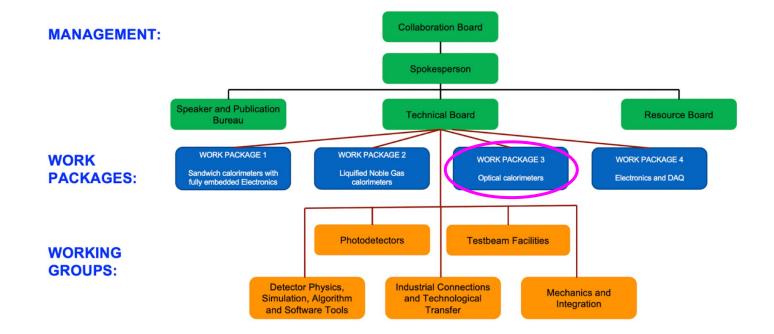
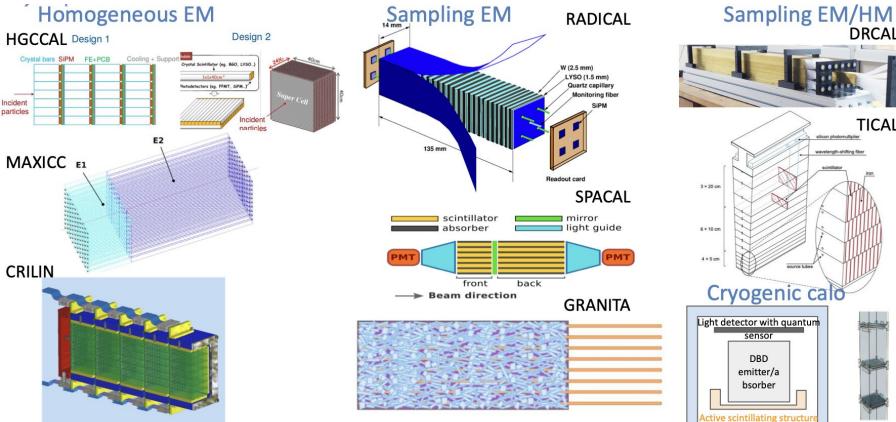
DRD6 WP3: Optical calorimeters


Michaela Mlynarikova (CERN)

The 2024 international workshop on the high energy Circular Electron Positron Collider, Oct 23-27, 2024



DRD6 WP3: Overview

- Involvement from ~70 institutes working on 11 different projects
- **The goal**: explore, optimise and demonstrate with full shower-containment prototypes, new concepts of sampling and homogeneous calorimeters based on scintillating materials

DRD6 WP3: Projects

Active veto for external radiation

DRCAL

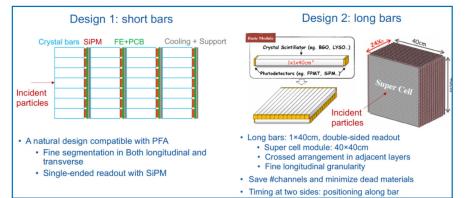
TICAL

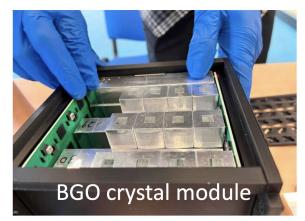
silicon photomultiplie

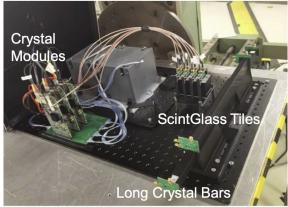
wavelength-shifting fiber

DRD6 WP3: Projects

				Target
Project	Scintillator/WLS	Photodetector	\mathbf{DRDTs}	Target
Task 3.1: Homoge	eneous and quasi-homo	geneous EM calorimete	ers	
IGCCAL	BGO, LYSO	SiPMs	6.1, 6.2	e^+e^-
MAXICC	PWO, BGO, BSO	SiPMs	6.1, 6.2	e^+e^- ×
Crilin	PbF_2 , PWO-UF	SiPMs	6.2, 6.3	$\mu^+\mu^-$
Task 3.2: Innovat	ive Sampling EM calor	imeters		
GRAiNITA	$ZnWO_4$, BGO	SiPMs	6.1, 6.2	e^+e^-
SpaCal	GAGG, organic	MCD-PMTs,SiPMs	6.1, 6.3	e^+e^-/hh
RADiCAL	LYSO, LuAG	SiPMs	6.1,6.2,6.3	e^+e^-/hh
ask 3.3: (EM+)	Hadronic sampling calc	orimeters		
DRCal	PMMA, plastic	SiPMs, MCP	6.2	e^+e^-
TileCal	PEN, PET	SiPMs	6.2, 6.3	$\mathrm{e^+e^-/hh}$
Task 3.4: Materia	als			
ScintCal	-	-	6.1, 6.2, 6.3	$\mathrm{e^+e^-}/\mu^+\mu^-/\mathrm{hh}$
CryoDBD Cal	TeO, ZnSe, LiMoO	n.a.	-	DBD experiments
	NaMoO, ZnMoO			

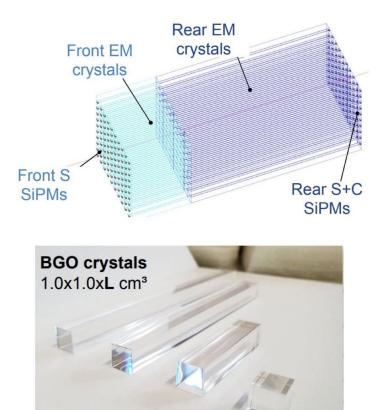

WP3: Task 3.1

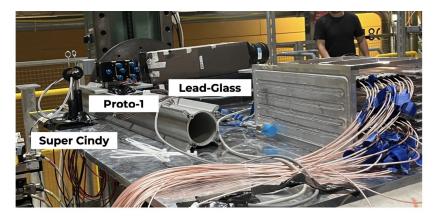

Project	${f Scintillator}/{f WLS}$	Photodetector	\mathbf{DRDTs}	Target	
Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters					
HGCCAL	BGO, LYSO	SiPMs	6.1, 6.2	e^+e^-	
MAXICC	PWO, BGO, BSO	SiPMs	6.1, 6.2	e^+e^-	
Crilin	PbF_2 , PWO-UF	SiPMs	6.2, 6.3	$\mu^+\mu^-$	

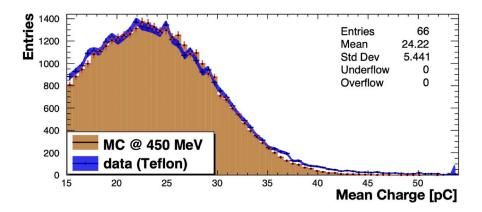

+ OREO project

High-granularity crystal calorimeter (HGCCAL)

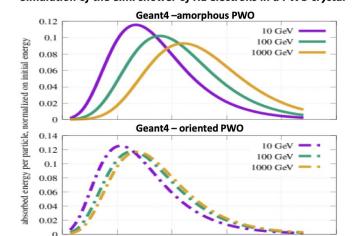
- Crystal bars arranged in a grid structure
 - Optimal EM resolution: 2-3%/√E
 - Fine segmentation for particle flow algorithms
- Two designs: short and long crystals
- First prototypes tested in beam tests
- Main R&D Topics
 - Development an EM shower-scale prototype
 - Studies of SiPMs and ASICs with a large dynamic range




MAXICC

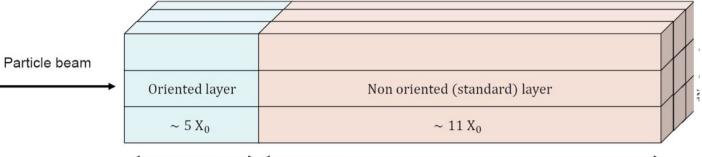

- Homogeneous EM calorimeter based on segmented crystals with dual-readout
 - High density scintillating crystals with good cherenkov yield
 - Dedicated optical filters and SiPMs to readout S and C from same active element
 - Promise $3\%/\sqrt{E}$ + DR capability
 - Synergies within Calvision, IDEA and CERN Crystal Clear collaborations
- Main R&D Topics
 - Identification of optimal crystals, optical filters and SiPM candidates
 - Proof-of-concept with lab measurements and prototypes
 - EM scale prototype for beam test

CRILIN


- A CRystal calorimeter with Longitudinal InformatioN for the future Muon Collider
 - EM calorimeter: semi-homogeneous based on Lead-Fluorite (PbF2) crystals and SiPMs
- Targets EM resolution: 5-10%/√E
 - Limited by beam induced background (BIB) and SiPM noise (due to radiation damage)
- First prototypes tested in beam tests
- Main R&D Topics
 - Validation of the concept design
 - Simulations with EM-shower-scale prototype

OREO

- Idea: Use oriented crystals
 - The input photon or electron/positron showers can fully develop in a much lower thickness with respect to the current state-of-the-art detectors, with the same light yield
- Advantages
 - Enhanced compactness
 - Cost reduction
 - Better n/γ discrimination
- Challenge
 - Construction of an oriented layer of many crystals


10

15

depth, cm

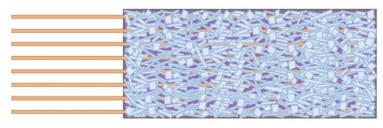
20

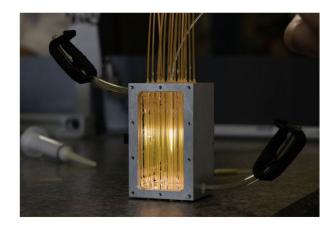
25

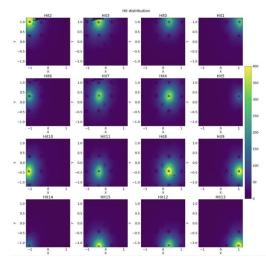
L. Bandiera, V.V.Haurylavets, V. Tikhomirov NIM A 936 (2019) p.124-126 L. Bandiera et al., Front. Phys. 2023 11:1254020. doi: 10.3389/fphy.2023.1254020 M. Soldani et al., arXiv:2404.12016v1

5

0

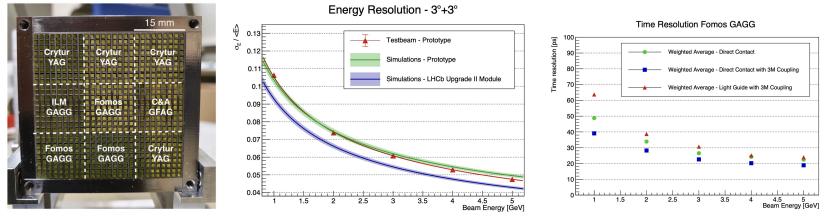

Simulation of the e.m. shower of HE electrons in a PWO crystal


Project	Scintillator/WLS	Photodetector	DRDTs	Target	
Task 3.2: Innovative Sampling EM calorimeters					
GRAiNITA	$ZnWO_4, BGO$	SiPMs	6.1, 6.2	e^+e^-	
\mathbf{SpaCal}	GAGG, organic	MCD-PMTs,SiPMs	6.1, 6.3	${ m e^+e^-/hh}$	
RADiCAL	LYSO, LuAG	SiPMs	6.1,6.2,6.3	e^+e^-/hh	


GRANiTA

- A novel type of calorimeter ~next generation shashlik
- Use grains of inorganic scintillating crystal readout by wavelength shifting fibers
 - Light spatially confined by refraction/reflections

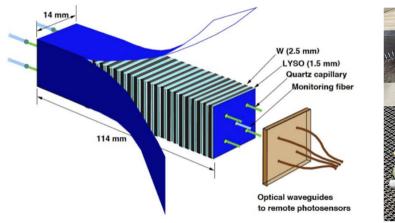
- Excellent expected EM resolution: 2-3%/√E
 - Using BGO or ZnWO4 crystals
 - 16-channel prototype tested with cosmics
 - First test beam of small proto at CERN
- Main R&D topics
 - R&D on crystal grains
 - Aim for larger prototype to validate on testbeam

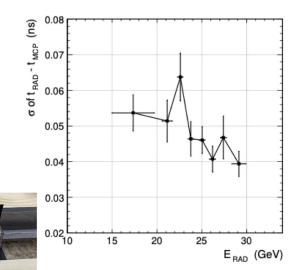


Confirmation of light confinement

SpaCal

- Sampling EM calorimeter: scintillating fibres inserted in a high-density absorber material
 - Tunable energy resolution and time resolution of O(10-20) picoseconds
- Use radiation-hard crystal fibres as active elements \rightarrow viable technology for hadron colliders
 - Possible optimisation for for e+e- collider
- EM-shower-scale prototypes with tungsten and lead absorbers were successfully tested
- Main R&D topics
 - Optimisation of absorbers, light guides, photon detectors, scintillating fibres and simulation
 - Development of ASIC optimised for waveform sampling with 15 ps time resolution


RadiCal

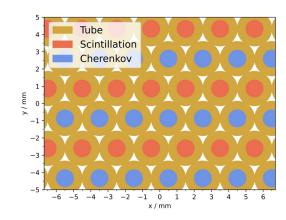

• Shashlik-type: crystal plates, tungsten plates, quartz capillaries with WLS filament

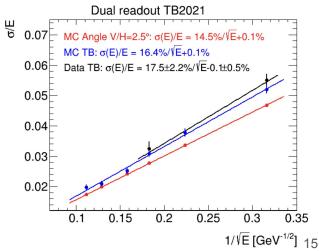
PRINE SIDE

NBMMIC

- Uses the scintillation and cherenkov light
- Compact EM calorimeter with fast-timing
- Designed for high radiation tolerance in extreme environments
- Prototypes measured at beam tests
- Main R&D topics:
 - Development of radiation-hard wavelength shifters
 - Construction of EM-shower-size prototype

WP3: Task 3.3


Project	Scintillator/WLS	Photodetector	DRDTs	Target	
Task 3.3: (EM+)Hadronic sampling calorimeters					
DRCal	PMMA, plastic	SiPMs, MCP	6.2	e^+e^-	
TileCal	PEN, PET	SiPMs	6.2, 6.3	$\mathrm{e^+e^-/hh}$	


publication

DRCal

- Longitudinally unsegmented dual-readout sampling calorimeter
 - Scintillation and Cherenkov fibres inside an absorber groove
 - Reaches 30%/√E for single hadrons ⇒ ultimate resolution for jets
- Main R&D Topics
 - Develop scalable readout electronics
 - Optimize metal matrix mechanics for large production
 - Develop mechanical model of full system with services

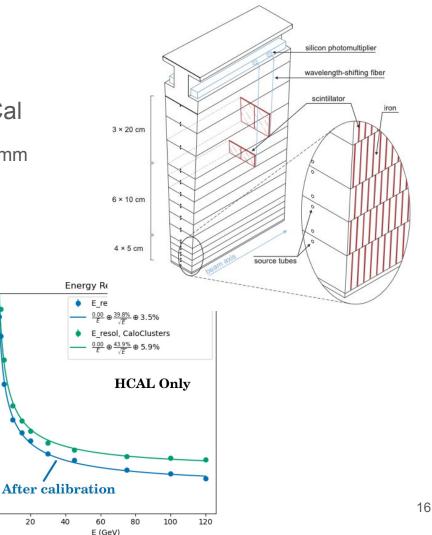
TileCal

- High-granularity version of ATLAS TileCal hadronic calorimeter
 - 5mm steel absorber plates alternating with 3mm 0 scintillators

30

25

20


Resolution (%) 5

10

5

0

- 8 9.5λ 0
- SiPM readout through WLS Cost-effective solution 0
- \bigcirc
- Main R&D topics
 - Exploration of new scintillator materials Ο
 - Optimisation of WLS and SiPMs for 0 readout efficiency
 - Build testbeam module 0

WP3: Task 3.4

Project	$\mathbf{Scintillator}/\mathbf{WLS}$	Photodetector	$\mathbf{D}\mathbf{R}\mathbf{D}\mathbf{T}\mathbf{s}$	Target	
Task 3.4: Materials					
ScintCal	-	-	6.1,6.2,6.3	$\mathrm{e^+e^-}/\mu^+\mu^-/\mathrm{hh}$	
CryoDBD Cal	TeO, ZnSe, LiMoO	n.a.	-	DBD experiments	
	NaMoO, ZnMoO				

Materials

- A lot of development on new scintillating materials are ongoing
- Main R&D topics of **ScintCal** project:
 - Fast and radiation-hard organic and inorganic scintillators
 - Ultrafast inorganic scintillators for ultrafast calorimetry
 - Cost-effective inorganic scintillators
- Main R&D topics of **Cryogenic DBD-calorimeters** project:
 - Goal: Future generations of double beta decay experiments based on cryogenic calorimeters
 - Interested in development of of new scintillating materials
 - Radiopurity and compatibility with a cryogenic environment are of paramount importance

Conclusions

- WP3 community is very active, making great progress in collaborative spirit
- Large diversity of calorimeter technologies
 - Some building on proven technologies
 - Pushing those technologies to their limits
 - Some coming to fruition after years of R&D
 - Some brand new ideas
- In all cases:
 - Long road ahead to get to large scale prototypes
 - System-level concerns and engineering challenges are numerous
- In parallel, R&D on new scintillating materials ongoing and progressing well