-performance hadron calorimetry only relevant for future Higgs/EWK factories?

Only rate capability and radiation hardness look to matter for hadron colliders (not surprising)

