DRD6-WP1 Sandwich calorimeters with fully embedded electronics

Adrián Irles for the DRD6-WP1 AITANA group at IFIC – CSIC/UV

AITANA

High Granularity Calorimetry concept

- R&D and proof of concept lead by the CALICE and FCAL collaborations
- **Exported to HL-LHC** Upgrade of existing detectors (ALICE FoCAL pixel calorimeter, HGCAL with high granular Si and SC calorimeter systems)
- Adapted to lower energy experiments
 - Strong-Field QED experiments (LUXE)
 - Dark Photon, ALPs Experiments (LUXE-NPOD, EBES -KEK, Lohengrin - Bonn,...)

Achieved milestones in the past: FCAL, CALICE (and CALICE+CMS) beam tests campaign of large size prototypes

Large surface detectors Si Wafer

Highly integrated (very) front end electronics

e.g. SKIROC (for SiW Ecal)

Sandwich calorimeters with fully embedded electronics

INSTITUT DE FÍSICA CORPUSCULAR

▷General approach:

• Highly granular calorimeters as <u>integrated systems</u> - but often still with separate requirements and correspondingly separate technological solutions for electromagnetic <u>and hadronic sections</u>.

▷Overarching goals:

• Establish (where not existing already) <u>large-scale prototypes</u> that allow to demonstrate the technologies, both stand-alone and in combined tests of different electromagnetic and hadronic sections.

High-level structure: Tasks covering technology areas

- Task 1.1: Highly pixelised electromagnetic section
- Task 1.2: Hadronic section with optical tiles
- Task 1.3: Hadronic section with gaseous readout

1.1. Pixelated ECAL

Task/Subtask	Sensitive Material/ Absorber	DRDTs	Target Application	Current Status			
Task 1.1: Highly pixelised electromagnetic section							
Subtask 1.1.1: SiW-ECAL	Silicon/ Tungsten	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed			
Subtask 1.1.2: Highly compact calo	Solid state (Si or GaAs)/ Tungsten	6.2	e^+e^- collider forward part	Prototypes with non-optimised sensors, Sensor optimisation and data transfer studies ongoing			
Subtask 1.1.3: DECAL	CMOS MAPS/ Tungsten	6.2, 6.3	e^+e^- collider central detector. Future hadron collider	Prototypes with non-optimised sensors, Sensor optimisation ongoing			
Subtask 1.1.4: Sc-Ecal	Scintillating plastic strips/ Tungsten	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed			

4

SiW-ECAL

IFIC INSTITUT DE FÍSICA

SiW-ECAL (<2020)

- 15 layers 18×18 cm²
- 0.5×0.5 cm² Si cells
- 2.8+5.6 mm W (21 X₀)
- 100 kg, 0.4×0.4×80 cm³
- 15k channels
- Sensor delamination issues

FEV2.1 under test

Additional drying and humidity cycles 3x72 cycles during nine days at 90% and 30°C

SiW-ECAL (ongoing)

- Goal 15 layers 18×18 cm²
- New PCB generation & ASICs
- R&D on optmized hybridization
- Ongoing studies on requirements for Circular Colliders:
 - - high fluxes
 - - cooling

5d calorimetry

Cleaning of Events

Prototype from Hamamatsu

EUDET layout

Forward Calorimetry (extreme compactness)

- ▷LumiCal for precise luminosity measurement (Counting Bhabhas)
- ▷BeamCal for fast luminosity measurement (using beamstrahlung)
- ▷Technology choice: Si or GaAs/W sandwich calorimeters
- ▷1 X0 absorber thickness per layer, 20 (30) layers in ILC (CLIC)
 - Optimal geometries for FCC being studied

▷ Recent progress:

- investigation of new GaAs sensors with integrated signal routing → similar signal size to silicon sensor
- FLAMe and FLAXE ASICS development and production (ongoing)

Production of a large scale prototype (adapted to LUXE)

Carge sensors (9x9cm²) and flexible PCBs (compact calo)

- \triangleright Material budget, thickness:
 - Total bellow 1mm
- 200um CF + 320um sensor
- ~500um for fanout + HV kapton + 3 layers of glue/Adhesive

Slide from K. Krueger

DRD6 – high granular silicon ECALs

7

Digital ECAL based on MAPS

▷Primary experimental context: ALICE FOCAL, Higgs Factories

▷A MAPS-based digital Silicon-Tungsten ECAL,

- EPICAL: building on current DECAL and EPICAL projects, partially integrated in CALICE in the past
- NAPA-p1 at SLAC (cooperation with CERN) sensor development

CEPC meeting October 2024 23rd 'rles A.,

8

Digital ECAL based on MAPS

Microscope photo of NAPA-p1

Acknowledgement: CERN WP 1.2 for the excellent cooperation: NAPA-p1 uses the pixel masked developed and optimized by CERN, and was fabricated in a shared run led by CERN meeting

PC

Scintillator ECAL

Technological Prototype

• ScW-ECAL technological prototype

- Full layers (32 layers)
 - Detection layer of 210×225mm² with 210 scintillator-strips
 - 30 layers with single SiPM readout
 - •2 layers with double SiPM readout
 - Absorber plate (3.2mm-thick 15%-85% Cu-W alloy)
 - ullet Total material thickness $23.4\,X_0$

Scintillator ECAL

Ongoing and Near Future (~5 years)

Engineering work for large scale production

- Injection moulding, automated assembly, system for QC/QA
- Improvement of timing performance with dedicated timing layers ~10ps
 - Scintillator tile + larger SiPM with high light yield \rightarrow better time resolution
 - Cherenkov detector based on RPC-GasPM (New R&D)
- R&D on new materials:
- High Granular Crystal Calorimetry

Single EM module

meeting

EPC

Task 1.2: Hadronic section with optical tiles						
Subtask 1.2.1: AHCAL	Scintillating plastic tiles/ Steel	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed		
Subtask 1.2.2: ScintGlassHCAL	Heavy glass tiles/ Steel	6.2	e^+e^- collider central detector	Material studies and specifications for prototypes		

AHCAL

- ▷Main experimental context: Higgs Factories
- ⊳SiPM-on-tile / steel HCAL
 - Builds on CALICE AHCAL Technological Prototype
- ▷Main R&D topics:
 - Extension of current detector concept to circular colliders with continuous readout
 - evaluate consequences of higher data rate
 - re-evaluate need for cooling
 - re-optimisation of detector to ensure optimal performance while respecting new constraints
- Corresponding hardware development: ASICs (KLAuS, OMEGA), HBU and interfaces, mechanical and thermal design; scintillator geometry
- First layers for new system design in 2026, EM stack with ~15 layers ~ 2029

Design, Construction and Commissioning paper: JINST 18 (2023) 11, P11018

AHCAL

▷Megatile Design

- Large scintillator plate with optically separated trenches filled with reflective TiO2
- Plate wrapped in reflective foil
- Pro: Easier assembly; no dead areas
- Con: Not fully light tight

шш

0

LED

SiPM

CEPC meeting 23rd October 2024 Irles A.,

glue + TiO₂

HBU

ScinGlass HCAL

▷A variation of the CALICE AHCAL concept: Using glass scintillator tiles instead of plastic

- Increased sampling fraction with the potential for improved energy resolution
 Main R&D directions:
 - R&D of scintillator material main targets: high density, high light yield, low cost
 - Simulation studies of hadronic performance: single particles, jets
 - Development of modules: setup for characterization; EM prototype ~2025; HCAL prototype ~ 2027

15

Task/Subtask	Sensitive Material/ Absorber	DRDTs	Target Application	Current Status				
Task 1.3: Hadronic section with gaseous readout								
Subtask 1.3.1: T-SDHCAL	Resistive Plate Chambers/ Steel	6.2	e^+e^- collider central detector	Prototype for finalising R&D for LC, Specification for CC and of timing for PFA needed				
Subtask 1.3.2: MPGD-HCAL	Multipattern Gas Detectors/ Steel	6.2, 6.3	$\mu^+\mu^-$ collider central detector	Small prototype for proof-of-principle, Lateral and longitudinal extension envisaged				
Subtask 1.3.3: ADRIANO3	Resistive Plate Chambers +Scintillating plastic tiles/ Heavy Glass	6.1, 6.2, 6.3	e^+e^- collider central detector BSM searches in MeV-GeV range	RPC, Scintillating Tiles advanced status, R&D on heavy glass needed				

ADRIANO3

Extension of ADRIANO2 (for REDTOP)

Three-readout modes with 5D shower measurement, disentangling the neutron component of the shower.

⊳Key R&D goals

- optimization of the construction technique in terms of: light yield, RPC efficiency, timing resolution, and cost
- Test layers in 2024, small-scale prototype 2025
- Larger-scale prototype 2026-2027

▷ Plans to use ultrafast ASICs for RPC readout

Development of Hybrid RPCs

Probing a hybrid readout where part of the electron multiplication is transferred to a thin film of high secondary emission yield material coated on the readout pad with the purpose of reducing/removing gas flow and enabling the utilization of alternative gases.

Built several 10 cm x 10 cm chambers with single pad readout.

Coating of Al₂O₃ made with magnetron sputtering.

Coating of TiO_2 made with airbrushing after dissolving TiO_2 in ethanol.

RPCs obtain high efficiency at considerably lower high voltage settings.

INFN

Тне 📶

OF IOWA

UNIVERSITY

NIU

→ RPCs with functional anodes

Cosmic muon response

Multipattern Gas Detector

Prototypes produced and tested within RD51 common project:

- 7 µ-RWELL
- 4 MicroMegas
- **1 RPWELL**

Detector design:

- Active area 20×20 cm², pad size 1×1 cm²
- Common readout board

Prototype characterization performed in all the laboratories

Multipattern Gas Detector

- Development of MPGD-HCAL ongoing in simulations and hardware
 - Tested 12 MPGDs and small cell calorimeter within RD51 common project

Plans for 2024-2025

Consolidating results with present prototypes in two test beams in 2024:

- SPS: full efficiency Vs HV curve, response uniformity
- PS: test of a fully equipped 8 MPGD layers prototype

Construction and test of 4 large detectors (50×50 cm 2)

• Results to be discussed in next DRD6 meeting

T-SDHCAL

SDHCAL - Semi-Digital Hadronic CALorimeter

Sampling calorimeter:

Absorber: Stainless Steel + Detector: Glass Resistive plate Chambers

- > 48 layers (-6λ_I)
- 1 cm x 1 cm granularity
 - 3-threshold, 500000 channels
- Power-Pulsed
- Triggerless DAQ system
- Self-supporting mechanical structure

Published: JINST 10 (2015) P10039

T-SDHCAL

Including time information in the simulation to separate hadronic showers (10 GeV neutral particle from 30 GeV charged particle) using techniques similar to ARBOR's ones.

 \triangleright Timing studies \rightarrow 5d Particle Flow

MultiGap glass RPC

▷ Electronics : from SDHCAL to T-SDHCAL

▷Cooling (adaptations to CC)

Electronics Readout

Much more exciting news next week: DRD6 collaboration meeting

https://indico.cern.ch/event/1449522/

High Granularity Calorimetry in DRD6

Approved by CERN DRC

First Collaboration Meeting 9th - 11th April

Approved by CERN DRC

▷ First Collaboration Meeting 9th - 11th April

26

DRD6 Calo

Approved by CERN DRC

▷ First Collaboration Meeting 9th - 11th April

DRD6 Calo

- **DRDT 6.1** Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution
- Calorimetry **DRDT 6.2** Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods
 - **DRDT 6.3** Develop calorimeters for extreme radiation, rate and pile-up environments

Requirements: highly integrated

e.g. SKIROC (for SiW Ecal)

Barrel

⊳O(10⁴) slabs

C(10⁵) ASUs (PCB+wafer+ASIC+DigReadout)

O(10⁶⁻⁷) ASICS

O(10⁸) cells

2000 m² of Si

▶130 T of tungsten Cell size of 5x5 mm → all cells are self triggered + zero suppression

Size 7.5 mm x 8.7 mm, 64 channels Dual gain, autotrigger, powerpulsed

(goal of 25uW / chn)

W_{struct}

slab

Heat shield: 100+400 µm

glue: 75 µm

PCB+FEE 1.2 – 2.8mm

Wafer: ~500µm

Kapton® film: 100 µm

(copper)

Requirements: highly compact

Figure 5.13. Structure of a sensitive layer of the LumiCAL calorimeter.

Forward region (LUMICAL)

▷Ultra thin layers <1mm for minimal Moliere Radius

Not embedded electronics

➢ Higher radiation levels

Si ECAL hybridization / integration

Common R&D Mid-term

▷ R&D Alternative solutions:

- Check what the industry is doing (smartphones, LCD screens, etc)
- → Anysotropic Conductive Films, Micropearls... (investigated also in the context of AIDAInnova & LUXE)
- Affordable for large surface sensors in rigid PCBs ??

PCBs

⊳Very dense **PCBs:**

 i.e. at SiW-ECAL they are known as featuring 1024 readout channels (with digital, analogue, clock signals) in a 18x18 cm^2 board

CMS HGCAL Hexaboard

Wire bonding from PCB to silicon through holes

SiW-ECAL current prototype solution.

Chip-On-Board solution (R&D phase, tested recently in beam test)

Meets industry requirements \rightarrow bulky components **compromise compactness**

The **most compact solution**... but no space for required components (i.e. for power pulsing)

Seeking the lowest JER

Separation of hadronic final states of heavy bosons:

Requires jet energy resolution of ~ 3.5% over a wide energy range

- Very high rates that require
- (e.g. 2x better than ALEPH / ATLAS)

Complicated topologies: T - reconstruction

▷ Flavour physics (low energy tau's)

▷Direct pair production by Z, H, top decays, ... (high energy taus)

Require excellent tracking, vertexing and PID capabilities and... good ECAL resolution and high granularity in calorimetry

A classic example: Tau reconstruction 3 prong prong $e^+e^- \rightarrow H \nu \bar{\nu} \rightarrow \tau^+ \tau^- \nu \bar{\nu}$ @ 1.4 TeV at CLIC

Results in close-by / overlapping
 electromagnetic and hadronic showers

Particle Flow Algorithms

Aim: perform single particle reconstruction and use the best information in our detector estimate the energy

Example: jet created by a proton "traditional" detector : $(\Delta E)^2 \sim (\Delta E_{ECAL})^2 + (\Delta E_{HCAL})^2$ Particle Flow detector: $\Delta E \sim \Delta E_{track}$

High granular calorimetry

Design of a PF detector

Holistic approach:

 Tracking, vertexing, PID detectors, calorimeters, coils, etc.. all systems are at the service of the event reconstruction

Maximal acceptance minimizing cracks, dead material, endcap-barrel transitions...

• Forward calos as close as possible to the IP.

Minimum material in front of the calorimeters,

- Low material budget tracking systems.
- Calorimeters **inside a large magnetic field** (no coil between trackers and calos)

Highly compact calorimeters (cost and physics)

 Readout is highly integrated: data processing done "in" the detector

Highly Granular calorimeters

Between 10⁶-10⁸ channels (barrel)

High granularity calorimeters: more than "only" PFA[F[C

- SDHCAL: Separation of 10 GeV between neutral hadron and charged hadron [CALICE-CAN-2015-001] More than 90% efficiency and purity for distances \geq 15 cm
- SDHCAL using 6 variable discriminnating **BDT for Particle Identification** [JINST 15 (2020) P10009]

High granularity offers unprecedented capabilities to perform **PID** in the calorimeters

